
ar
X

iv
:c

on
d-

m
at

/9
70

41
45

v1
  1

6 
A

pr
 1

99
7

Fluctuations around Nash Equilibria in Game Theory

Matteo Marsili and Yi-Cheng Zhang
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We investigate the fluctuations induced by irrationality in simple games with a large number of
competing players. We show that Nash equilibria in such games are “weakly” stable: irrationality
propagates and amplifies through players’ interactions so that huge fluctuations can results from a
small amount of irrationality. In the presence of multiple Nash equilibria, our statistical approach
allows to establish which is the globally stable equilibrium. However characteristic times to reach
this state can be very large.

Game theory [1] provides strategical thinking for modern economics and socio-political decisions. It has been an
active research subject, in the economist’s community, in the past half century. Extremely refined analysis is now
being preformed, however it was recently [2] observed that such studies provide a far too idealised picture of the real
world in economics. One of the main pitfalls lies in the fact that the assumption of rationality makes game theory
deterministic. On the other hand, we know that the economic world is characterized by large fluctuations. These
fluctuations are, for obvious reasons, of great interest for people in economics. They are becoming of great interest
also in the physicists community, where it has been realized [3] that economic systems share scaling and self organized
critical behaviors with more traditional subjects in statistical physics.

In real world irrationality is ubiquitous. This gives us reason to use physics tools to include it in game theory.
Strikingly we find that irrationality propagates and amplifies through players interactions and it can lead to huge
fluctuations, growing with the number of players. This shows that irrationality is indeed a “relevant parameter”,
which should be included in game theory.

A game is defined as a mathematical model for optimal strategies among competing players. Typically a player has
a utility function depending on the strategies of all the players. In this paper we will limit ourselves to the so-called
complete information games where every player is aware of all other players’ strategies and benefits. Under the basic
assumption of rationality of all players, solutions in game theory are given by Nash equilibria of all players’ strategies.
The nature of a Nash equilibrium differs qualitatively from that of an equilibrium state in statistical mechanics. Nash
equilibria do not result from just the maximization or minimization of some global function (such as e.g. the free
energy in statistical mechanics) but rather from the requirement that each player’s strategy must simultaneously be a
local maximum with respect to his own strategy. Loosely speaking, in game theory there is not a unique Hamiltonian,
but rather each player has his own Hamiltonian to minimize. The interactions among players need not be symmetric
and their goals may be in conflict with one another. Finally Nash equilibria gives an exact deterministic answer in the
sense that it includes no fluctuations. In a parallel with statistical mechanics, one could say that game theory is a “zero
temperature” theory. The aim of this paper is to include “thermal” fluctuations in game theory through the Langevin
approach. For any realistic game, this issue is of utmost important since no player can have infinitely precise actions.
The “zero temperature” nature of game theory, resulting from complete rationality, was indeed recently questioned
[2]. We show that the effects of fluctuations, in standard games of a large number of competing players, can be quite
dramatic and that they characterize the stability of Nash equilibria.

The simplest, economy motivated model of game theory was introduced by Cournot in 1838 [4]: 2 firms produce
quantities x1 and x2 respectively, of a homogeneous product. The market-clearing price of the product depends,
through the law of demand-and-offer, on the total quantity X = x1 + x2 produced: P (X) = a − bX . The larger X
the smaller P is. The model assumes that the cost of producing a quantity xi is cxi and c < a. The firms choose
their strategies (i.e. xi) with the goal to maximize their profit (utility): ui = xi[P (x1 + x2) − c]. The problem is
to find xi assuming that both firms behave rationally. The best response x∗

1(x2) of firm 1 to any given strategy x2

of firm 2 is obtained by maximizing u1(x1, x2) with respect to x1 with fixed x2. Firm 2, assuming that 1 behaves
rationally (i.e. that it will play x∗

1(x2) whatever x2 is) will choose x∗
2 which maximizes u2(x

∗
1(x2), x2). This leads to

x∗
1 = x∗

2 = (a− c)/3b. This solution highlights the essential point of the concept of Nash equilibrium [5], which applies
also to more general games.

In a situation with n players, we consider

ui = xiV (x1 + . . . + xi + . . . + xn). (1)

In general, one requires that V (X) be a decreasing function of X . This describes, apart from a demand-and-offer law,
also situations where the gain of each player depends on a common resource. As X = x1 + . . .+xn grows, the resource

1

http://arXiv.org/abs/cond-mat/9704145v1


is depleted (V (X) decreases). V (X) can eventually turn negative for X > X0: the resource has been exhausted and
production gives rise to negative benefit for all the players. Generally one has V ′ ∼ −n−1V (V ′ denotes derivative
here and below) as a consequence of the fact that each xi have an effect 1/n on a global quantity V . We shall consider
−∞ < xi < ∞. A negative xi is a quantity that, instead of being produced and sold, is bought by player i. We shall
also discuss briefly the effects of the constraints xi > 0.

Technically, the Nash equilibrium is obtained by solving

∂

∂xi

ui(x1, . . . , xn)

∣

∣

∣

∣

xj=xi ∀j

= 0 ∀i . (2)

This equation contains the maximization of the utility of player i and his expectation that all other players will do
the same [6]. For the generalized Cournot model with n firms, a − c = 1 and b = 1/n (i.e. V = 1 − X/n), eq. (2)
gives the Nash equilibrium

xi = xN ≡ n

n + 1
and ui =

n

(n + 1)2
. (3)

Note that ui is of order 1/n: the common resource is nearly exhausted V ≃ 0 due to the aggressive strategies xi ≃ 1.
It is interesting to compare the above to the case where each player acts to maximize the total utility U(x1, ..., xn) =

∑

i ui. In this case xi is given by ∂U/∂xi = 0 and the result is quite different: xi = 1/2 and ui = 1/4. Strikingly the
profit of each player in this case is a factor n larger than in the previous case!

This is a typical lesson [7] of game theory: when each player acts to maximize his own utility ui, the global utility is
very small. The global utility is maximized when all players have a common goal. This is very similar to the dynamics
in statistical mechanics where all degrees of freedom evolve to optimize an Hamiltonian. The maximal utility state,
in spite of being “socially” better (everybody behaves less aggressively and receives a better payoff), is unfortunately
never achieved since incentives to cheat are large. This fact will emerge clearly from the analysis of fluctuations.

In the Nash equilibrium instead, everybody is more aggressive (larger xi) and per player benefit is much more
meager. The crucial features which makes this state more relevant than the social one is its stability: The Nash
equilibrium is stable because each player has no incentive to cheat since an over-aggressive move (xi > xN ) would
hurt the player himself.

It is important to note that the Nash equilibrium can be reached dynamically, like for example in a repeated game
where the players adjust their strategies according to the gradient: ∂txi = ∂ui/∂xi. This observation suggests that
a “finite temperature” can be included in the system, by considering the Langevin-like equation (in suitable units of
time):

∂txi =
∂ui

∂xi

+ ηi,− (4)

where ηi(t) is gaussian noise with 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t
′)〉 = Dδi,jδ(t− t′). D, in the statistical mechanics analogy,

plays the role of a finite temperature.
If ui is given by eq. (1), it is possible to find the stationary state distribution P (~x). Indeed, since V depends only

on X =
∑

i xi, it is convenient to perform an orthonormal transformation in the space spanned by ~x = (x1, . . . , xn)
into ~y = (y1, . . . , yn) in such a way that yn = X/

√
n. The Gram-Schmidt method [8] then gives yk = (

∑

i≤k xi −
kxk+1)/

√

k(k + 1) for k < n.
In the new variables, the dynamics reads

∂tyk = V ′yk + η̃k, 1 ≤ k < n (5)

∂tyn =
√

nV + V ′yn + η̃n, (6)

and, by orthonormality 〈η̃i(t)η̃j(t
′)〉 = Dδi,jδ(t − t′).

This transformation has the virtue of displaying the statistical dependence of the variables in a natural way. Since
V and V ′ depends on yn only, yn has a dynamics which is independent of the yk, whereas each yk is coupled to yn.
Therefore the stationary distribution can, in general, be expressed as P (~y) = P (yn)

∏

k<n P (yk|yn). where P (yk|yn)
is the distribution of yk conditional to yn. Eq. (6) describes a “particle” in a potential with thermal fluctuations and
can be solved using standard techniques [9]. The same holds for eq. (5), where yn appears as a parameter. We find
P (~y) ∝ exp[−H/D] and

H = −V ′

2

n−1
∑

k=1

y2
k − V yn√

n
− n − 1√

n

∫ yn

0

dxV (
√

nx) (7)
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This form of the stationary distribution is reminiscent of an equilibrium system with Hamiltonian H . It would however
be misleading to identify −H with some measure of the utility U . This stationary state has a completely dynamic
origin.

The equilibrium distribution, for D small, can be expanded around its maximum. The maximum of H(~y) is attained
at y∗

k = δk,n

√
nxN , in agreement with eq. (3). The gaussian fluctuations around the Nash equilibrium are found in

the standard way: Expand H(~y) up to second order in δyk = yk − y∗
k. The inverse of the matrix of the quadratic

form, yields the fluctuations 〈δykδyj〉. In view of eq. (7), one finds 〈δykδyj〉 = δk,jD/|V ′| for k < n. Note that since
|V ′| ∼ n−1, these fluctuations are of order n. Because of these huge fluctuations, we shall call yk “soft modes”. The
fluctuations of yn instead turn out to be of order 1. One can infer the fluctuations of the xi’s by using the identity

n
∑

i=1

x2
i =

n
∑

k=1

y2
k (8)

and assuming 〈δxiδxj〉 = (A − C)δi,j + C. We discuss here only the case V = 1 − X/n which allows more compact
expressions. The same features discussed below apply to any V (x) such that V ′ ∼ −n−1. Observing that 〈y2

n〉 =
A + (n − 1)C, and using eq. (8) one finds

〈δx2
i 〉 =

2n2 + n − 2

2(n + 1)
D, 〈δxiδxj〉 = − 2n + 1

2(n + 1)
D (9)

The main message of eq. (9) is that fluctuations around the Nash equilibrium are very strong: The relative

fluctuation of xi, given that the avergage of xi is close to one, is proportional to
√

nD. This depends on the fact that
|V ′| ∼ n−1, which is a very general feature in large games of the form (1). The variable xi fluctuates the same order
of magnitude as the sum of xi over all i = 1, . . . , n. This is possible because of the negative correlation among the
variables. A fluctuation of one of the variables is compensated by opposite fluctuations of the others.

Let us see what happens to the total utility. This is best seen in the variables yk, because U =
√

nynV (
√

nyn)
depends only on yn. Therefore expanding U up to second order around ~y∗ and taking the average, we find

〈U〉 =
n2

(n + 1)2
− nD

n + 1
, (10)

where, again we assumed V (X) = 1 − X/n. As can be easily seen, the fluctuations decrease the utility by a term
δU ≃ −D and they can have a dramatic effect: If D > Dc ≃ 1 the average utility becomes negative!

With respect to the dynamics, it is easy to check that the correlation function of the “soft” modes yk, in the steady
state for the linear V (x), is

〈yk(t)yk(t + τ)〉 ≃ nD exp(−τ/n). (11)

which implies very long correlation times in the stationary state. This applies to the correlations of xi as well.
The features discussed thus far hold the same if the constraint xi > 0 is imposed. The fluctuation around the Nash

equilibrium eq.(3), at the level of the Gaussian approximation are still given by the above results. These characterize
correctly the neighborhood of the Nash equilibrium. The corrections to the gaussian fluctuations are negligible when
δxi is much less than xN , which occurs for D ≪ n−1. Numerical simulations show that, even for larger D, the same
qualitative features (large fluctuations and eventually U < 0) hold also in the presence of the constraint xi > 0.

It is instructive to study the “social” equilibrium in the same way. Now each player attempts to maximize the total
utility U , and the Langevin equation is ∂txi = ∂U/∂xi + ηi. In the variables ~y we find: ∂yn =

√
nV + nynV ′ + η̃n

and ∂yk = η̃k for k < n. Note that yk now behave as random walks. The distribution of yk at long times is
P (~y, t) ∝ exp[−y2

k/(2Dt)] and the correlations are 〈y2
k〉 = Dt for k < n and 〈δy2

n〉 ∼ D. This implies unbounded
fluctuations of xi (i.e. 〈δx2

i 〉 ≃ Dt) and a negative correlation 〈δxiδxj〉/〈δx2
i 〉 → −1/(n−1) such that the fluctuations

of the sum X are finite. This implies that the average utility remains finite. The absence of a stationary distribution
in the “social equilibrium” reflects its instability.

The results generalize with little qualitative changes when one considers a more general correlation among ηi or a
mixed “social” egoistic model. These and other generalizations, as well as more detailed calculations, will be presented
in a forthcoming publication.

It is generally recognized in economy that in realistic situations the relation between the utility and wealth (net
profit) is not linear [11]. One source of non-linearity, for example, is inefficiency in capital management. This can
be tolerated by the rich whereas it is very dangerous for the poor. Most studies [11] assume empirically a quadratic
relation [12]. This, assuming xiV as a measure of the wealth of player i, leads to
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ui = xiV (X)[1 − rxiV (X)]. (12)

Let us define x̄ = X/n and assume that V = 1 − x̄ (with little loss of generality since non-linearities in V do
not change qualitatively the results). The interesting feature of this model is that if r > 2 a new Nash equilibrium
appears. Indeed

∂ui

∂xi

∣

∣

∣

∣

xi=x̄

=

(

1 − n + 1

n
x̄

)

[1 − 2rx̄(1 − x̄)] = 0, (13)

for r ≥ 2, has three solutions: x̄ = xN , the usual Nash equilibrium eq. (3), x̄ = xr = (r −
√

r(r − 2))/2r, which is a

new Nash equilibrium, and x̄ = x+ = (r +
√

r(r − 2))/2r, which is an unstable equilibrium (i.e. a minimum of the
utility). Provided 2 < r < n/2, one has xr < x+ < xN . The utility in the new equilibrium is ui(xj = xr, ∀j) = 1/(4r)
which is positive and finite as compared to that at xN which is O(1/n). In the presence of two equilibria a player will
choose one or the other according to what he judges other players will do.

Situations with more than one stable solution are frequent and of great interest in economy [2]. In particular one
would like to know under what conditions a state is selected. The framework of Langevin dynamics (4) is particularly
appealing. Indeed as we shall see it allows to understand which state is globally stable and how long a transition from
the other state into it will take.

From eq. (4) we can derive the equation for x̄:

∂tx̄ =

(

1 − x̄

xN

)

[1 − 2rx̄(1 − x̄)] +
2r(1 − x̄)

n2

(

n
∑

i=1

x2
i − nx̄2

)

+ η̄. (14)

Here η̄ is the average of ηi, i.e. it is a white noise with equal time correlation D/n. In spite of the fact that all xi

appear in eq. (14), it is still useful to use the variables yk. Indeed one can use the identity (8) and average over the
degrees of freedom yk in eq. (14). This amounts to replacing the term in brackets by (n − 1)〈y2

k|x̄〉 [13] which is the
average of y2

k conditional to a fixed x̄. In order to close the equations, we assume that in the Langevin equation for
yk,

∂tyk = −
[

2r(1 − x̄)2 +
1

n

]

yk +
2r(1 − x̄)

n
√

k(k + 1)

[

k
∑

i=1

x2
i − kx2

k+1

]

+ η̃k.

we can neglect the second term in the right hand side.
This can be justified by the expectation that this term is
negligible for n ≫ 1 if x2

i ≈ x2
j . The equation for yk then

simplifies considerably and one finds that, in the steady
state,

〈y2
k|x̄〉 =

Dn

4nr(1 − x̄)2 + 2
. (15)

This, in eq. (14), gives (to leading order in n)

∂tx̄ =
xN −x̄

xN

[1−2rx̄(1−x̄)] +
rD(1−x̄)

4nr(1−x̄)2+2
+ η̄, (16)

which can be cast in the form ∂tx̄ = −dH/dx̄ + η̄, where
−H(x̄) is the integral of the deterministic part of eq.
(16). Since 〈η̄(t)η̄(t′)〉 = (D/n)δ(t − t′), the stationary
solution is P (x̄) ∝ exp[−nH(x̄)/D]. Here H plays the
role of a free energy. Indeed it has the form H = E−TS
where T = D/n is the analogous of the temperature and
S is the entropy. The entropy enters from the fluctua-
tions of the degrees of freedom yk which have been self
consistently retained in the equation for x̄. Let us dis-
cuss, from this point of view, the statistics of x̄ in the
steady state: Fixing E(x+) = 0, the energy in the two
equilibrium states are, to leading order in n,
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E(xN ) =
2r−3−4r(r−2)xr

24r
+ O(n−1)

E(xr) =
(r−2)(1−2xr)

6
+ O(n−1)

Therefore E(xN ) < E(xr) in the interval 2 ≤ r < 9/4
whereas E(xN ) > E(xr) for r > 9/4. It is important
to stress that this energy cannot be interpreted as −U .
Indeed note that the minimum energy is at xN for 2 ≤
r < 9/4, whereas the maximum utility U is always at xr.

Energy alone suggests therefore that the system will
fall in the minimum energy minimum for t → ∞, and
this, in the limit n → ∞, is xN for r < 9/4 and xr for
r > 9/4. This conclusion holds to leading order in n even
if one considers also the entropy. The reason is that, for
n → ∞, one is considering very small temperatures T =
D/n. Direct calculation shows that S(xN ) = (log n)/4+
O(n−2) while S(xr) = [log (2rxr − 1)]/4 + O(n−1). The
entropy in xN is considerably larger than that in xr. In-
deed the fluctuations of yk are of order

√
n in xN , whereas

in xr they are finite [see eq. (15)]. In other words, since
〈δx2

i 〉 ≃ 〈y2
k|x̄〉, the set {xi} is much more widely spread

in the xN minimum than in the xr one. And this is an
effect which is correctly accounted by the entropy above.

Even though we can identify a globally stable equilib-
rium (xN for r < 9/4 and xr otherwise) which will ul-
timately attract the system under the Langevin dynam-
ics, it is important to stress that the other metastable

equilibrium can be stable over times which are exponen-
tially large in n. Indeed the energy barrier between the
two minima is finite, but the temperature is very small
T = D/n. If r > 9/4 and initially the system is in the xN

equilibrium, it will not visit the state xr before a time of
the order of ∼ exp[nE(xN )/D]. This time can be infinite
for all practical purposes. In other words, the system is
very sensible to initial conditions.

We have presented a general approach to extend game
theory to include fluctuations. We used the Langevin for-
mulation which provides a natural bridge between game
theory and statistical mechanics. The essential differ-
ence is that individual utility functions replace a global
Hamiltonian. Fluctuations describe in a natural way the
stability nature of various equilibria. We find that the
Nash equilibrium of simple games with competition is
stable against thermal fluctuations, even though the am-
plitude of fluctuations is very large. On the contrary, the
“socially ideal” state is marginally unstable due to the
presence of “soft modes”. The approach also allows to
study situation with more than one Nash equilibria and
identifies the globally stable one as well as the criteria
under which a state is reached by the dynamics.

This work was supported by the Swiss National Foun-
dation under grant 20-40672.94/1.
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