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The Black-Scholes-Merton Model 
Readings: Hull, Chapters 12, 13, 14 
Part I. Brownian Motion. Reference: Hull, Chapter 12 
A Discrete-time Prototype for Brownian Motion 
 
Suppose we have a finite time interval [0, ]T . We divide it into N time periods of length 

t∆  each and equally spaced by N + 1 time points it i t= ∆ , 0,1,2,..., .i N=  Consider a 
discrete-time stochastic process defined as follows: 

0 0,B =  

1 1i i iB B tε+ += + ∆ , 0,1,..., 1,i N= −  
where { , 1,2,..., }i i Nε =  are independent standard normal random variables, (0,1),i Nε ∼  

1,2,..., .i N=  
 
Monte Carlo Simulation  
 
The figure depicts a sample path (particular realization) of the process with T = 1 and 

0.001t∆ =  (N = 1,000). This sample path is produced by Monte Carlo simulation in 
Excel using Analysis ToolPack. The process is starting at zero, 0 0B = . At the next time 
step 1t , I draw a sample 1ε  from the standard normal distribution using the Random 
Number Generation Tool in Excel and calculate the value of the process 1 0 1B B tε= + ∆ . 
I continue in this fashion until I have simulated the entire sample path. The final 
simulated value is 1N N NB B tε−= + ∆ . 

Brownian sample path T=1, dt=0.001, N = 1000,
a=0, b=1.0, B_0=0
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Properties of the process { ( ), 0,1,..., }i iB B t i N= = : 

1. Since 
1

i

i k
k

B tε
=

 = ∆ 
 
∑  and 

1

i

k
k

ε
=
∑  is the sum of i independent standard normal random 

variables and thus is normally distributed with zero mean and variance equal to i, iB  is 
normally distributed with zero mean and variance equal to ii t t∆ =  (time elapsed from the 
start at 0t =  to the current time it ): 
 

[ ] 0,iE B =  
 

2Var[ ] [ ]i i iB E B t= = . 
 
2. The increment of the process  
 

1 1:i i i iB B B tε+ +∆ = − = ∆   
 
is normally distributed with zero mean and variance equal to t∆ . 
 
3. More generally, the increment of the process i jB B−  is normally distributed with zero 
mean and variance  
 
( ) i ji j t t t− ∆ = − .  
 
The variance of the increment i jB B−  is equal to the length of the time interval between 

it  and jt   
 
4. Consider the squares of the increments 2 2

1( ) ( )i i iB B B+∆ = − . The mean and variance of 
the square of the increment are: 
 

2[( ) ]iE B t∆ = ∆ , 
 

2 4 2 2

4 2
1

4 2 2 2 2 2
1

Var[( ) ] [( ) ] ( [( ) ])
[( ) ]
[ ] 3 2 ,

i i i

i i

i

B E B E B
E B B t
E t t t t tε

+

+

∆ = ∆ − ∆

= − − ∆

= ∆ − ∆ = ∆ − ∆ = ∆

 

 
where we used the fact that the fourth moment of the standard normal distribution 
(kurtosis) is equal to 3: 4[ ] 3E ε = .  
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Brownian Motion 
 
A standard Brownian motion process (or Wiener process) { ( ),0 }tB B t t T= ≤ ≤  is 
obtained by taking the limit 0t∆ → . In the limit of infinitesimal time steps dt, formal 
properties of infinitesimal increments of standard Brownian motion are: 
 

tdB dtε= , (0,1),Nε ∼  
 

[ ] 0tE dB = , 
 

2Var[ ] [ ]t tdB E dB dt= = . 
 
Recall that the variance of 2( )B∆  is of the order 2t∆ . In the limit we can approximate it 
as non-random and equal to its expected value: 
 

2( )tdB dt= . 
 
The Wiener process can be mathematically defined by listing its defining properties. 
 
Definition A real-valued stochastic process { ( ), 0}B t t ≥  with continuous sample paths is 
a standard Brownian motion (Wiener process) if it satisfies the following properties: 
 
1. The process is starting at the origin: 
 

(0) 0B = .  
 
2. For any 1 20 t t≤ < , the increment 2 1( ) ( )B t B t−  is a normal random variable with zero 
mean and variance equal to 2 1t t− :  
 

2 1[ ( ) ( )] 0E B t B t− = , 
 

2
2 1 2 1 2 1Var[ ( ) ( )] [( ( ) ( )) ]B t B t E B t B t t t− = − = − .  

 
3. For any 1 2 3 40 t t t t≤ < ≤ < , the increments 2 1( ) ( )B t B t−  and 4 3( ) ( )B t B t−  are 
independent. 
 
These properties parallel the properties of the discrete-time process we have constructed. 
Brownian sample paths are continuous but not differentiable with respect to time � they 
are very jagged! They also have unbounded variation.  
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Adding Drift: Brownian Motion with Drift Coefficient a, Diffusion Coefficient b, 
and Starting at x 
 
Let { ( ), 0}B t t ≥  be a standard Brownian motion and , ,a b x ∈ " . Consider a process 
{ , 0}tX t ≥  defined by: 
 

t tX x at bB= + + , 0.t ≥  
 
This process is called Brownian motion (Wiener process) with drift coefficient a, 
diffusion coefficient b, and starting at x.  
 
Properties: 
 
1. The process is starting at some point x at time zero.  
 
2. For any 1 20 t t≤ < , the increment 2 1( ) ( )X t X t−  is a normal random variable with mean 

2 1( )a t t−  and variance equal to 2
2 1( )b t t− :  

 
2 1 2 1[ ( ) ( )] ( )E X t X t a t t− = − , 

 
2 2

2 1 2 1 2 1Var[ ( ) ( )] [( ( ) ( )) ] ( )X t X t E X t X t b t t− = − = − .  
 
3. For any 1 2 3 40 t t t t≤ < ≤ < , the increments 2 1( ) ( )X t X t−  and 4 3( ) ( )X t X t−  are 
independent. 
 
The parameter a measures the drift rate of the process (the slope of the deterministic 
trajectory at ). The parameter b measures the dispersion rate of the process (the process 
diffuses around the deterministic trajectory at  with diffusion coefficient b).  
 
Monte Carlo Simulation 
 
The following figure depicts a sample path of the process with a = 0.5 and b = 0.2 (x = 0).  
This figure is produced by approximating the continuous-time process: 
 

0X x= , 
 

1i i iX X a t b B+ = + ∆ + ∆ ,  or  i iX a t b B∆ = ∆ + ∆ , 0,1,..., 1i N= − , 
 

1i iB tε +∆ = ∆ , 
 
where I discretized the time interval [0, ]T  into N discrete time steps t∆ . This discrete-
time process was simulated in Excel as was described previously. I used T = 1 and N = 
1,000 to produce this graph ( 0.001t∆ = ).  
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Sample path T=1, dt=0.001, N = 1000,
a=0.5, b=0.2, X_0=0
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Diffusion Processes 
 
Monte Carlo Simulation 
 
The next step is to make drift and diffusion coefficients depend on the state variable and 
time: 
 

0X x= , 
 

1 ( , ) ( , )i i i i i i iX X a X t t b X t B+ = + ∆ + ∆ , or ( , ) ( , )i i i i i iX a X t t b X t B∆ = ∆ + ∆ , 0,1,..., 1i N= − , 
 

1i iB tε +∆ = ∆ , 
 
where ( , )a x t  and ( , )b x t  are some well-behaved functions. In the Black-Scholes-Merton 
model a and b are linear functions. 
 
Continuous-time Limit 
 
In the limit of t∆  getting smaller and smaller, we obtain a continuous-time stochastic 
process called Ito diffusion process: 
 

0X x= , 
( , ) ( , )t t t tdX a X t dt b X t dB= + . 

Drift and diffusion coefficients depend on the state variable and time.  
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Historic remarks 
 
It is remarkable that detailed studies of Brownian motion were initiated at the turn of the 
20th century motivated by problems in finance. In 1900 Louis Bachelier in Paris, France 
showed in his thesis under Henri Poincare that Brownian motion process is at the heart of 
modeling asset prices. He modeled stock prices on the Paris Bourse (Paris Stock 
Exchange) by what is now known as Brownian motion or Wiener process. It took over 60 
years until Paul Samuelson made the next step in the sixties and proposed a model for 
asset prices as Geometric Brownian motion. Following in Samuelson�s footsteps, Robert 
Merton, Samuelson�s student, initiated applications of stochastic calculus in finance and 
economics.  
 
In 1905, and completely independently of Bachelier, Albert Einstein developed 
mathematical theory of the physical phenomenon of Brownian motion first observed by 
English botanist Robert Brown in 1827 and used the same mathematical tools as 
Bachelier. Norbert Wiener developed the first mathematically rigorous theory of 
Brownian motion as a stochastic process in 1923. Later Kolmogorov in Russia, Levy in 
France and Ito in Japan further developed this theory into the modern theory of stochastic 
processes.  
 
Ito�s Lemma 

Let ( , )f x t  be a function of two variables with partial derivatives f
x

∂
∂

, f
t

∂
∂

, 
2

2

f
x

∂
∂

, 
2 f
x t

∂
∂ ∂

, 

2

2

f
t

∂
∂

 assumed to exist. Consider a stochastic process ( , )t tf f X t=  that is a function of 

the diffusion process above. Then for the increments of the process we have: 
 

( )

2 2 2
2 2

2 2

2
2

2

( , ) ( , )
1 1( , ) ( , ) ( , )( ) ( , )( ) ( , ) ...
2 2

1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2

( , )

t t t t

t t t t t t t t

t t t t t t t

t

df f X dX t dt f X t
f f f f fX t dt X t dX X t dX X t dt X t dtdX
t x x t x t
f f fX t dt X t a X t dt b X t dB X t b X t dt
t x x
f fX t
t

= + + −

∂ ∂ ∂ ∂ ∂= + + + + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂= + + +
∂ ∂ ∂
∂ ∂= +
∂

2
2

2

1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,
2t t t t t t t

f fX t a X t X t b X t dt X t b X t dB
x x x

 ∂ ∂+ + ∂ ∂ ∂ 
 
where we expanded ( , )t tf X dX t dt+ +  in the Taylor series, used the formula  

( , ) ( , )t t t tdX a X t dt b X t dB= +  for the increment, used the rule 2
tdB dt= , and disregarded 

terms of the orders higher than dt . 
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The result is the celebrated Ito�s formula (lemma): 
 

2
2

2

1( , ) ( , ) ( , ) ( , ) ( , ) ( , )
2

( , ) ( , ) .

t t t t t t

t t t

f f fdf X t X t a X t X t b X t X t dt
t x x

fb X t X t dB
x

 ∂ ∂ ∂= + + ∂ ∂ ∂ 
∂+
∂

 

 
Ito�s lemma is a stochastic counterpart of the chain rule in ordinary calculus. Note the 

term 
2

2
2

1
2

fb dt
x

∂
∂

 in the drift of  f. This term is absent in the chain rule of ordinary 

calculus. It is particular to stochastic calculus and is a consequence of the properties of 
Brownian motion. 
 
Part II. Geometric Brownian Motion Model of Asset Price Dynamics 
 
1. Geometric Brownian Motion with Drift as a Model for Asset Prices 
2. Lognormal Distribution of Asset Prices and its Properties 
3. Monte Carlo Simulation of Geometric Brownian Motion 
4. Estimating Historical Volatility from Time-series Market Data 
 
First, consider a riskless asset: a money market account. At time zero we deposit one 
dollar: 
 

0 1A = . 
 
The money market account balance grows at the continuously compounded risk-free rate 
r. Over an infinitesimal time period dt the change in the account value is: 
 

t tdA rAdt= . 
 
The percentage return over dt is:  
 

t

t

dA rdt
A

= . 

 
At time 0t ≥  the value of our money market account is: 
 

rt
tA e= . 

 
Suppose now that St is the price at time t of a risky asset (e.g. stock) that pays no 
dividends (we will extend to the case with dividends later). We will model its time 
evolution by some Ito diffusion process. The stock price at time zero is known: 
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0S S= , 
 
and the change in the stock price over an infinitesimal time period dt is modeled as an 
increment of the diffusion process: 
 

( , ) ( , )t t t tdS a S t dt b S t dB= + . 
 
A simple and natural choice for the drift and diffusion coefficients is: 
 

t t t tdS mS dt S dBσ= + .     
 
This process with linear drift ( , )a S t mS=  and diffusion ( , )b S t Sσ=  is called geometric 
Brownian motion. Over an infinitesimal time period dt the percentage return on the stock 
is: 
 

t
t

t

dS mdt dB
S

σ= + .     

 
Here m is the constant annualized instantaneous expected rate of return on the stock (drift 
rate),  
 

t
t

t

dSE mdt
S

 
= 

 
, 

 
and σ is the volatility of the stock price. The assumption of constant volatility means that 
the variance of the percentage return over an infinitesimal period of time dt is the same 
regardless of the stock price. That is, 2dtσ  is the variance of the percentage return on the 

stock over dt, t

t

dS
S

: 

 
2Var t

t
t

dS dt
S

σ 
= 

 
 

 
(recall the properties of the Brownian increment [ ] 0tE dB =  and Var[ ]tdB dt= ). 
 
What is the distribution of TS ? 
 
Consider a new process:  
 

lnt tX S= ,  0t ≥ . 
 
Ito�s lemma tells us that a function f of S follows an Ito process: 
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2

2 2
2

1( , ) ( , ) ( , ) ( , )
2

( , ) .

t t t t t t

t t t

f f fdf S t S t mS S t S S t dt
t S S

fS S t dB
S

σ

σ

 ∂ ∂ ∂= + + ∂ ∂ ∂ 
∂+
∂

 

 
Applying Ito�s lemma to the log function we have: 
 

2

2t tdX m dt dBσ σ 
= − + 
 

. 

 
Hence, the logarithm of the stock price follows a Brownian motion with drift coefficient 

2 / 2m σ− , diffusion coefficient σ and starting at 0ln S :  
 

0ln lnt t tX S S t Bν σ= = + + ,  0t ≥ ,  
 
or 
 

0

ln t
t

S t B
S

ν σ 
= + 

 
, 0t ≥ , 

 

where tB  is a standard Brownian motion and  
2

:
2

m σν = − . 

Exponentiating we obtain: 
 

0
tt B

tS S eν σ+= , 0t ≥ . 
 
The value of tB  at time t > 0 is normally distributed with zero mean and variance equal 
to t. Thus, the future stock price tS  at time t > 0, given the stock price 0S  at time zero, is 
distributed according to: 
 

0
t t

tS S eν εσ+= , 
 
where ε  is a standard normal random variable. This is the lognormal. We now find its 
pdf. First, observe that given the logarithm 0ln S  of the stock price at time zero, ln tS  is 
normally distributed with mean 0ln S tν+  and variance 2tσ .  
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Then the pdf ( )tp S  of the stock price tS  is: 
 

( )( )

2
0

22

2
0
22

1 (ln ln )exp ln
22

ln /1 exp ( )
22

t
t

t
t t t

t

S S t d S
tt

S S t
dS p S dS

tS t

ν
σπσ

ν
σπσ

 − −− 
 

 − = − = 
  

 

 

( ln t
t

t

dSd S
S

= ). This is the lognormal probability density function. 

 
Properties of the Lognormal Distribution  
 
Recall that 0

t
tS S eη= , where t t tη ν εσ= +  is a normal random variable with mean tν  

and variance 2tσ . Using the result that if X is a normal random variable with mean a and 
standard deviation b, then  
 

2 / 2[ ]X a bE e e += , 
 
and recalling that 2 / 2mν σ= − , we obtain the moments: 
 

2 2

0 0

2

0

[ ] [ ] exp
2

( 1)exp
2

tnn n n
t

n

n tE S S E e S n t

n n tS nmt

η σν

σ

 
= = + 

 
 −= + 
 

 

The mean and variance of the lognormal distribution: 
 

0[ ] mt
tE S e S= , 

 
2 22 2 2 2 2

0 0Var[ ] ( ) ( 1)mt t mt mt t
TS S e e S e eσ σ+= − = − . 

 
Monte Carlo Simulation of Geometric Brownian Motion 
 
Suppose we wish to simulate a sample path of the geometric Brownian motion process 

for the stock price. We divide the time interval [0, ]T  into N equal time steps Tt
N

∆ =  and 

simulate a sample path {S(ti), i = 0, 1, �, N}, it i t= ∆ , starting from the known price 0S  
at time t0 = 0: 
 
 1

1
it t

i iS S eν σε +∆ + ∆
+ = , 0,1,..., 1i N= − , 
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where εi+1 are independent samples from the standard normal distribution. The following 
figure depicts a sample path of the GBM process T = 1 year, m = 15% and σ = 20% per 
annum, initial stock price S = 100, N = 250. 
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For small t∆ , if we expand  
 

1
1

it t
i iS S eν σε +∆ + ∆
+ =  

 
in the Taylor series and drop the terms of orders higher than ∆t, we obtain: 
 

( )( )2
1 1

1

1 / 2i i i

i i i i

S S t t

S S m t S t

ν σ σ ε

σ ε

+ +

+

= + + ∆ + ∆

= + ∆ + ∆
 

 
Note that the extra term with 2 / 2tσ ∆  came from the square of the increment 

2 2( ) / 2iBσ ∆ , where 2( )iB∆  is approximated as a deterministic quantity equal to its mean 
t∆ . 

 
Parameters m and σσσσ 
 
The expected percentage return on the stock over an infinitesimal time period dt is mdt, 
where m is the expected percentage rate of return (annualized continuously compounded 
percentage rate). Typical values for the broad stock market indexes have been around 9% 
- 10% over the last hundred years. The parameter σ is the instantaneous volatility defined 
as the annualized instantaneous standard deviation of the stock percentage return. That is, 
standard deviation of the percentage return on the stock over an infinitesimal time 
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interval dt is dtσ . Historical values have been around 14% to 20% per annum for the 
S&P 500 index and 10% to 50% for individual stocks.  
 
Estimating Volatility from Historical Data 
 
Suppose we observe stock prices at fixed small time intervals ∆t (e.g., daily price 
observations) and suppose we have a total of N + 1 observations (e.g., daily closing 
prices): 

( ) :i iS S t=  stock price at the end of ith interval,  
i = 0, 1, �, N, 
T: total length of the observation interval (in years). 
 
Our model states that 
 

1

ln i
i

i

S t t
S

ν σ ε
−

 
= ∆ + ∆ 

 
,  1,2,...,i N= , 

where iε  are standard normal random variables and 
2

2
m σν = − . 

Define ui as the continuously compounded rate of return over the ith interval: 
 

1
iu

i iS S e−=  or 
1

ln i
i

i

Su
S −

 
=  

 
,   i = 1, 2, �, N. 

Our model says 
 

i iu t tν σ ε= ∆ + ∆ .  
 
Then the estimate �σ  of annualized volatility σ can be obtained from (sample variance): 
 

2 2

1
2

2

1 1

1� ( )
1

1 1
1 ( 1)

N

i
i

N N

i i
i i

t u u
N

u u
N N N

σ
=

= =

∆ = −
−

 = −  − −  

∑

∑ ∑
 

 

where u is the sample mean of iu , 
1

1 N

i
i

u u
N =

= ∑ .  

 
Note that 2� tσ ∆  is the estimate of the variance per one time interval t∆ (e.g., one trading 
day), and 2�σ  is the annualized variance estimate. 
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Part III. The Black-Scholes-Merton Model 
 
Readings: Hull, Chapter 13 
 
Derivation of the Black-Scholes-Merton Partial Differential Equation (PDE) 
 
Consider a European-style derivative security with the payoff ( )TF S  at expiration at T.  
 

• What is the price ( , )t tf f S t=  of this security at some time t < T when the 
underlying asset price is tS ?  

• How do we hedge this security?   
 

The derivation is similar to the derivation when the underlying asset follows the binomial 
process: we will dynamically replicate the security by trading the underlying asset. 
 
Modeling Assumptions  
 
1. The underlying asset follows geometric Brownian motion starting at 0S S= : 

t t t tdS mS dt S dBσ= + , where m and σ are constant; 
2. No restrictions on short sales; 
3. No transaction costs, bid/ask spread, or taxes; 
4. No dividends during the lifetime of the derivative security; 
5. No riskless arbitrage opportunities (or they are explored immediately as they occur); 
6. Securities trading is continuous, securities are infinitely divisible, and there are no 

liquidity restrictions; 
7. The continuously compounded risk-free rate r is constant and is the same for all 

maturities (flat term structure of interest rates). 
 
Derivation of the Black-Scholes PDE: dynamic hedging strategy (hedging portfolio)  
 
The price of our derivative at time t is a function of the underlying price St and time t. 
From Ito�s lemma: 
 

2
2 2

2
1( , ) ( , ) ( , ) ( , ) ( , ) .
2t t t t t t t t t

f f f fdf S t S t mS S t S S t dt S S t dB
t S S S

σ σ ∂ ∂ ∂ ∂= + + + ∂ ∂ ∂ ∂ 
 

 
The key observation is that both the stock and the option have the same source of 
uncertainty (risk) � Brownian motion process B.  
 
We construct a portfolio with a short position in one derivative f and a long position in ∆ 
shares of stock: 
 

S fΠ = ∆ − . 
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From Ito�s lemma, the change in the portfolio value over dt is given by (dropping time 
subscripts and function arguments to lighten notation): 
 

2
2 2

2

2
2 2

2

( )

1
2

1 .
2

d dS df mSdt SdB

f f f fmS S dt S dB
t S S S

f f f fS dB mS S dt
S S t S

σ

σ σ

σ σ

Π = ∆ − = ∆ +

 ∂ ∂ ∂ ∂− + + − ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂   = ∆ − + ∆ − − −    ∂ ∂ ∂ ∂    

 

Let us select the number of shares (hedge ratio or delta) ∆ so that 
 

f
S

∂∆ =
∂

. 

 
This selection makes our portfolio instantaneously riskless � the coefficient in front of 
the term with the Brownian motion increment dB (risk) vanishes! 
 
Compare this choice with the choice  
 

( )
u d u d

u d

C C C C
S S u d S

− −∆ = =
− −

 

 
in the binomial approach. 
 
Our portfolio is riskless only for an infinitesimal time period dt. To keep our portfolio 
riskless through the next time period dt, we need to re-balance � adjust the delta to reflect 
the change in the stock price. 
 
Since our portfolio is instantaneously riskless over an infinitesimal time period dt, its rate 
of return must be equal to the risk-free rate r (otherwise, there is an arbitrage 
opportunity)! Then the change in value of our portfolio during an infinitesimal time 
period dt must be: 
 

d r dtΠ = Π , or 
2

2 2
2

1
2

f f fS dt r S f dt
t S S

σ ∂ ∂ ∂ − − = −  ∂ ∂ ∂  
, 

 
2

2 2
2

1 .
2

f f fS rS rf
S S t

σ ∂ ∂ ∂+ + =
∂ ∂ ∂

    (*) 

 
The price of the option as a function of the underlying stock price and time ( , )f f S t=  
must satisfy this partial differential equation (PDE) as a consequence of the no arbitrage 
assumption. If the option price does not satisfy this differential equation, there are 
arbitrage opportunities.  
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This is the celebrated Black-Scholes-Merton PDE, also called the fundamental pricing 
equation. Mathematically, this has the form of diffusion equation. At expiration of the 
derivative ,t T=  the differential equation should be supplemented with the terminal 
condition at expiration (payoff): 
 

( , ) ( ).f S T F S=  
 
To find derivative�s price at any time t prior to expiration, 0 t T≤ < , we need to solve the 
Black-Scholes-Merton PDE subject to the terminal condition at time expiration T: 
 

( , ) ( ).f S T F S=  
 
Note that we need to solve the PDE backwards in time (subject to the terminal condition 
rather than the initial condition) since we know the payoff and need to find the present 
value (current price) f(S,t) of the security with this payoff: 
 
 
 
 
t, f(S,t)          T, ( , ) ( )T Tf S T F S=  
 
For European Call Options 

( ) ( )F S S K += −  
 
For European Put Options 

( ) ( )F S K S += −  
 
Note that delta (hedge ratio) depends both on the underlying price and time: 
 

( , ) ( , )fS t S t
S

∂∆ = ∆ =
∂

, 

 
where the function ( , )f S t  is the solution of the Black-Scholes-Merton PDE. As t and S 
change, we need to rebalance our portfolio at each (infinitesimally small) time step dt ! 
dynamic trading strategy.  
 
Important! Note that the drift rate m does not enter  the equation. The equation involves 
risk-free rate r and volatility σ  as the only parameters. This is similar to the binomial 
model � recall that the probability q fell out of the equation! The drift rate of the stock in 
real world does not matter for pricing derivatives! For the purpose of pricing, we can 
pretend all investors are risk-neutral (risk-neutral world), set m = r, and use the risk-free 
rate r both as the drift rate of the stock and for discounting. Read Section 13.7 in Hull. 
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Stock price process in the risk-neutral world: 
 

t t t tdS rS dt S dBσ= + , 
 
or 
 

0
tt B

tS S eµ σ+= , 0t ≥  
 
where 
 

2 / 2rµ σ= − . 
 
Deriving the Black-Scholes-Merton Option Pricing Formulas  
 
One way to proceed is to find the option price by directly solving the PDE subject to the 
payoff condition.  
 
Alternatively, we can calculate the option price (present value) at time t < T when the 
stock price is S as the discounted expectation of its payoff in the risk-neutral world: 
 
Risk-Neutral Pricing Formula  
 

,( , ) [ ( )]r
t S Tf S t e E F Sτ−= , T tτ = − , 

 

TS Seµτ εσ τ+= , 
2

2
r σµ = − .  

 
This is the risk-neutral valuation formula. The risk-free rate r is used as the discount rate. 
In the risk-neutral world, given today�s stock price S at time t, the future stock price TS  at 

time T > t  is lognormally distributed: TS Seµτ εσ τ+= , where ε  is standard normal.  
 
Calculating Risk-Neutral Expectations 
 
Example 1: Forward Contracts 
 
By applying the risk-neutral valuation formula to the payoff of a forward contract with 
delivery price K, (ST � K), we can find PV of the forward contract ( T tτ = − ): 
 

( ),( , ) [ ]r r
t S Tf S t e E S K S e Kτ τ− −= − = − , 

 
where we used the formula for the mean of the lognormal distribution: 
 

, [ ] r
t S TE S e Sτ= . 
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Not surprisingly, this is the same formula we obtained previously from the no-arbitrage 
argument!  
 
It is instructive to check that this value of the forward contract does indeed satisfy the 
BSM PDE: calculating all the necessary derivatives, the BS PDE reduces to: 
 

( )r rrS re K r S e Kτ τ− −− = − . 
 
Black-Scholes-Merton Option Pricing Formulas 
 
Example 2: European Call Option 
 
Given the stock price S at time t = 0, in the risk-neutral world the stock price at time T > t 
is a lognormal random variable: 
 

TS Seµτ σ τε+= , 

where T tτ = −  is time to maturity,
2

2
r σµ = − and ε  is standard normal. Then the call 

price is given by the discounted risk-neutral expectation: 
 

2

{ ln( / )} { ln( / )}

/ 2
{ (ln( / ) ) /( )}

{ (ln( / ) ) /( )}

( , ) [( ) ]

[( ) ]

[ 1 ] [1 ]

[ 1 ]

[1 ]

r
T

r

r r
K S K S

K S

r
K S

C S t e E S K

e E Se K

e SE e e KE

e SE e

e KE

τ

τ µτ εσ τ

τ µτ εσ τ τ
µτ εσ τ µτ εσ τ

σ τ µτ εσ τ
ε µτ σ τ

τ
ε µτ σ τ

− +

− + +

− + −
+ > + >

− +
> −

−
> −

= −

= −

= −

=

−
 

Introduce the following notation: 

ln S
Kd

µτ

σ τ−

  + 
 =

 
Then

 

2 / 2
{ } { }( , ) [ 1 ] [1 ]r

d dC S t e SE e e KEσ τ εσ τ τ
ε ε− −

− −
>− >−= −  

 
Here { }1 1dε −>− =  if dε −> −  and = 0 if dε −≤ − . 
 
The expectation in the second term: 
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2

2

2
{ }

2

1[1 ] Pr( )
2

1 ( )
2

y

d
d

d z

E d e dy

e dz N d

ε ε
π

π

−

−

−

∞
−

>− −
−

−

−
−∞

= > − =

= =

∫

∫
 

 
where we changed the integration variable z y= −  and used the definition of the standard 
normal CDF: 
 

2

21( )
2

x y

N x e dy
π

−

−∞

= ∫ . 

 
The expectation in the first term: 
 

2

2 2 2 2 2

2
{ }

( )
2 2 2 2 2

1[ 1 ]
2

1 ( )
2

y y

d
d

dy z

d

E e e dy

e dy e e dz e N d

σ τεσ τ
ε

σ τσ τ σ τ σ τ σ τ

π

π

−

−

−

−

∞
− +

>−
−

+∞ −− + −

+
− −∞

=

= = =

∫

∫ ∫
 

 
where 
 
d d σ τ+ −= + . 
 
Substituting the results for both terms in the call pricing formula, we finally arrive at:  
 
The Black-Scholes Call Pricing Formula  
 

( , ) ( ) ( )rC S t SN d e KN dτ−
+ −= − , 

 

ln S
Kd

µτ

σ τ−

  + 
 = ,     d d σ τ+ −= +  

T tτ = − , 
2

2
r σµ = − . 

 
Financial meaning of the first term ( )SN d+  of the Black-Scholes formula: present value 
of receiving the stock at maturity, provided the call finishes in the money.  
Financial meaning of the second term ( )re KN dτ−

−− : present value of paying the strike, 
provided the call finishes in the money. 
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It is easy to calculate the call delta by taking the first derivative of the option�s price with 
respect to the underlying stock price: 
 

( )C N d
S +

∂∆ = =
∂

, 

 
where we have used the following identity (can be verified directly by differentiating): 
 

( ) ( ) 0rN d N dS e K
S S

τ−+ −∂ ∂− =
∂ ∂

. 

 
Thus, we can also re-write the option pricing formula in the form: 
 
C S B= ∆ − . 
 
Compare this to the binomial pricing formula! 
 
Example 3 European Puts.  
 
A similar derivation yields the put pricing formula: 
 
The Black-Scholes Put Pricing Formula 
  

( , ) ( ) ( )rP S t e KN d SN dτ−
− += − − − . 

 
It is now easy to verify the put-call parity: 
 

[ ( ) ( )] [ ( ) ( )]r

r

C P S N d N d e K N d N d
S e K

τ

τ

−
+ + − −

−

− = + − − + −

= −
 

 
where we have used the identity 
 

( ) ( ) 1N x N x+ − = . 
 
Options on Stock Indexes, Foreign Currencies, and Futures  
Readings: Hull, Chapter 13  
 
The Black-Scholes formula allows us to price European options on the underlying asset 
that pays no dividends during the life of the option. To use the model in practice, we need 
to extend it to allow for dividends. 
 
Suppose the underlying asset pays continuous proportional dividends with the constant 
dividend yield q per annum (with continuous compounding). Dividends paid out over an 
infinitesimal time period dt are tS qdt . 
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TS Seµτ εσ τ+= , 
2

2
r q σµ = − − . 

  
We can also write: 
 

2

2

exp
2

( )exp
2

T

q

S S r q

e S rτ

σ τ σ τε

σ τ σ τε−

  
= − − +  

  
  

= − +  
  

 

 
Thus, the distribution of ST with the dividend yield q is the same as the distribution of ST 
without the dividend but with the substitution: 
 

qS e Sτ−→    (recall that S is the initial price). 
 
Hence, we arrive at the substitution rule for valuing European-style derivatives: 
 
Substitute: qS e Sτ−→ and then value options as though the underlying pays no dividends. 
 
Example: forward contracts 
 
From the no-arbitrage argument we previously derived expressions for the PV of the 
forward contract with continuous dividend yield q: 
 

q rf e S e Kτ τ− −= −  
 
The Black-Scholes European Option Pricing Formula adjusted for dividends 
 
We can derive it by substituting qS e Sτ−→  into the BS formula without dividends: 
 

( ) ( )q rC e SN d e KN dτ τ− −
+ −= − , 

 
( ) ( )r qP e KN d e SN dτ τ− −

− += − − − , 
 

ln S
Kd

µτ

σ τ−

  + 
 = , d d σ τ+ −= + , 

 
2

2
r q σµ = − − . 
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To get the adjustment in µ just note that 
 

ln ln
qe S S q
K K

τ

τ
−   = −  

  
. 

 
The put-call parity with dividends is: 
 

q rC P e S e Kτ τ− −− = −  
 
Stock Index Options 
 
A stock index can be approximated as an asset with continuous dividend yield q.  
 
Examples of exchange traded index options: 
S&P 500 (symbol - SPX) � European options 
S&P 100 (symbol - OEX) � American options 
Options on Dow Jones, NASDAQ 100, etc. 
 
Stock index puts are used for portfolio insurance. An alternative is to create dynamic puts 
(dynamic portfolio insurance) by executing the dynamic replicating strategy with stock 
index futures. 
 
FX Options Pricing Formulas 
 
Suppose rd and rf are domestic and foreign risk-free interest rates, respectively. Foreign 
currency can be viewed as a risky asset priced in the units of domestic currency that pays 
continuous dividends with the dividend yield rf. Then the pricing formulas for European 
FX options are (in this case dr r=  and fq r= ): 
 

( ) ( )f dr rC e SN d e KN dτ τ− −
+ −= − , 

 
( ) ( )fd rrP e KN d e SN dττ −−

− += − − − , 
 

ln S
Kd

µτ

σ τ−

  + 
 = , d d σ τ+ −= + , 

2

2d fr r σµ = − − . 

 

21


