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Abstract

Consider a population of citizens uniformly spread over the entire plane. The population faces a problem
of locating public facilities financed by its users, who face an idiosyncratic private access cost to the facility.
We show that, under mild assumptions, an external intervention that covers a tiny portion of the facility cost
is sufficient to guarantee secession-proofness or no cross-subsidization, where no group of individuals is
charged more than the cost incurred if it had acted on its own. Moreover, we demonstrate that in this case
the Rawlsian access pricing is the only mechanism that rules out secession threats.
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1. Introduction

Consider a society that faces a problem of locating public facilities (or public projects, as
in [23]) to serve its members. The facilities, say libraries, are to be located on the plane and
could be visited by citizens at some private “transportation” cost related to distance between
their residence and the facility they are assigned to.1

Assuming that setting up and operating a facility entails a fixed set-up and operational cost,
the following problems arise:

• how many facilities should be built;
• where to locate the facilities;
• how to assign citizens to the facilities;
• how to allocate the facilities costs (in the form of access fees) to citizens-users.

In this paper we examine the case where

– the demand for use of services is uniformly distributed over the plane, independently of the
access fee;

– the cost of setting up a facility is independent of location;
– transportation cost is proportional to Euclidean distance.

We assume that for any number and location of facilities, assignment of users to facilities and
access fees, all citizens-users enjoy a “free entry/exit” option: any group can build a new facility
for their own benefit at the standard fixed cost, and locate it at will. A threat of free entry and exit
leads us imperatively to impose the “secession-proofness” or “core” property: at equilibrium, no
group of users should be able to benefit by defecting from the proposed arrangement to set up and
operate its own facility.2 Note that we do not restrict the set of potentially seceding groups and
allow for users assigned to different facilities to form a secession prone group. The secession-
proofness also can be considered as a “no cross-subsidization” condition where no group of
users is required to contribute more than its stand-alone cost. In other words, the equilibrium
cost allocation should ensure the voluntary participation of any group of citizens.

The secession-proofness immediately yields the total cost minimization requirement: the so-
ciety should minimize the total burden of setting up and operating of all facilities and of the
aggregate access fees of all citizens. This requirement, in turn, leads to two simple but important
observations: since the facilities costs are location-independent, every facility should be placed
at the location that minimizes the aggregate transportation costs of the group of citizens assigned
to the facility; and every citizen should be assigned to the facility closest to her residence.

The characterization of efficient, or cost-minimizing, partitions in this geometric setting is
a well-documented problem in mathematics. An efficient partition consists of identical regular

1 Note that the framework we consider here belongs to the type of “horizontal differentiation” models where indi-
viduals display distinct preferences over geographical locations of public facilities. This is in contrast to the “vertical
differentiation” framework, where individuals exhibit identical preferences over quantity or quality attributes of public
projects, see, e.g., [10–13,17–19,26–29].

2 Since a geographical area served by a public facility can be identified as a political jurisdiction, the secession-
proofness could then be viewed as a requirement of political stability.
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hexagons,3 whose size is calculated as a function of the ratio of fixed costs per facility to access
or transportation costs per unit of distance. However, the area over which total costs per user are
minimized is not a hexagon but a disk! Since the plane cannot be partitioned into disks, it helps to
explain the first result of this paper that demonstrates that the set of secession-proof allocations
is empty. This simply means that it is impossible to allocate facilities’ cost over hexagons in a
manner that rules out a threat of secession by all disk-shaped jurisdictions.

The non-existence of secession-proof allocations implies that the stability can be ensured only
at some cost and we consider the situation where an external source is willing to finance a fraction
δ of the total cost incurred by jurisdictions if they follow the prescribed agreement. Suppose that
the total costs (set-up plus operation plus access fees) for the jurisdiction-to-be at the proposed
equilibrium are subject to the discount factor 1 − δ, whereas forming a new jurisdiction to set up
and operate an independent facility requires a full non-subsidized cost. Then the allocation will
be δ-secession-proof if the savings reaped by the seceding jurisdiction fall short of the subsidy
obtained by members of that jurisdiction at the proposed access fee allocation.

We then determine a minimal subsidy δ∗ that rectifies stability failure and demonstrate that
the set of δ-secession-proof allocations is nonempty if and only if δ � δ∗. It turns out that the
cut-off subsidy value δ∗ is determined by the ratio of per capita costs to users in an optimal disk
and in an optimal hexagon. A tiny value of the threshold (less than 0.2%) lends an additional
credence to the δ-secession-proofness as a stability concept.

The second result of the paper is the characterization of the δ∗-secession-proof allocations.
We apply the so-called Rawls principle that requires the minimization of the total cost incurred
by the least privileged citizen-user and produces the complete equalization of total cost for all
citizens-users. A transparent characterization of that principle requires to subject access to a
fee that declines linearly (with the unit slope) in the residence-to-facility distance and to adjust
access fees so that operators of the facilities break even. We show that Rawls principle defines
uniquely the δ∗-secession-proof allocation. (For higher values of δ, the set of δ-secession-proof
allocations contains other allocations as well.) The Rawlsian policies are often advocated on the
basis of justice considerations, whereas our result offers a stability argument in support of the
Rawls principle.

The last result is a multi-dimensional counterpart of [8] which shows that in the uni-
dimensional setting the Rawlsian distribution is the unique secession-proof allocation. In fact,
when the population is uniformly spread over the entire real line, both efficient and stable par-
titions consist of optimal-size intervals. Thus, there is no gap between efficiency and optimality
and the value of δ∗ is equal to zero. An earlier paper [21] examines the case of the population uni-
formly distributed over a bounded interval. They show that large intervals shrink the gap between
efficiency and stability and every secession-proof allocation turns to be “almost” Rawlsian.

In general, the related literature deals almost exclusively with the uni-dimensional case.
[1,7] examine the existence of secession-proof allocations in the case where the population is
uniformly spread over a bounded interval and the unique cost sharing rule available for each ju-
risdiction is the equal-share scheme, when all citizens in the same jurisdiction are subject to an
identical access fee. [5] studies a model where individuals are uniformly distributed over the cir-
cle. [14,20] address the existence and characterization of secession-proof access fee allocations
in the case of general distributions. [2,3] examine secession-proofness under various notions of
stability.

3 See discussion below.
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The paper is organized as follows. The next section contains the model and introduces the
needed definitions. The main results, whose proofs are relegated to Appendix A, are stated in
Section 3. Section 4 concludes.

2. The model

We consider a society with a continuum of individuals that has to determine a partition into
multiple groups (jurisdictions). Each jurisdiction has to be assigned a public facility accessible to
its members and an allocation of access fees to share the facility cost among them. The facilities
will be located in a multi-dimensional space:

Assumption A.1 (Multidimensionality). The space of facilities’ locations is the two-dimensional
Euclidean space X = �2.

Citizens have idiosyncratic preferences (or transportation costs) over possible facilities they
could be assigned to. We assume that for every individual the transportation cost is represented
by the Euclidean distance from her residence to the facility in her jurisdiction:

Assumption A.2 (Euclidean transportation costs). For every individual located at l = (l1, l2) ∈
X, her accession cost to every t = (t1, t2) ∈ X is given by

‖t − l‖ =
√

|t1 − l1|2 + |t2 − l2|2. (1)

This formalization allows us to identify an individual with her location and to characterize the
society by the distribution of individuals’ locations. We assume that the citizens are uniformly
distributed over the entire space X:

Assumption A.3 (Uniform distribution). The citizens’ distribution is given by the two-
dimensional Lebesgue measure4 λ over �2.

The area of a measurable5 set S will be denoted by λ(S), i.e., λ(S) = ∫
S
dt. In what follows,

the null-measured sets with λ(S) = 0 will be disregarded, so that the qualification “up to a null-
set” should be added to almost all our results.

In our set-up, every jurisdiction is a measurable bounded subset of X with positive measure.
The collection of such sets will be denoted by M(X). We assume that the cost of each facility is
independent of its location and consists of a fixed cost, independent of the size of a jurisdiction,
and a variable operational cost proportional to the jurisdiction size:

Assumption A.4 (Facility cost). For a facility assigned to a jurisdiction, the cost is given by

f (S) = g + αλ(S), (2)

where g > 0, α � 0 are two constants.

We now formally introduce the notion of a partition of a measurable subset S ⊂ X:

4 See [16, p. 153].
5 A subset of X is measurable if its intersection with every measurable subset of a finite measure is measurable; hence,

we allow for infinite-measured measurable subsets.
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Definition 2.1. A partition P of a (possibly infinite-measured) set S is a jurisdiction structure that
consists of sets from M(X) which are “almost” pairwise disjoint: λ(T ∩ T ′) = 0 for all T 	= T ′
in P , and whose union covers the entire set S:

⋃
T ∈P T = S. The set of partitions of S is denoted

by P(S). Obviously, if the measure of S is infinite, then every P ∈ P(S) consists of an infinite
number of jurisdictions.

Now let us turn to the determination of facility choices. For each S ∈ M(X) and a location
l ∈ X we denote by D(S, l) the value of total transportation cost in S (with respect to location l):

D(S, l) =
∫
S

‖t − l‖dt. (3)

In what follows, the efficiency requires that the facility location in each jurisdiction S would
minimize the total transportation cost of its members. That is, if a jurisdiction S is assigned to
the facility located at point m, then m is a solution of the following problem:6

D(S,m) = min
l∈X

D(S, l). (4)

Note that since the integral in (3) is continuous in l, and for l → ∞ the value of the program
in (3) tends to infinity, the problem in (4) has a solution, called a central location of S. We use
the following lemma:

Lemma 2.2. For every jurisdiction S ∈ M(X), there is a unique central location, denoted by
m(S).7

Lemma 2.2 resolves the issue of an efficient facility location choice for every jurisdiction and
we denote by D(S) the aggregate transportation cost of members of S:

D(S) = D
(
S,m(S)

)
. (5)

Every measurable set S ⊂ X can be partitioned into several jurisdictions. We define the stand
alone average total cost8 in S as the minimum over all partitions P of S:

K(S) = inf
P

∑
T ∈P [D(T ) + f (T )]

λ(S)
= α + inf

P

∑
T ∈P [D(T ) + g]

λ(S)
. (6)

We have

Definition 2.3. A partition P is S-efficient if it is a solution to (6). An X-efficient partition will
be simply called an efficient partition.

From now on, we will focus our analysis on efficient partitions, which is a well-documented
problem in mathematics. The qualitative result (re)discovered by many authors states that there
is a unique “shape” of efficient partitions which consists of identical regular hexagons9:

6 In operations research, the value of this program is called MAT(S) (Minimal Aggregate Transportation cost of the
set S).

7 This result is essentially multi-dimensional. In the uni-dimensional setting, the set of central locations of a bounded
set T coincides with the set of its medians, which may contain a continuum of points.

8 Since the total cost for an infinite-measured set is infinite, in this case we will take a limit of the sequence of sets that
uniformly approach S.

9 See [9,15,24] as well as [4,6,22,25] in the economic geography context.
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Result 2.4. Partition P is efficient if and only if it is comprised of identical regular hexagons,
whose stand-alone cost is minimal among all regular hexagons.

The size of hexagons in efficient partitions, derived in Appendix A, obviously depends upon
the value of the fixed component of facility cost: the smaller the cost, the smaller are jurisdictions
in an efficient partition.

Let us turn to the examination of accession fees. In every potential jurisdiction S ∈ M(X),
a sharing rule y is a measurable function on S that specifies accession fees of members of S, if
this jurisdiction forms. We impose the budget balancedness condition:

Assumption A.5 (Budget balancedness). The accession fees of members of S cover the costs of
the facility:∫

S

y(t) dt = f (S). (7)

It would be useful to consider the notion of consistent sharing rule. Since the whole plane is
partitioned into identical (hexagonal) jurisdictions, it makes sense to demand that the individuals
in identical locations within different jurisdictions bear the same costs. We impose a weak form
of consistency that requires that any two individuals in any two different jurisdictions, whose
location is identical with respect to their corresponding central points, are assigned the same
accession fees.10

Assumption A.6 (Consistent sharing rule). For every efficient partition P ∗, every two differ-
ent (hexagonal) jurisdictions H,H ′ ∈ P ∗ and every two individuals t ∈ H, t ′ ∈ H ′ satisfying
t − m(S) = t ′ − m(S′), we have y(t) = y(t ′).

A sharing rule y associated with partition P ∗ determines the cost allocation for every t ∈ X

c(t) = y(t) + ∥∥t − m
(
Ht

)∥∥, (8)

where m(Ht) is the central location of the hexagon Ht in P ∗ that contains t .
We will now fix one of the (fully equivalent to each other) efficient partitions, say P ∗. The

cost sharing rule chosen by the society satisfies a requirement of voluntary participation that no
group of individuals contributes more than the cost incurred if it had acted on its own. Thus,
the formation of jurisdictions and the allocation of accession fees within each of them rules out
secession threats by groups of individuals. It is important to point out that we consider secession
threats by all measurable sets of individuals, including re-combination of members of different
jurisdictions. Formally,

Definition 2.5. Let a cost allocation c be given. A set S ∈ M(X) is prone to secession (given c)
if

c(S) = 1

λ(S)

∫
S

c(t) dt > K(S). (9)

10 While this assumption is not essential for the main result, it substantially simplifies the calculus of the proof.
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A cost allocation c is secession-proof if no set S ∈ M(X) is prone to secession (given c).
The set of secession-proof cost allocations on X will be denoted by A.

The next definition introduces the allocations that satisfy the Rawls principle by minimiz-
ing the total cost of the most disadvantaged individual in each jurisdiction. It implies the cost
equalization across the entire society:

Definition 2.6. A cost allocation r is called Rawlsian if the value r(t) is constant within each
H ∈ P ∗, and, hence, on X. That is, for every t, t ′ ∈ X we have r(t) = r(t ′).

3. Results

We now state the main results of the paper. First, we demonstrate that under our assumptions,
a secession-proof allocation fails to exist.

Proposition 3.1. Suppose that Assumptions A.1–A.6 hold. Then the set of secession-proof allo-
cations A is empty.

In absence of secession-proof allocations, we search for a solution “closest” to secession-
proofness. For instance, we may assume that there is a fixed per capita secession cost for any
subgroup S ⊂ X; alternatively, one can consider government intervention to subsidize a certain
fraction of the total cost of every citizen to prevent the formation of groups prone to secession.
Both approaches are essentially equivalent and yield the following definition of δ-secession-
proofness:

Definition 3.2. Let δ > 0 be given. A cost allocation c is δ-secession-proof if for all S ∈ M(X)

the following inequality holds:

(1 − δ)c(S) � K(S). (10)

The set of δ-secession-proof allocations for X will be denoted by A(δ).

In other words, if individuals follow the prescribed agreement, then the δ-part of their total
cost is covered “from outside.” If, however, a jurisdiction wants to secede, then its members will
have to bear all costs on their own.

This definition relaxes the constraints which determine secession-proof allocations and, obvi-
ously, if δ is large enough, the set A(δ) is nonempty. Moreover, it is easy to see that if A(δ) is
nonempty for some δ, it is also the case for all δ′ > δ. Hence, there is a threshold value δ∗ defined
by

δ∗ = inf
{
δ > 0

∣∣ A(δ) 	= ∅}
. (11)

The value δ∗ therefore can represent the cost of stability, which is the minimal per-capita subsidy
required to sustain secession-proofness. We show below that the value of δ∗ is very small, in fact,
less than 0.2% of the total cost. We have:

Proposition 3.3. Under Assumptions A.1–A.6, the set A(δ∗) is nonempty, and, moreover, the
Rawlsian allocation is the only δ∗-secession-proof allocation.
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Fig. 1.

Before proceeding with the discussion of this result, it would be useful to point out that in
order to determine an optimal jurisdictional shape, one has to solve the following minimization
problem:

min
S∈M(X)

K(S). (12)

It is not surprising that, due to transportation costs, a solution for (12) is a disk. To provide an
informal argument, consider a set H and the disk S on Fig. 1. By replacing a small disk B in H

by the same size disk B ′ in S, one strictly decreases the average (per capita) transportation cost
of the jurisdiction H as the total transportation cost of the set H \ B ∪ B ′ is lower than that of
the set S.

Thus, no hexagon could be optimal in terms of per capita cost of its members. Denote by K(B)

the value of the problem in (12) and consider a hexagon H in an efficient partition. Obviously,
K(B) < K(H), and we show that the cost of stability, δ∗, is given by

δ∗ = 1 − K(B)

K(H)
> 0. (13)

Thus, the cost differential between an efficient hexagon and an optimal disk necessitates gov-
ernment intervention and subsidization of efficient partitions. In fact, the value of the cost
differential, and, therefore, of δ∗, is very small:

Corollary 3.4. δ∗ ≈ 0.0019.

Indeed, the difference in average cost between the disk and the hexagon in Fig. 2 is generated
by a small variation of transportation costs incurred by a tiny mass of individuals.

It is important to point out the absence of the cost differential between the optimal jurisdic-
tional shape and elements of an efficient partition in the uni-dimensional setting. In this case
efficient and optimal jurisdictions are intervals of the same size, [21] shows that no subsidy is
needed to obtain the stability of efficient partitions, yielding δ∗ = 0 in this case.

We would also like to provide an intuition for the result in Proposition 3.3, and, by doing
so, to highlight the nature of its proof presented in Appendix A. To explain why the Rawlsian
allocation is a unique δ∗-secession-proof allocation, consider an arbitrary δ∗-secession-proof
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Fig. 2.

Fig. 3.

allocation c. By applying Fubini’s theorem, we show that under c, the average cost incurred by
every optimal-sized disk is the same and is given by K(H). Otherwise, there would exist an
optimal disk-shaped set B whose average cost c(B) exceeds K(H) and (1 − δ∗)c(B) > K(B),
a violation of (10) and a contradiction to secession-proofness. Now, suppose that there is a group
of individuals T , each contributing below the value K(H). Consider an optimal-sized disk S that
contains T (or its subset) at its boundary (see Fig. 3).

Then the members of S, who do not belong to T , should on average contribute more than
K(H). On the other hand, we show that the average cost of individuals in a set “close” to an
optimal-sized disk S, are almost the same as in the disk itself, where the average cost is given by
K(B). More precisely, we demonstrate that the average cost differential between optimal disk
S and a slightly smaller disk S′ with the same center is of the second order of the difference
between the radiuses of S and S′. This allows us to show that the set S \ T will be prone to
secession. Thus, c must satisfy the Rawls principle.

4. Conclusions

In this paper we study the stability of jurisdiction formation in the model with a population of
citizens spread over the plane that has to determine the location of multiple public facilities. The
cost of every facility is independent of location and is financed by its users, who face an idiosyn-
cratic private access cost to the facility. It is shown that, under linear transportation costs and
uniform population distribution, unlike in the one-dimensional case [8], stability is unattainable
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without outside subsidies. The main reason is that the optimal shape of a jurisdiction is a disk
with the facility at its center. However, it is impossible to accommodate the entire population in
disks. Instead, the efficient partition is into regular identical hexagons but then there would be
some users who would incur a high cost and form an efficient disk. The incentive to secede can
be overcome if agents are subsidized to forego this opportunity and we show that such a subsidy
is very small, indeed. Moreover, we demonstrate that at the minimal subsidy level that guarantees
stability, the only secession-proof allocation is Rawlsian, where agents with high transportation
costs are fully compensated through a reduced contribution towards the facility cost.

The results of the paper could be generalized in several directions. First, instead of linear
transportation costs we can use a general strictly increasing continuous function of the distance
to facility. We can also use a general distance metric rather than the Euclidean one, which would
not affect the results of Proposition 3.3. However, the proofs become much more involved and
tedious, without adding much to the essence of our results. Moreover, it would be very difficult
to determine the precise value of the minimal subsidy δ∗ in the general case.

Another possible line of a future research is the examination of the case where the popula-
tion is distributed over a large bounded convex set. The results in [15] and [24] indicate that a
hexagonal partition is, indeed, approximately efficient if the support of the distribution becomes
sufficiently large. The question concerning the link between the Rawlsian allocation and stability
remains however open. The same applies to a possible consideration of the cases with a general
population distribution and a location space which spans over more than two dimensions. Some
preliminary results have been obtained in these cases and will be further examined in our future
research.
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Appendix A

Proof of Lemma 2.2. Let S ∈ M(X) be given and assume that S has two different central points,
m and m′. Let L be the straight line connecting m and m′. Denote S′ = S \ L and m̄ = m+m′

2 .
Obviously m and m′ are central points of S′ as well and D(S) = D(S′). Then for every t ∈ S′ we
have

1

2

(‖t − m‖ + ‖t − m′‖) > ‖t − m̄‖ (14)

and, since λ(S) = λ(S′) > 0, this implies that∫
S′

‖t − m̄‖dt <
1

2

(∫
S′

‖t − m‖dt +
∫
S′

‖t − m′‖dt

)
. (15)

However, by (3) and (4), the right-hand side of (15) is equal to D(S) = D(S′), a contradiction to
m and m′ being central points of S′. �
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Before proceeding with the proof of Propositions 3.1 and 3.3, we need a notation to state some
preliminary results. Without loss of generality, we shall assume, that the variable component of
facility costs α in Assumption A.4 is equal to zero.

Lemma A.1. The solution of (12) is a disk of radius l∗, where the value of l∗ is given by

l∗ =
(

3g

π

) 1
3

. (16)

Moreover, the value of the solution of (12), K(B), the per capita cost in an optimal disk is equal
to l∗.

Proof. Take any set S that solves (12) and consider the (uniquely defined) disk B with the radius
l and the center at m(S) so that B and S have the same measure. Then, since S solves (12), we
must have

0 � D(S) − D(B) =
∫

S\B

∥∥p − m(S)
∥∥dp −

∫
B\S

∥∥p − m(S)
∥∥dp. (17)

However, for any p ∈ S \B we have ‖p−m(S)‖ � l and for any p ∈ B \S we have ‖p−m(S)‖ �
l. Note that both sets S \ B and B \ S have the same measure denoted by μ. We have∫

S\B
‖p − m‖dp � lμ �

∫
B\S

‖p − m‖dp. (18)

Combined with (17) this implies that λ({p ∈ S \ B: ‖p − m‖ > l}) = 0, and similarly λ({p ∈
B \ S: ‖p − m‖ < l}) = 0. Since obviously λ({p: ‖p − m‖ = l}) = 0, we conclude that μ = 0
and, up to a set of measure zero, S coincides with the disk B .

It is left to show that the optimal radius l is equal to l∗ and to derive K(B). Notice that for

every disk Bl with the radius l, the total transportation cost D(Bl) = 2πl3

3 . Since the area of Bl

is πl2, the average cost within Bl is K(Bl) = g

πl2
+ 2l

3 . It is straightforward to verify that the
last expression attains its minimum at l∗ determined by (12), yielding the minimal average cost
K(B) = l∗. �

We utilize the lemma that evaluates the average cost of jurisdictions which are “close” to
optimal disks:

Lemma A.2. Let γ > 0 is sufficiently small and the set S be located between two disks with the

same center, B
l∗−γ
a and Bl∗

a , i.e. B
l∗−γ
a ⊂ S ⊂ Bl∗

a . Then K(S), the aggregate average cost over
S, differs from the aggregate average cost over optimal disk K(B) only in the second order term:

K(S) < l∗ + 4

l∗
γ 2. (19)

Proof. Let S̃ = S ∩ (Bl∗
a \ B

l∗−γ
a ). In our derivations below we take into account that the total

transportation cost within S (weakly) increases if we replace the m(S) by a, and that the distance
between any point in S̃ to a is bounded from above by l∗. Denote z = 3

π
λ(S̃). By utilizing (19)

we have:
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K(S) = g + D(S)

λ(S)
�

g + ∫
S
‖a − t‖dt

λ(S)
� g + D(B

l∗−γ
a ) + l∗λ(S̃)

λ(B
l∗−γ
a ) + λ(S̃)

= (l∗)3 + 2(l∗ − γ )3 + zl∗

3(l∗ − γ )2 + z
<

3(l∗)3 − 6(l∗)2γ + 6l∗γ 2 + zl∗

3(l∗ − γ )2 + z

= 3l∗(l∗ − γ )2 + zl∗

3(l∗ − γ )2 + z
+ 3l∗γ 2

3(l∗ − γ )2 + z
< l∗ + 3l∗γ 2

3(l∗/2)2
= l∗ + 4

l∗
γ 2, (20)

as for γ small enough l∗ − γ > 1
2 l∗. �

Lemma A.3. The per capita cost over H is given by

K(H) =
√

3

2

(
2

3
+ ln

√
3

) 2
3

g
1
3 . (21)

Proof. Consider a regular hexagon Hl , where l denotes the distance between the center m(Hl)

and a midpoint of its side. The total transportation cost in Hl is

D(Hl) = 12

l∫
0

x√
3∫

0

√
x2 + y2 dx dy = 6

l∫
0

[
y

√
x2 + y2 + x2 ln

(
y +

√
x2 + y2

)] x√
3

0 dx

= 6

l∫
0

[
x√
3

√
x2 + x2

3
+ x2 ln

(
x√
3

+
√

x2 + x2

3

)
− x2 lnx

]
dx

= 6

l∫
0

x2
[

2

3
+ ln

√
3

]
dx = 2l3

[
2

3
+ ln

√
3

]
. (22)

Since the area of Hl is 2
√

3l2, the average cost per citizen in jurisdiction Hl is given by

K(Hl) = g

2
√

3l2
+ l√

3

[
2

3
+ ln

√
3

]
, (23)

which attains its minimum at the efficient hexagon H , i.e., when

l = l̃ =
(

2

3
+ ln

√
3

)− 1
3

g
1
3 . (24)

It is easy to verify that then the per capita average cost K(H) = K(H
l̃
) is given by (21) which at

the same time represents the average cost of the whole plane X under an efficient partition. �
Take efficient partition P ∗ of X. For every positive integer N , consider a subset GN of P ∗

that consists of N2 adjacent hexagons.
Let the sequence {GN }N=1,...,∞ be nested, i.e., each GN is imbedded into GN+2 “symmetri-

cally,” such that the set GN+2 \GN is a “hexagonal ring” comprised of 4N + 4 regular hexagons
(see Figs. 4 and 5).

We have the following result:

Lemma A.4. For every a ∈ GN , the disk Ba is contained in GN+2.
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Fig. 4. Hexagonal rectangular GN for N = 3.

Fig. 5. Hexagonal ring GN+2 \ GN for N = 2.

Proof. Denote by l̄ the side of a hexagon in partition P ∗. Since the minimal width of the hexag-
onal ring FN is equal to l̄, it suffice to demonstrate that l̄ > l∗. Note that l̄ = 2√

3
l̃, where l̃ is

the distance between the center of the efficient hexagon and the middle point of one of its sides,
which has been derived in (24). Thus,

l̄ = 2√
3

(
2

3
+ ln

√
3

)− 1
3

g
1
3 , (25)

which, by (16), exceeds the value l∗. �
Let the efficient partition P ∗ be endowed with the sharing rule y, that generates cost allocation

c, and H is a (hexagonal) jurisdiction in P ∗. Denote by λH the Lebesgue measure of H and by
λB the Lebesgue measure of an optimal disk.

For every a ∈ X denote by the value ϕ(a) the aggregated cost incurred by the members of the
disk Ba :

ϕ(a) = c(Ba) =
∫
Ba

c(t) dt. (26)

Define ϕ̄ as the aggregated cost incurred by the allocation c on all disks of optimal size whose
centers belong to the hexagon H :

ϕ̄ :=
∫
H

ϕ(a)da. (27)
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Note that, due to the consistency Assumption A.6, the value ϕ̄ is invariant to a choice of a hexagon
in P ∗. We need the following result:

Lemma A.5.

ϕ̄ = I, where I := λB

∫
H

c(t) dt. (28)

Proof. Define the function �(a, t) on GN × GN+2 ⊂ �4 by

�(a, t) =
{

c(t), if t ∈ Ba;
0, otherwise.

(29)

We will integrate the function �(a, t) over the set GN × GN+2. According to Fubini’s theorem
[16, p. 148], two different orders of integration yield the same result. First, we integrate with
respect to t and then to a. By (26) and (27), and using Lemma A.4 we have∫

GN

[ ∫
GN+2

�(a, t) dt

]
da =

∫
GN

[ ∫
Ba

c(t) dt

]
da =

∫
GN

ϕ(a)da = N2
∫
H

ϕ(a)da = N2ϕ̄.

(30)

Before integrating in the reverse order, note that the following duality property

{a | t ∈ Ba} ≡ Bt (31)

holds for every t ∈ X. This is a simple consequence of the symmetry of the distance ‖t − p‖ as
a function of two arguments, and the circle Bt being the set of points p for which ‖p − t‖ =
‖t − p‖ � l∗.
Take a point t ∈ GN−2. By Lemma A.4, Bt ⊂ GN , and∫

GN

�(a, t) da =
∫
Bt

c(t) da = c(t)

∫
Bt

da = λBc(t). (32)

We have:∫
GN+2

[ ∫
GN

Φ(a, t) da

]
dt =

∫
GN−2

[ ∫
GN

Φ(a, t) da

]
dt + LN, (33)

where

LN :=
∫

GN+2\GN−2

[ ∫
GN

Φ(a, t) da

]
. (34)

By using (32), the first term in (33) can be presented as:∫
GN−2

[ ∫
GN

Φ(a, t) da

]
dt =

∫
GN−2

λBc(t) dt = (N − 2)2I. (35)

Fubini’s theorem allows us to rewrite (33) as

N2ϕ̄ = (N − 2)2I + LN = N2I + LN − 4(N − 1)I. (36)
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Let us estimate the absolute value of the last two terms. Since
∫
GN

Φ(a, t) da = ∫
GN∩Bt

c(t) da �∫
Bt

c(t) da = λBc(t) for any t ∈ GN+2, and hence, for any t ∈ GN+2 \ GN−2, it follows that

∣∣LN − 4(N − 1)I
∣∣ � |LN | + 4(N − 1)I � 4(N − 1)I +

∫
GN+2\GN−2

λBc(t) dt

= (12N − 4)I < 12NI. (37)

Thus, ∣∣N2ϕ̄ − N2I
∣∣ � 12NI, or |ϕ̄ − I | � 12I

N
. (38)

Since N can be made arbitrarily large, we immediately obtain the desired equality ϕ̄ = I . �
Since Proposition 3.1 is a corollary of Proposition 3.3, we proceed with the

Proof of Proposition 3.3. Let us show first that the value of δ∗ in (11) is given by (13), the right
side of which, by Lemmas A.1 and A.3, is equal to

1 − δ∗ = 2

π
1
3 3

1
6 ( 2

3 + ln
√

3)
2
3

≈ 0.0019. (39)

We will demonstrate that the set of δ-secession-proof allocations is empty if and only if δ < δ∗
defined in (13).

Consider an arbitrary positive number δ and consider a δ-secession-proof allocation c. The
budget balancedness assumption A.5 implies that the value of I , determined by (28), is equal
to λBλH K(H), and by Lemma A.4. so is the value of ϕ̄. Hence, there exists a ∈ H such that
ϕ(a) � λBK(H). On the other hand, the stand alone aggregate cost in Ba is λBK(B). Since c is
δ-secession-proof, Definition 3.2 implies that (1 − δ)λBK(H) � λBK(B), or δ � 1 − K(B)

K(H)
.

Let us show that the Rawlsian allocation r is δ-secession-proof whenever δ � δ∗. Indeed,
δ � δ∗. Since the total individual cost under r , r(t), is equal to K(H) for every t ∈ X, then
for an optimal disk B we have (1 − δ)K(H) � K(B). Moreover, for any S ∈ M(X) we have
K(S) � K(B) and therefore (1 − δ)K(H) � K(B) � K(S), i.e., r is δ-secession-proof.

To complete the proof of the proposition, it remains to demonstrate that the Rawlsian alloca-
tion (which assigns every individual in X the access fee of K(H)) is the only δ∗-secession-proof.
For this end, consider an arbitrary δ∗-secession-proof allocation c(·) and estimate the number of
individuals whose access fee is “substantially” below the level K(H).

Take a positive number ε > 0. Consider first an arbitrary ring Ba \ B
l∗−γ
a and evaluate the

measure of individuals t whose cost c(t) satisfies c(t) < K(H) − ε. Denote this set by U , and
consider the set S = Ba \U , for which, by Lemma A.2, we have K(S) < l∗ + 4

l∗ γ 2. On the other
hand,

c(S) = c
(
Bl∗) − c(U) � λBK(H) − λ(U)K(H) + λ(U)ε = λ(S)K(H) + λ(U)ε. (40)

The δ∗-secession-proofness of c(·) implies that the average per capita cost in group S, adjusted
by 1 − δ∗, does not exceed its stand-alone value, K(S):

(
1 − δ∗) c(S)

λ(S)
= (

1 − δ∗)(K(H) + λ(U)

λ(S)
ε

)
� K(S) < l∗ + 4

l∗
γ 2. (41)
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Since K(B) = l∗ = (1 − δ∗)K(H), we have:

λ(U) � 4λ(S)

l∗(1 − δ∗)ε
γ 2 <

4π(l∗)2

l∗(1 − δ∗)ε
γ 2 = Wγ 2, (42)

where W is a constant independent of γ .
Now consider the rectangular Q with sides of 2l∗ and l∗ centered at the origin. For any small

positive number γ , denote by R[i, γ ] the ring Bpi
\ B

l∗−γ
pi

centered at the point pi = (iγ,0),
where i is any (positive or negative) integer. For large enough positive integer N we have the
following inclusion:

Q ⊂
N⋃

i=−N

R

[
i,

l∗

N

]
. (43)

Indeed, it is easy to see that ∀x ∈ Q there exist at least one i such that x ∈ Bpi
, and at least one

j such that x /∈ Bpj
. Hence, there exist such i and j = i ± 1 that the two statements

x ∈ Bpi
; x /∈ Bpj

(44)

hold simultaneously. As obviously B
l∗−γ
pi

⊂ Bpj
for j = i ± 1, we have that x ∈ Bpi

\ B
l∗−γ
pi

=
R[i, γ ], with γ = l∗

N
.

For i = −N, . . . ,−1,0,1, . . . ,N, denote by U and Ui the sets of individuals in Q and
R[i, l∗

N
], respectively, who incur the cost less than K(H) − ε under the allocation c. By uti-

lizing (42), we have λ(Ui) � W
(l∗)2

N2 . Thus, since U ⊂ ⋃N
i=−N Ui , we have

λ(U) � (2N + 1)W
(l∗)2

N2
<

3

N
W

(
l∗

)2
. (45)

Since N can be chosen arbitrarily large, (45) implies that λ(U) = 0. Note that this argument
actually implies that for any rectangular with the sides of 2l∗ and l∗, the Lebesgue measure of
the set of individuals who incur the cost less than l∗ − ε under the allocation c has the zero
measure.

Finally, consider an arbitrary hexagon H in the efficient partition P ∗. It is contained in the
union of several rectangulars with the sides of 2l∗ and l∗. Hence, the measure of the set of
individuals in H whose cost is less than K(H) − ε is zero. But the set of individuals in H who
contribute less than K(H) is the union of the sets in H whose members contribute less than
K(H) − 1/n for n = 1,2, . . . , and as the countable union of null-sets, this set has zero measure.
Hence, the budget balancedness implies that set of those incurring the cost higher than K(H) has
zero measure as well. Finally, Assumption A.6 guarantees that every t ∈ X contributes K(H),
implying that the only δ∗-secession-proof allocation is Rawlsian. �
Proof of Corollary 3.4. Follows immediately from Lemmas A.1 and A.3. Indeed, by (16)
and (21), we have

δ∗ = 1 − K(B)

K(H)
= 1 − ( 3

π
)

1
3

√
3

2 ( 2
3 + ln

√
3 )

2
3

≈ 0.0019. � (46)
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