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1 Introduction

1.1 Intertemporal Incentives

In Puccini’s opera Gianni Schicchi, the deceased Buoso Donati has left his estate to a
monastery, much to the consternation of his family.1 Before anyone outside the family
learns of the death, Donati’s relatives engage the services of the actor Gianni Schicchi,
who is to impersonate Buoso Donati as living but near death, to write a new will
leaving the fortune to the family, and then die. Anxious that Schicchi do nothing to risk
exposing the plot, the family explains that there are severe penalties for tampering with
a will and that any misstep puts Schicchi at risk. All goes well until Schicchi (acting
as Buoso Donati) writes the new will, at which point he instructs that the entire estate
be left to the great actor Gianni Schicchi. The dumbstruck relatives watch in horror,
afraid to object lest their plot be exposed and they pay the penalties with which they
had threatened Schicchi.

Ron Luciano, who worked in professional baseball as an umpire, occasionally did
not feel well enough to umpire. In his memoir, Luciano writes,2

Over a period of time I learned to trust certain catchers so much that I
actually let them umpire for me on bad days. The bad days usually followed
the good nights. . . . On those days there wasn’t much I could do but take
two aspirins and call as little as possible. If someone I trusted was
catching . . . I’d tell them, “Look, it’s a bad day. You’d better take it for me.
If it’s a strike, hold your glove in place for an extra second. If it’s a ball,
throw it right back. And please, don’t yell.” . . . No one I worked with ever
took advantage of the situation.

In each case, the prospect for opportunistic behavior arises. Gianni Schicchi sees
a chance to grab a fortune and does so. Any of Luciano’s catchers could have tipped
the game in their favor by making the appropriate calls, secure in the knowledge
that Luciano would not expose them for doing his job, but none did so. What is the

1. Our description of Gianni Schicchi is taken from Hamermesh (2004, p. 164) who uses it to
illustrate the incentives that arise in isolated interactions.

2. The use of this passage (originally from Luciano and Fisher 1982, p. 166) as an illustration
of the importance of repeated interactions is due to Axelrod (1984, p. 178), who quotes and
discusses it.

1



2 Chapter 1 ■ Introduction

2

A B C

A 5, 5 0, 0 12, 0

1 B 0, 0 2, 2 0, 0

C 0, 12 0, 0 10, 10

Figure 1.1.1 A modified coordination game. Pure-strategy Nash equilibria
include AA and BB but not CC.

difference between the two situations? Schicchi anticipates no further dealings with
the family of Buoso Donati. In the language of game theory, theirs is a one-shot game.
Luciano’s catchers know there is a good chance they will again play games umpired
by Luciano and that opportunistic behavior may have adverse future consequences,
even if currently unexposed. Theirs is a repeated game.

These two stories illustrate the basic principle that motivates interest in repeated
games: Repeated interactions give rise to incentives that differ fundamentally from
those of isolated interactions. As a simple illustration, consider the game in figure 1.1.1.
This game has two strict Nash equilibria, AA and BB. When this game is played once,
players can do no better than to play AA for a payoff of 5. If the game is played
twice, with payoffs summed over the two periods, there is an equilibrium with a higher
average payoff. The key is to use first-period play to coordinate equilibrium play in the
second period. The players choose CC in the first period and AA in the second. Any
other first-period outcome leads to BB in the second period. Should one player attempt
to exploit the other by playing A in the first period, he gains 2 in the first period but
loses 3 in the second. The deviation is unprofitable, and so we have an equilibrium
with a total payoff of 15 to each player.

We see these differences between repeated and isolated interactions throughout
our daily lives. Suppose, on taking your car for a routine oil change, you are told that
an engine problem has been discovered and requires an immediate and costly repair.
Would your confidence that this diagnosis is accurate depend on whether you regularly
do business with the service provider or whether you are passing through on vacation?
Would you be more willing to buy a watch in a jewelry store than on the street corner?
Would you be more or less inclined to monitor the quality of work done by a provider
who is going out of business after doing your job?

Repeated games are the primary tool for understanding such situations. This pre-
liminary chapter presents four examples illustrating the issues that arise in repeated
games.



1.2 ■ The Prisoners’ Dilemma 3

1

2

E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 1.2.1 The prisoners’ dilemma.

1.2 The Prisoners’ Dilemma

The prisoners’ dilemma is perhaps the best known and most studied (and most abused)
of games.3 We will frequently use the example given in figure 1.2.1.

We interpret the prisoners’ dilemma as a partnership game in which each player
can either exert effort (E) or shirk (S).4 Shirking is strictly dominant, while higher
payoffs for both players are achieved if both exert effort. In an isolated interaction,
there is no escape from this “dilemma.” We must either change the game so that it
is not a prisoners’ dilemma or must accept the inefficient outcome. Any argument in
defense of effort must ultimately be an argument that either the numbers in the matrix
do not represent the players preferences, or that some other aspect of the game is not
really descriptive of the actual interaction.

Things change considerably if the game is repeated. Suppose the game is played
in periods 0, 1, 2, . . . . The players make their choices simultaneously in each period,
and then observe that period’s outcome before proceeding to the next. Let ati and atj
be the actions (exert effort or shirk) chosen by players i and j in period t and let ui be
player i’s utility function, as given in figure 1.2.1. Player i maximizes the normalized
discounted sum of payoffs

(1− δ)
∞∑
t=0

δtui(a
t
i , a

t
j ),

where δ ∈ [0, 1) is the common discount factor. Suppose that the strategy of each
player is to exert effort in the first period and to continue to do so in every subsequent
period as long as both players have previously exerted effort, while shirking in all
other circumstances. Suppose finally that period τ has been reached, and no one has

3. Binmore (1994, chapter 3) discusses the many (unsuccessful) attempts to extract cooperation
from the prisoners’ dilemma.

4. Traditionally, the dominant action is called defect and the dominated action cooperate. In our
view, the words cooperate and defect are too useful to restrict their usage to actions in a single
(even if important) game.
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yet shirked. What should player i do? One possibility is to continue to exert effort, and
in fact to do so forever. Given the strategy of the other player, this yields a (normalized,
discounted) payoff of 2. The only other candidate for an optimal strategy is to shirk
in period τ (if one is ever going to shirk, one might as well do it now), after which
one can do no better than to shirk in all subsequent periods (since player j will do so),
for a payoff of (1− δ)[3+∑∞t=τ+1 δ

t−τ0
] = 3(1− δ). Continued effort is optimal if

2 ≥ 3(1− δ), or
δ ≥ 1

3 .

By making future play depend on current actions, we can thus alter the incentives that
shape these current actions, in this case allowing equilibria in which the players exert
effort. For these new incentives to have an effect on behavior, the players must be
sufficiently patient, and hence future payoffs sufficiently important.

This is not the only equilibrium of the infinitely repeated prisoners’ dilemma. It is
also an equilibrium for each player to relentlessly shirk, regardless of past play. Indeed,
for any payoffs that are feasible in the stage game and strictly individually rational
(i.e., give each player a positive payoff), there is an equilibrium of the repeated game
producing those payoffs, if the players are sufficiently patient. This is an example of
the folk theorem for repeated games.

1.3 Oligopoly

We can recast this result in an economic context. Consider the Cournot oligopoly
model. There are n firms, denoted by i = 1, . . . , n, who costlessly produce an iden-
tical product. The firms simultaneously choose quantities of output, with firm i’s
output denoted by ai ∈ R+ and with the market price then given by 1−∑n

i=1 ai .
Given these choices, the profits of firm j are given by uj (a1, . . . , an) =
aj
(
1−∑n

i=1 ai
)
.

For any number of firms n, this game has a unique Nash equilibrium, which is sym-
metric and calls for each firm i to produce output aN and earn profits ui(aN , . . . , aN),
where5

aN = 1

n+ 1
,

and ui(a
N , . . . , aN) =

(
1

n+ 1

)2

.

When n = 1, this is a monopoly market. As the number of firms n grows arbitrarily
large, the equilibrium outcome approaches that of a competitive market, with zero
price and total quantity equal to one, while the consumer surplus increases and the
welfare loss prompted by imperfect competition decreases.

5. Firm j ’s first-order condition for profit maximization is 1− 2aj − ∑
i �=j ai = 0 or aj = 1−A,

where A is the total quantity produced in the market. It is then immediate that the equilibrium
must be symmetric, giving a first-order condition of 1− (n+ 1)aN = 0.
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The analysis of imperfectly competitive markets has advanced far beyond this
simple model. However, the intuition remains that less concentrated markets are more
competitive and yield higher consumer welfare, providing the organizing theme for
many discussions of merger and antitrust policy.

It may instead be reasonable to view the interaction between a handful of firms
as a repeated game.6 The welfare effects of market concentration and the forces
behind these effects are now much less clear. Much like the case of the prisoners’
dilemma, consider strategies in which each firm produces 1/2n as long as every firm
has done so in every previous period, and otherwise produces output 1/(n+ 1). The
former output allows the firms to jointly reproduce the monopoly outcome in this
market, splitting the profits equally, whereas the latter is the Nash equilibrium of the
stage game. As long as the discount factor is sufficiently high, these strategies are
a subgame-perfect equilibrium.7 Total monopoly profits are 1/4 and the profits of
each firm are given by 1/4n in each period of this equilibrium. The increased payoffs
available to a firm who cheats on the implicit agreement to produce the monopoly
output are overwhelmed by the future losses involved in switching to the stage-
game equilibrium. If these “collusive” strategies are the equilibrium realized in the
repeated game, then reductions in the number of firms may have no effect on con-
sumer welfare at all. No longer can we regard less concentrated markets as more
competitive.

1.4 The Prisoners’ Dilemma under Imperfect Monitoring

Our first two examples have been games of perfect monitoring, in the sense that the
players can observe each others’ actions. Consider again the prisoners’ dilemma of
section 1.2, but now suppose a player can observe the outcome of the joint venture
but cannot observe whether his partner has exerted effort. In addition, the outcome is
either a success or a failure and is a random function of the partners’ actions. A success
appears with probability p if both partners exert effort, with probability q if one exerts
effort and one shirks, and probability r if both shirk, where p > q > r > 0.

This is now a game of imperfect public monitoring. It is clear that the strategies
presented in section 1.2 for sustaining effort as an equilibrium outcome in the repeated
game—exert effort in the absence of any shirking, and shirk otherwise—will no longer

6. To evaluate whether the stage game or the repeated game is a more likely candidate for usefully
examining a market, one might reasonably begin with questions about the qualitative nature of
behavior in that market. When firm i sets its current quantity or price, does it consider the effect
that this quantity and price might have on the future behavior of its rivals? For example, does an
airline wonder whether a fare cut will prompt similar cuts on the part of its competitors? Does
an auto manufacturer ask whether rebates and financial incentives will prompt similar initiatives
on the part of other auto manufacturers? If so, then a repeated game is the obvious tool for
modelling the interaction.

7. After some algebra, the condition is that

1

16

(
n+ 1

n

)2

≤ 1

1− δ
(

1

4n
− δ 1

(n+ 1)2

)
.
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work, because players cannot tell when someone has shirked. However, all is not
lost. Suppose the players begin by exerting effort and do so as long as the venture
is successful, switching to permanent shirking as soon as a failure is observed. For
sufficiently patient players, this is an equilibrium (section 7.2.1 derives the necessary
condition δ ≥ 1/[3p − 2q]). The equilibrium embodies a rather bleak future, in the
sense that a failure will eventually occur and the players will shirk thereafter, but
supports at least some effort.

The difficulty here is that the “punishment” supporting the incentives to exert
effort, consisting of permanent shirking after the first failure, is often more severe than
necessary. This was no problem in the perfect-monitoring case, where the punishment
was safely off the equilibrium path and hence need never be carried out. Here, the
imperfect monitoring ensures that punishments will occur. The players would thus
prefer the punishments be as lenient as possible, consistent with creating the appropriate
incentives for exerting effort. Chapter 7 explains how equilibria can be constructed
with less severe punishments.

Imperfect monitoring fundamentally changes the nature of the equilibrium. If
nontrivial intertemporal incentives are to be created, then over the course of equilibrium
play the players will find themselves in a punishment phase infinitely often. This
happens despite the fact that the players know, when the punishment is triggered by a
failure, that both have in fact followed the equilibrium prescription of exerting effort.
Then why do they carry through the punishment? Given that the other players are
entering the punishment phase, it is a best response to do likewise. But why would
equilibria arise that routinely punish players for offenses not committed? Because
the expected payoffs in such equilibria can be higher than those produced by simply
playing a Nash equilibrium of the stage game.

Given the inevitability of punishments, one might suspect that the set of feasible
outcomes in games of imperfect monitoring is rather limited. In particular, it appears
as if the inevitability of some periods in which players shirk makes efficient outcomes
impossible. However, chapter 9 establishes conditions under which we again have a
folk theorem result. The key is to work with asymmetric punishments, sliding along the
frontier of efficient payoffs so as to reward some players as others are penalized.8 There
may thus be a premium on asymmetric strategies, despite the lack of any asymmetry
in the game.

The players in this example at least have the advantage that the information they
receive is public. Either both observe a success or both a failure. This ensures that
they can coordinate their future behavior, as a function of current outcomes, so as to
create the appropriate current incentives. Chapters 12–14 consider the case of private
monitoring, in which the players potentially receive different private information about
what has transpired. It now appears as if the ability to coordinate future behavior
in response to current events has evaporated completely, and with it the ability to
support any outcome other than persistent shirking. Perhaps surprisingly, there is still
considerable latitude for equilibria featuring effort.

8. This requires that the imperfect monitoring give players (noisy) indications not only that a
deviation from equilibrium play has occurred but also who might have been the deviator. The
two-signal example in this section fails this condition.
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1

2

h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 1.5.1 The product-choice game.

1.5 The Product-Choice Game

Consider the game shown in figure 1.5.1. Think of player 1 as a firm who can exert
either high effort (H ) or low effort (L) in the production of its output. Player 2 is a
consumer who can buy either a high-priced product, h, or a low-priced product, �. For
example, we might think of player 1 as a restaurant whose menu features both elegant
dinners and hamburgers, or as a surgeon who treats respiratory problems with either
heart surgery or folk remedies.

Player 2 prefers the high-priced product if the firm has exerted high effort, but
prefers the low-priced product if the firm has not. One might prefer a fine dinner
or heart surgery from a chef or doctor who exerts high effort, while preferring fast
food or an ineffective but unobtrusive treatment from a shirker. The firm prefers that
consumers purchase the high-priced product and is willing to commit to high effort to
induce that choice by the consumer. In a simultaneous move game, however, the firm
cannot observably choose effort before the consumer chooses the product. Because
high effort is costly, the firm prefers low effort, no matter the choice of the consumer.

The stage game has a unique Nash equilibrium, in which the firm exerts low
effort and the consumer purchases the low-priced product. Suppose the game is played
infinitely often, with perfect monitoring. In doing so, we will often interpret player 2
not as a single player but as a succession of short-lived players, each of whom plays
the game only once. We assume that each new short-lived player can observe signals
about the firm’s previous choices.9 As long as the firm is sufficiently patient, there is
an equilibrium in the repeated game in which the firm exerts high effort and consumers
purchase the high-priced product. The firm is deterred from taking the immediate payoff
boost accompanying low effort by the prospect of future consumers then purchasing
the low-priced product.10 Again, however, there are other equilibria, including one in
which low effort is exerted and the low priced product purchased in every period.

9. If this is not the case, we have a large collection of effectively unrelated single-shot games that
happen to have a common player on one side, rather than a repeated game.

10. Purchasing the high-priced product is a best response for the consumer to high effort, so that no
incentive issues arise concerning player 2’s behavior. When consumers are short-lived, there is
no prospect for using future play to alter current incentives.
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Now suppose that consumers are not entirely certain of the characteristics of the
firm. They may attach high probability to the firm’s being “normal,” meaning that it has
the payoffs just given, but they also entertain some (possibly very small) probability
that they face a firm who fortuitously has a technology or some other characteristic that
ensures high effort. Refer to the latter as the “commitment” type of firm. This is now a
game of incomplete information, with the consumers uncertain of the firm’s type. As
long as the firm is sufficiently patient, then in any Nash equilibrium of the repeated
game, the firm’s payoff must be arbitrarily close to 2. This result holds no matter how
unlikely consumers think the commitment type, though increasing patience is required
from the normal firm as the commitment type becomes less likely.

To see the intuition behind this result, suppose that we have a candidate equilib-
rium in which the normal firm receives a payoff less than 2− ε. Then the normal and
commitment types must be making different choices over the course of the repeated
game, because an equilibrium in which they behave identically would induce con-
sumers to choose h and would yield a payoff of 2. Now, one option open to the normal
firm is to mimic the behavior of the commitment type. If the normal firm does so over
a sufficiently long period of time, then the short-run players (who expect the normal
type of firm to behave differently) will become convinced that the firm is actually the
commitment type and will play their best response of h. Once this happens, the normal
firm thereafter earns a payoff of 2. Of course, it may take a while for this to happen,
and the firm may have to endure much lower payoffs in the meantime, but these initial
payoffs are not very important if the firm is patient. If the firm is patient enough, it
thus has a strategy available that ensures a payoff arbitrarily close to 2. Our initial
hypothesis, that the firm’s equilibrium payoff fell short of 2− ε, must then have been
incorrect. Any equilibrium must give the (sufficiently patient) normal type of firm a
payoff above 2− ε.

The common interpretation of this argument is that the normal firm can acquire
and maintain a reputation for behaving like the commitment type. This reputation-
building possibility, which excludes many of the equilibrium outcomes of the complete-
information game, may appear to be quite special. Why should consumers’uncertainty
about the firm take precisely the form we have assumed? What happens if there is a
single buyer who reappears in each period, so that the buyer also faces intertemporal
incentive considerations and may also consider building a reputation? However, the
result generalizes far beyond the special structure of this example (chapter 15).

1.6 Discussion

The unifying theme of work in repeated games is that links between current and future
behavior can create incentives that would not be apparent if one examined a current
interaction in isolation. We routinely rely on the importance of such links in our daily
lives.

Markets create boundaries within which a vast variety of behavior is possible.
These markets can function effectively only if there is a shared understanding of what
constitutes appropriate behavior. Trade in many markets involves goods and services
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whose characteristics are sufficiently difficult to verify as to make legal enforcement
a hopelessly clumsy tool. This is an especially important consideration in markets
involving expert providers, with the markets for medical care and a host of main-
tenance and repair services being the most prominent examples, in which the party
providing the service is also best positioned to assess the service. More generally,
legal sanctions cannot explain why people routinely refrain from opportunistic behav-
ior, such as attempting to renegotiate prices, taking advantage of sunk costs, or cheating
on a transaction. But if such behavior reigned unchecked, our markets would collapse.

The common force organizing market transactions is the prospect of future inter-
actions. We decline opportunities to renege on deals or turn them to our advantage
because we expect to have future dealings with the other party. The development of
trading practices that transferred enough information to create effective intertemporal
incentives was a turning point in the development of our modern market economy
(e.g., Greif 1997, 2005; Greif, Milgrom, and Weingast 1994).

Despite economists’ emphasis on markets, many of the most critical activities in
our lives take place outside of markets. We readily cede power and authority to some
people, either formally through a political process or through informal acquiesence.
We have social norms governing when one is allowed to take advantage of another
and when one should refrain from doing so. We have conventions for how families
are formed, including who is likely to mate with whom, and how they are organized,
including who has an obligation to support whom and who can expect resources from
whom. Our society relies on institutions to perform some functions, whereas other
quite similar functions are performed outside of institutions—the helpless elderly are
routinely institutionalized, but not infants.

A unifying view of these observations is that they reflect equilibria of the repeated
game that we implicitly play with one another.11 It is then no surprise, given the
tendency for repeated games to have multiple equilibria, that we see great variation
across the world in how societies and cultures are organized. This same multiplicity
opens the door to the possibility that we might think about designing our society to
function more effectively. The theory of repeated games provides the tools for this
task.

The best known results in the theory of repeated games, the folk theorems, focus
attention on the multiplicity of equilibria in such games, a source of great consternation
for some. We consider multiple equilibria a virtue—how else can one hope to explain
the richness of behavior that we observe around us?

It is also important to note that the folk theorem characterizes the payoffs available
to arbitrarily patient players. Much of our interest and much of the work in this book
concerns cases in which players are patient enough for intertemporal incentives to
have some effect, but not arbitrarily patient. In addition, we are concerned with the
properties of equilibrium behavior as well as payoffs.

11. Ellickson (1991) provides a discussion of how neighbors habitually rely on informal intertem-
poral arrangements to mediate their interactions rather than relying exclusively on current
incentives, even when the latter are readily available. Binmore (1994, 1998) views an under-
standing of the incentives created by repeated interactions as being sufficiently common as to
appropriately replace previous notions, such as the categorical imperative, as the foundation for
theories of social justice.
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1.7 A Reader’s Guide

Chapter 2 is the obvious point of departure, introducing the basic tools for working with
repeated games, including the “dynamic programming” approach to repeated games.

The reader then faces a choice. One can proceed through the chapters in part I of
the book, treating games of perfect monitoring. Chapter 3 uses constructive arguments
to prove the folk theorem. Chapter 4 examines a number of issues, such as what we
should make of an infinite horizon, that arise in interpreting repeated games, while
chapter 5 pushes the analysis beyond the confines of the canonical repeated game.
Chapter 6 illustrates the techniques with a collection of economic applications.

Alternatively, one can jump directly to part II. Here, chapters 7 and 8 present more
powerful (though initially seemingly more abstract) techniques that allow a unified
treatment of games of perfect and imperfect monitoring. These allow us to work with
the limiting case of perfectly patient players as well as cases in which players may be
less patient and in which the sufficient conditions for a folk theorem fail. Chapter 9
presents the public monitoring folk theorem, and chapter 10 explores features that arise
out of imperfections in the monitoring process. Chapter 11 again provides economic
illustrations.

The reader now faces another choice. Part III (chapters 12–14) considers the case
of private monitoring. Here, we expect a familiarity with the material in chapter 7.
Alternatively, the reader can proceed to part IV, on reputations, whether arriving
from part I or part II. Chapters 15 and 16 form the core here, presenting the classical
reputation results for games with a single long-lived player and for games with multiple
long-lived players, with the remaining chapters exploring extensions and alternative
formulations.

For an epilogue, see Samuelson (2006, section 6).

1.8 The Scope of the Book

The analysis of long-run relationships is relevant for virtually every area of economics.
The literature on intertemporal incentives is vast. If a treatment of the subject is
to be kept manageable, some things must be excluded. We have not attempted a
comprehensive survey or history of the literature.

Our canonical setting is one in which a fixed stage game is played in each of
an infinite number of time periods by players who maximize the average discounted
payoffs. We concentrate on cases in which players have the same discount factor (see
remark 2.1.4) or on cases in which long-lived players with common discount factors
are joined by myopic short-lived players.

We are sometimes interested in cases in which the players are quite patient, typ-
ically captured by examining the limit as their discount factors approach 1, because
intertemporal incentives are most effective with patient players. An alternative is
to work directly with arbitrarily patient players, using criteria such as the limit-of-
the-means payoffs or the overtaking criteria to evaluate payoffs. We touch on this
subject briefly (section 3.2.2), but otherwise restrict attention to discounted games.
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In particular, we are also often interested in cases with nontrivial intertemporal incen-
tives, but sufficient impatience to impose constraints on equilibrium behavior. In addi-
tion, the no-discounting case is more useful for studying payoffs than behavior. We
are interested not only in players’ payoffs but also in the strategies that deliver these
payoffs.

We discuss finitely repeated games (section 4.4 and chapter 17) only enough to
argue that there is in general no fundamental discontinuity when passing from finite
to infinitely repeated games. The analyses of finite and infinite horizon games are
governed by the same conceptual issues. We then concentrate on infinitely repeated
games, where a more convenient body of recursive techniques generally allows a more
powerful analysis.

We concentrate on cases in which the stage game is identical across periods. In
a dynamic game, the stage game evolves over the course of the repeated interaction
in response to actions taken by the players.12 Dynamic games are also referred to as
stochastic games, emphasizing the potential randomness in the evolution of the state.
We offer an introduction to such issues in sections 5.5–5.7, suggesting Mertens (2002),
Sorin (2002), and Vieille (2002) as introductions to the literature.

A literature in its own right has grown around the study of differential games, or
perfect-monitoring dynamic games played in continuous time, much of it in engineer-
ing and mathematics. As a result of the continuous time setting, the techniques for
working with such games resemble those of control theory, whereas those of repeated
games more readily prompt analogies to dynamic programming. We say nothing
about such games, suggesting Friedman (1994) and Clemhout and Wan (1994) for
introductions to the topic.

The first three parts of this book consider games of complete information, where
players share identical information about the structure of the game. In contrast, many
economic applications are concerned with cases of incomplete information. A seller
may not know the buyer’s utility function. A buyer may not know whether a firm plans
to continue in business or is on the verge of absconding. A potential entrant may not
know whether the existing firm can wage a price war with impunity or stands to lose
tremendously from doing so. In the final part of this book, we consider a special class of
games of incomplete information whose study has been particularly fruitful, namely,
reputation games. A more general treatment of games of incomplete information is
given by Zamir (1992) and Forges (1992).

The key to the incentives that arise in repeated games is the ability to establish
a link between current and future play. If this is to be done, players must be able to
observe or monitor current play. Much of our work is organized around assumptions
about players’ abilities to monitor others’ behavior. Imperfections in monitoring can
impose constraints on equilibrium payoffs. A number of publications have shown that

12. For example, the oligopolists in section 1.3 might also have the opportunity to invest in cost-
reducing research and development in each period. Each period then brings a new stage game,
characterized by the cost levels relevant for the period, along with a new opportunity to affect
future stage games as well as secure a payoff in the current game. Inventory levels for a firm, debt
levels for a government, education levels for a worker, or weapons stocks for a country may all be
sources of similar intertemporal evolution in a stage game. Somewhat further afield, a bargaining
game is a dynamic game, with the stage game undergoing a rather dramatic transformation to
becoming a trivial game in which nothing happens once an agreement is reached.
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these constraints can be relaxed if players have the ability to communicate with one
another (e.g., Compte 1998 and Kandori and Matsushima 1998). We do not consider
such possibilities.

We say nothing here about the reputations of expert advisors. An expert may have
preferences about the actions of a decision maker whom he advises, but the advice
itself is cheap talk, in the sense that it affects the expert’s payoff only through its
effect on the decision maker’s action. If this interaction occurs once, then we have a
straightforward cheap talk game whose study was pioneered by Crawford and Sobel
(1982). If the interaction is repeated, then the expert’s recommendations have an effect
not only on current actions but also possibly on how much influence the expert will
have in the future. The expert may then prefer to hedge the current recommendation
in an attempt to be more influential in the future (e.g., Morris 2001).

Finally, the concept of a reputation has appeared in a number of contexts, some
of them quite different from those that appear in this book, in both the academic
literature and popular use. Firms offering warranties are often said to be cultivating
reputations for high quality, advertising campaigns are designed to create a reputation
for trendiness, forecasters are said to have reputations for accuracy, or advisors for
giving useful counsel. These concepts of reputation touch on ideas similar to those with
which we work in a number of places. We have no doubt that the issues surrounding
reputations are much richer than those we capture here. We regard this area as a
particularly important one for further work.
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Games with Perfect Monitoring
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2 The Basic Structure of Repeated
Games with Perfect Monitoring

2.1 The Canonical Repeated Game

2.1.1 The Stage Game

The construction of the repeated game begins with a stage game. There are n players,
numbered 1, . . . , n.

We refer to choices in the stage game as actions, reserving strategy for behavior
in the repeated game. The set of pure actions available to player i in the stage game
is denoted Ai , with typical element ai . The set of pure action profiles is given by
A ≡∏iAi . We assume each Ai is a compact subset of the Euclidean space Rk for
some k. Some of the results further assume each Ai is finite.

Stage game payoffs are given by a continuous function,

u :
∏

i
Ai → Rn.

The set of mixed actions for player i is denoted by �(Ai), with typical element αi ,
and the set of mixed profiles by

∏
i�(Ai). The payoff function is extended to mixed

actions by taking expectations.
The set of stage-game payoffs generated by the pure action profiles in A is

F ≡ {v ∈ Rn : ∃a ∈ A s.t. v = u(a)}.
The set of feasible payoffs,

F † ≡ coF ,

is the convex hull of the set of payoffs F .1 As we will see, for sufficiently patient
players, intertemporal averaging allows us to obtain payoffs in F †\F . A payoff
v ∈ F † is inefficient if there exists another payoff v′ ∈ F † with v′i > vi for all i; the
payoff v′ strictly dominates v. A payoff is efficient (or Pareto efficient) if it is not
inefficient. If, for v, v′ ∈ F †, v′i ≥ vi for all i with a strict inequality for some i, then
v′ weakly dominates v. A feasible payoff is strongly efficient if it is efficient and not
weakly dominated by any other feasible payoff.

By Nash’s (1951) existence theorem, if the stage game is finite, then it has a
(possibly mixed) Nash equilibrium. In general, because payoffs are given by contin-
uous functions on the compact set

∏
iAi , it follows from Glicksberg’s (1952) fixed

point theorem that the infinite stage games we consider also have Nash equilibria. It

1. The convex hull of a set A ⊂ R
n, denoted coA , is the smallest convex set containing A .

15
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is common when working with infinite action stage games to additionally require that
the action spaces be convex and ui quasi-concave in ai , so that pure-strategy Nash
equilibria exist (Fudenberg and Tirole 1991, section 1.3.3).

For ease of reference, we list the maintained assumptions on the stage game.

Assumption

2.1.1
1. Ai is either finite, or a compact and convex subset of the Euclidean space Rk

for some k. We refer to compact and convex action spaces as continuum action
spaces.

2. If Ai is a continuum action space, then u : A→ Rn is continuous, and ui is
quasiconcave in ai .

Remark

2.1.1
Pure strategies given continuum action spaces When action spaces are continua,
to avoid some tedious measurability details, we only consider pure strategies.
Because the basic analysis of finite action games (with pure or mixed actions) and
continuum action games (with pure actions) is identical, we use αi to both denote
pure or mixed strategies in finite games, and pure strategies only in continuum
action games.

◆

Much of the work in repeated games is concerned with characterizing the payoffs
consistent with equilibrium behavior in the repeated game. This characterization in turn
often begins by identifying the worst payoff consistent with individual optimization.
Player i always has the option of playing a best response to the (mixed) actions chosen
by the other players. In the case of pure strategies, the worst outcome in the stage game
for player i, consistent with i behaving optimally, is then that the other players choose
the profile a−i ∈ A−i ≡∏j �=iAj that minimizes the payoff i earns when i plays a best
response to a−i . This bound, player i’s (pure action) minmax payoff, is given by

v
p
i ≡ min

a−i∈A−i
max
ai∈Ai

ui(ai, a−i ).

The compactness of A and continuity of ui ensure vpi is well defined. A (pure action)
minmax profile (which may not be unique) for player i is a profile âi = (âii , âi−i ) with
the properties that âii is a stage-game best response for i to âi−i and vpi = ui(âii , âi−i ).
Hence, player i’s minmax action profile gives i his minmax payoff and ensures that no
alternative action on i’s part can raise his payoff. In general, the other players will not
be choosing best responses in profile âi , and hence âi will not be a Nash equilibrium
of the stage game.2

A payoff vector v = (v1, . . . , vn) is weakly (pure action) individually rational if
vi ≥ vpi for all i, and is strictly (pure action) individually rational if vi > v

p
i for all i.

The set of feasible and strictly individually rational payoffs is given by

F †p ≡ {v ∈ F † : vi > vpi , i = 1, . . . , n}.
The set of strictly individually rational payoffs generated by pure action profiles is
given by

Fp ≡ {v ∈ F : vi > vpi , i = 1, . . . , n}.
2. An exception is the prisoners’ dilemma, where mutual shirking is both the unique Nash equi-

librium of the stage game and the minmax action profile for both players. Many of the special
properties of the prisoners’ dilemma arise out of this coincidence.
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H T

H 1,−1 −1, 1

T −1, 1 1,−1

Figure 2.1.1 Matching pennies.

Remark

2.1.2
Mixed-action individual rationality In finite games, lower payoffs can sometimes
be enforced when we allow players to randomize. In particular, allowing the
players other than player i to randomize yields the mixed-action minmax payoff,

vi ≡ min
α−i∈�j �=i�(Aj )

max
ai∈Ai

ui(ai, α−i ), (2.1.1)

which can be lower than the pure action minmax payoff, vpi .3 A (mixed) action
minmax profile for player i is a profile α̂i = (α̂ii , α̂i−i ) with the properties that α̂ii
is a stage-game best response for i to α̂i−i and vi = ui(α̂ii , α̂i−i ).

In matching pennies (figure 2.1.1), for example, player 1’s pure minmax payoff
is 1, because for any of player 2’s pure strategies, player 1 has a best response
giving a payoff of 1. Pure minmax action profiles for player 1 are given by (H,H)
and (T , T ). In contrast, player 1’s mixed minmax payoff is 0, implied by player
2’s mixed action of 1

2 ◦H + 1
2 ◦ T .4

We use the same term, individual rationality, to indicate both vi ≥ vpi and
vi ≥ vi , with the context indicating the appropriate choice. We denote the set of
feasible and strictly individually rational payoffs (relative to the mixed minmax
utility, vi) by

F ∗ ≡ {v ∈ F † : vi > vi, i = 1, . . . , n}.
◆

2.1.2 Public Correlation

It is sometimes natural to allow players to use a public correlating device. Such a
device captures a variety of public events that players might use to coordinate their
actions. Perhaps the best known example is an agreement in the electrical equipment
industry in the 1950s to condition bids in procurement auctions on the current phase
of the moon.5

3. Allowing player i to mix will not change i’s minmax payoff, because every action in the support
of a mixed best reply is also a best reply for player i.

4. We denote the mixture that assigns probability αi(ai) to action ai by
∑
ai
αi(ai) ◦ ai .

5. A small body of literature has studied this case. See Carlton and Perloff (1992, pp. 213–216) for
a brief introduction.
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Definition

2.1.1
A public correlating device is a probability space ([0, 1],B, λ), where B is the
Borel σ -algebra and λ is Lebesgue measure. In the stage game with public corre-
lation, a realization ω ∈ [0, 1] of a public random variable is first drawn, which
is observed by all players, and then each player i chooses an action ai ∈ Ai .
Astage-game action for player i in the stage game with public correlation is a (mea-

surable) function ai : [0, 1] → �(Ai). If ai : [0, 1] → Ai , then ai is a pure action.
When actions depend nontrivially on the outcome of the public correlating device,
we calculate player i’s expected payoff in the obvious manner, by taking expectations
over the outcome ω ∈ [0, 1]. Any strategy profile a ≡ (a1, . . . ,an) induces a joint
distribution over

∏
i�(Ai). When evaluating the profitability of a deviation from a,

because the realization of the correlating device is public, the calculation is ex post,
that is, conditional on the realization of ω. If a is a Nash equilibrium of the stage
game with public correlation, then every α in the support of a is a Nash equilibrium
of the stage game without public correlation; in particular, most correlated equilibria
(Aumann 1974) are not equilibria of the stage game with public correlation.

It is possible to replace the public correlating device with communication, by using
jointly controlled lotteries, introduced by Aumann, Maschler, and Stearns (1968). For
example, for two players, suppose they simultaneously announce a number from [0, 1].
Let ω equal their sum, if the sum is less than 1, and equal their sum minus 1 otherwise.
It is easy to verify that if one player uniformly randomizes over his selection, then ω is
uniformly distributed on [0, 1] for any choice by the other player. Consequently, neither
player can influence the probability distribution. We will not discuss communication in
this book, so we use public correlating devices rather than jointly controlled lotteries.

Trivially, every payoff in F † can be achieved in pure actions using public cor-
relation. On the other hand, not all payoffs in F † can be achieved in mixed actions
without public correlation. For example, consider the game in figure 2.1.2. The set F

is given by

F = {(2, 2), (5, 1), (1, 5), (0, 0)}.
The set F † is the set of all convex combinations of these four payoff vectors. Some
of the payoffs that are in F † but not F can be obtained via independent mixtures,
ignoring the correlating device, over the sets {T ,B} and {L,R}. For example, F †

contains (20/9, 20/9), obtained by independent mixtures that place probability 2/3
on T (or L) and 1/3 on B (or R). A pure strategy that uses the public correlation
device to place probability 4/9 on (T , L), 2/9 on each of (T , R) and (B,L), and 1/9
on (B,R) achieves the same payoff. In addition, the public correlating device allows
the players to achieve some payoffs in F † that cannot be obtained from independent

L R

T 2, 2 1, 5

B 5, 1 0, 0

Figure 2.1.2 The game of “chicken.”
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mixtures. For example, the players can attach probability 1/2 to each of the outcomes
(T , R) and (B,L), giving payoffs (3, 3). No independent mixtures can achieve such
payoffs, because any such mixtures must attach positive probability to payoffs (2, 2)
and (0, 0), ensuring that the sum of the two players’ average payoffs falls below 6.

2.1.3 The Repeated Game

In the repeated game,6 the stage game is played in each of the periods t ∈ {0, 1, . . .}. In
formulating the notation for this game, we use subscripts to refer to players, typically
identifying the element of a profile of actions, strategies, or payoffs corresponding to a
particular player. Superscripts will either refer to periods or denote particular profiles
of interest, with the use being clear from the context.

This chapter introduces repeated games of perfect monitoring. At the end of each
period, all players observe the action profile chosen. In other words, the actions of
every player are perfectly monitored by all other players. If a player is randomizing,
only the realized choice is observed.

The set of period t ≥ 0 histories is given by

H t ≡ At,
where we define the initial history to be the null set, A0 ≡ {∅}, and At to be the t-fold
product ofA. Ahistory ht ∈H t is thus a list of t action profiles, identifying the actions
played in periods 0 through t − 1. The addition of a period t action profile then yields
a period t + 1 history ht+1, an element of the set H t+1 =H t × A. The set of all
possible histories is

H ≡
∞⋃
t=0

H t .

A pure strategy for player i is a mapping from the set of all possible histories into
the set of pure actions,7

σi :H → Ai.

A mixed strategy for player i is a mixture over the set of all pure strategies. Without
loss of generality, we typically find it more convenient to work with behavior strategies
rather than mixed strategies.8 A behavior strategy for player i is a mapping

σi :H → �(Ai).

Because a pure strategy is trivially a special case of a behavior strategy, we use the
same notation σi for both pure and behavior strategies. Unless indicating otherwise,

6. The early literature often used the term supergame for the repeated game.

7. Because there is a natural bijection (one-to-one and onto mapping) between H and each player’s
collection of information sets, this is the standard notion of an extensive-form strategy.

8. Two strategies for a player i are realization equivalent if, fixing the strategies of the other players,
the two strategies of player i induce the same distribution over outcomes. It is a standard result
for finite extensive form games that every mixed strategy has a realization equivalent behavior
strategy (Kuhn’s theorem, see Ritzberger 2002, theorem 3.3, p. 127), and the same is true
here. See Mertens, Sorin, and Zamir 1994, theorem 1.6, p. 66 for a proof (though the proof is
conceptually identical to the finite case, the infinite horizon introduces some technical issues).
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we then use the word strategy to denote a behavior strategy, which may happen to be
pure. Recall from remark 2.1.1 that we consider only pure strategies for a player whose
action space is a continuum (even though for notational simplicity we sometimes use
αi to denote the stage game action).

For any history ht ∈H , we define the continuation game to be the infinitely
repeated game that begins in period t , following history ht . For any strategy profile σ ,
player i’s continuation strategy induced by ht , denoted σi |ht , is given by

σi |ht (hτ ) = σi(hthτ ), ∀hτ ∈H ,

where hthτ is the concatenation of the history ht followed by the history hτ . This is the
behavior implied by the strategy σi in the continuation game that follows history ht . We
write σ |ht for (σ1|ht , . . . , σn|ht ). Because for each history ht , σi |ht is a strategy in the
original repeated game, that is, σi |ht :H → �(Ai), the continuation game associated
with each history is a subgame that is strategically identical to the original repeated
game. Thus, repeated games have a recursive structure, and this plays an important
role in their study.

An outcome path (or more simply, outcome) in the infinitely repeated game is
an infinite sequence of action profiles a ≡ (a0, a1, a2, . . .) ∈ A∞. Notice that an out-
come is distinct from a history. Outcomes are infinite sequences of action profiles,
whereas histories are finite-length sequences (whose length identifies the period for
which the history is relevant). We denote the first t periods of an outcome a by
at = (a0, a1, . . . , at−1). Thus, at is the history in H t corresponding to the outcome a.

The pure strategy profile σ ≡ (σ1, . . . , σn) induces the outcome a(σ ) ≡
(a0(σ ), a1(σ ), a2(σ ), . . .) recursively as follows. In the first period, the action profile

a0(σ ) ≡ (σ1(∅), . . . , σn(∅))

is played. In the second period, the history a0(σ ) implies that action profile

a1(σ ) ≡ (σ1(a
0(σ )), . . . , σn(a

0(σ )))

is played. In the third period, the history (a0(σ ), a1(σ )) is observed, implying the
action profile

a2(σ ) ≡ (σ1(a
0(σ ), a1(σ )), . . . , σn(a

0(σ ), a1(σ )))

is played, and so on.
Analogously, a behavior strategy profile σ induces a path of play. In the first

period, σ(∅) is the initial mixed action profile α0 ∈∏i�(Ai). In the second period,
for each history a0 in the support of α0, σ(a0) is the mixed action profile α1(a0),
and so on. For a pure strategy profile, the induced path of play and induced outcome
are the same. If the profile has some mixing, however, then the profile induces a path
of play that specifies, for each period t , a probability distribution over the histories
at . The underlying behavior strategy specifies a period t profile of mixed stage-game
actions for each such history at , in turn inducing a probability distribution αt+1(at )
over period t+1 action profiles at+1, and hence a probability distribution over period
t+1 histories at+1.
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Suppose σ is a pure strategy profile. In period t , the induced pure action pro-
file at (σ ) yields a flow payoff of ui(at (σ )) to player i. An outcome a(σ ) thus
implies an infinite stream of stage-game payoffs for each player i, given by
(ui(a

0(σ )), ui(a
1(σ )), ui(a

2(σ )), . . .) ∈ R∞. Each player discounts these payoffs
with the discount factor δ ∈ [0, 1), so that the average discounted payoff to player
i from the infinite sequence of payoffs (u0

i , u
1
i , u

2
i , . . .) is given by

(1− δ)
∞∑
t=0

δtuti .

The payoff from a pure strategy profile σ is then given by

Ui(σ ) = (1− δ)
∞∑
t=0

δtui(a
t (σ )). (2.1.2)

As usual, the payoff to player i from a profile of mixed or behavior strategies σ is the
expected value of the payoffs of the realized outcomes, also denoted Ui(σ ).

Observe that we normalize the payoffs in (2.1.2) (and throughout) by the factor
(1− δ). This ensures that U(σ) = (U1(σ ), . . . , Un(σ )) ∈ F † for all repeated-game
strategy profiles σ . We can then readily compare payoffs in the repeated game and
the stage game, and compare repeated-game payoffs for different (common) discount
factors.

Remark

2.1.3
Public correlation notation In the repeated game with public correlation, a
t-period history is a list of t action profiles and t realizations of the public cor-
relating device, (ω0, a0;ω1, a1; . . . ;ωt−1, at−1). In period t , as a measurable
function of the period t history and the period t realization ωt , a behavior strategy
specifies αi ∈ �(Ai). As for games without public correlation, every t-period
history induces a subgame that is strategically equivalent to the original game. In
addition, there are subgames corresponding to the period t realizations ωt .

Rather than explicitly describing the correlating device and the players’actions
as a function of its realization, strategy profiles are sometimes described by simply
specifying a correlated action in each period. Such a strategy profile in the repeated
game with public monitoring specifies in each period t , as a function of history
ht−1 ∈H t−1, a correlated action profile, that is, a joint distribution over the
action profiles α ∈∏i�Ai . We also denote the reduction of the compound lottery
induced by the public correlating device and subsequent individual randomization
by α. The precise meaning will be clear from context.

◆

Remark

2.1.4
Common discount factors With the exception of the discussion of reputations in
chapter 16, we assume that long-lived players share a common discount factor δ.
This assumption is substantive. Consider the battle of the sexes in figure 2.1.3. The
set of feasible payoffs F † is the convex hull of the set {(3, 1), (0, 0), (1, 3)}. For
any common discount factor δ ∈ [0, 1), the set of feasible repeated-game payoffs
is also the convex hull of {(3, 1), (0, 0), (1, 3)}. Suppose, however, players 1 and
2 have discount factors δ1 and δ2 with δ1 > δ2, so that player 1 is more patient
than player 2. Then any repeated-game strategy that calls for (B,L) to be played



22 Chapter 2 ■ Perfect Monitoring

L R

T 0, 0 3, 1

B 1, 3 0, 0

Figure 2.1.3 A battle-of-the-sexes game.

in periods 0, . . . , T − 1 and (T , R) to be played in subsequent periods yields a
repeated game vector outside the convex hull of {(3, 1), (0, 0), (1, 3)}, being in
particular above the line segment joining payoffs (3, 1) and (1, 3). This outcome
averages over the payoffs (3, 1) and (1, 3), but places relatively high player 2
payoffs in early periods and relatively high player 1 payoffs in later periods,
giving repeated-game payoffs to the two players of

player 1 : (1− δT1 )+ 3δT1

and player 2 : 3(1− δT2 )+ δT2 .
Because δ1 > δ2, each player’s convex combination is pushed in the direction of
the outcome that is relatively lucrative for that player. This arrangement capitalizes
on the differences in the two players’ discount factors, with the impatient player 2
essentially borrowing payoffs from the more patient player 1 in early periods to be
repaid in later periods, to expand the set of feasible repeated-game payoffs beyond
those of the stage game. Lehrer and Pauzner (1999) examine repeated games with
differing discount factors.

◆

2.1.4 Subgame-Perfect Equilibrium of the Repeated Game

As usual, a Nash equilibrium is a strategy profile in which each player is best responding
to the strategies of the other players:

Definition

2.1.2
The strategy profile σ is a Nash equilibrium of the repeated game if for all players
i and strategies σ ′i ,

Ui(σ ) ≥ Ui(σ ′i , σ−i ).
We have the following formalization of the discussion in section 2.1.1 and

remark 2.1.2 on minmax utilities:

Lemma

2.1.1
If σ is a pure-strategy Nash equilibrium, then for all i, Ui(σ ) ≥ vpi . If σ is a
(possibly mixed) Nash equilibrium, then for all i, Ui(σ ) ≥ vi .

Proof Consider a Nash equilibrium. Player i can always play the strategy that specifies
a best reply to σ−i (ht ) after every history ht . In each period, i’s payoff is thus at
least vpi if σ−i is pure (vi if σ−i is mixed), and so i’s payoff in the equilibrium
must be at least vpi (vi , respectively).

■
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We frequently make implicit use of the observation that a strategy of the repeated
game with public correlation is a Nash equilibrium if and only if for almost all
realizations of the public correlating device, the induced strategy profile is a Nash
equilibrium.

In games with a nontrivial dynamic structure, Nash equilibrium is too permissive—
there are Nash equilibrium outcomes that violate basic notions of optimality by
specifying irrational behavior at out-of-equilibrium information sets. Similar consid-
erations arise from the dynamic structure of a repeated game, even if actions are
chosen simultaneously in the stage game. Consider a Nash equilibrium of an infinitely
repeated game with perfect monitoring. Associated with each history that cannot occur
in equilibrium is a subgame. The notion of a Nash equilibrium imposes no optimality
conditions in these subgames, opening the door to violations of sequential rationality.

Subgame perfection strengthens Nash equilibrium by imposing the sequential
rationality requirement that behavior be optimal in all circumstances, both those that
arise in equilibrium (as required by Nash equilibrium) and those that arise out of equi-
librium. In finite horizon games of perfect information, such sequential rationality is
conveniently captured by requiring backward induction. We cannot appeal to back-
ward induction in an infinitely repeated game, which has no last period. We instead
appeal to the underlying definition of sequential rationality as requiring equilibrium
behavior in every subgame, where we exploit the strategic equivalence of the repeated
game and the continuation game induced by history ht .

Definition

2.1.3
A strategy profile σ is a subgame-perfect equilibrium of the repeated game if for
all histories ht ∈H , σ |ht is a Nash equilibrium of the repeated game.

The existence of subgame-perfect equilibria in a repeated game is immediate:
Any profile of strategies that induces the same Nash equilibrium of the stage game
after every history of the repeated game is a subgame-perfect equilibrium of the latter.
For example, strategies that specify shirking after every history are a subgame-perfect
equilibrium of the repeated prisoners’dilemma, as are strategies that specify low effort
and the low-priced choice in every period (and after every history) of the product-
choice game. If the stage game has more than one Nash equilibrium, strategies that
assign any stage-game Nash equilibrium to each period t , independently of the history
leading to period t , constitute a subgame-perfect equilibrium. Playing one’s part of a
Nash equilibrium is always a best response in the stage game, and hence, as long as
future play is independent of current actions, doing so is a best response in each period
of a repeated game, regardless of the history of play.

Although the notion of subgame perfection is intuitively appealing, it raises some
potentially formidable technical difficulties. In principle, checking for subgame per-
fection involves checking whether an infinite number of strategy profiles are Nash
equilibria—the set H of histories is countably infinite even if the stage-game action
spaces are finite. Moreover, checking whether a profileσ is a Nash equilibrium involves
checking that player i’s strategy σi is no worse than an infinite number of potential
deviations (because player i could deviate in any period, or indeed in any combination
of periods). The following sections show that we can simplify this task immensely,
first by limiting the number of alternative strategies that must be examined, then by
organizing the subgames that must be checked for Nash equilibria into equivalence
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classes, and finally by identifying a simple constructive method for characterizing
equilibrium payoffs.

2.2 The One-Shot Deviation Principle

This section describes a critical insight from dynamic programming that allows us to
restrict attention to a simple class of deviations when checking for subgame perfection.

A one-shot deviation for player i from strategy σi is a strategy σ̂i �= σi with the
property that there exists a unique history h̃t ∈H such that for all hτ �= h̃t ,

σi(h
τ ) = σ̂i (hτ ).

Under public correlation, the history h̃t includes the period t realization of the public
correlating device. The strategy σ̂i plays identically to strategy σi in every period other
than t and plays identically in period t if the latter is reached with some history other
than h̃t . A one-shot deviation thus agrees with the original strategy everywhere except
at one history where the one-shot deviation occurs. However, a one-shot deviation can
have a substantial effect on the resulting outcome.

Example

2.2.1
Consider the grim trigger strategy profile in the infinitely repeated prisoners’
dilemma of section 1.2. The equilibrium outcome when two players each choose
grim trigger is that both players exert effort in every period. Now consider the
one-shot deviation σ̂1 under which 1 plays as in grim trigger, with the exception
of shirking in period 4 if there has been no previous shirking, that is, with the
exception of shirking after the history (EE,EE,EE,EE). The deviating strategy
shirks in every period after period 4, as does grim trigger, and hence we have
an outcome that differs from the mutual play of grim trigger in infinitely many
periods. However, once the deviation has occurred, it is a prescription of grim
trigger that one shirk thereafter. The only deviation from the original strategy
hence occurs after the history (EE,EE,EE,EE).

●

Definition

2.2.1
Fix a profile of opponents’ strategies σ−i . A one-shot deviation σ̂i from strategy
σi is profitable if, at the history h̃t for which σ̂i (h̃t ) �= σi(h̃t ),

Ui(σ̂i |h̃t , σ−i |h̃t ) > Ui(σ |h̃t ).
Notice that profitability of σ̂i is defined conditional on the history h̃t being reached,

though h̃t may not be reached in equilibrium. Hence, a Nash equilibrium can have
profitable one-shot deviations.

Example

2.2.2
Consider again the prisoners’ dilemma. Suppose that strategies σ1 and σ2 both
specify effort in the first period and effort as long as there has been no previous
shirking, with any shirking prompting players to alternate between 10 periods of
shirking and 1 of effort, regardless of any subsequent actions. For sufficiently



2.2 ■ The One-Shot Deviation Principle 25

large discount factors, these strategies constitute a Nash equilibrium, induc-
ing an outcome of mutual effort in every period. However, there are profitable
one-shot deviations. In particular, consider a history ht featuring mutual effort
in every period except t − 11, at which point one player shirked, and periods
t − 10, . . . , t − 1, in which both players shirked. The equilibrium strategy calls
for both players to exert effort in period t , and then continue alternating 10 periods
of shirking with a period of effort. A profitable one-shot deviation for player 1
is to shirk after history ht , otherwise adhering to the equilibrium strategy. There
are other profitable one-shot deviations, as well as profitable deviations that alter
play after more than just a single history. However, all of these deviations increase
profits only after histories that do not occur along the equilibrium path, and hence
none of them increases equilibrium profits or vitiates the fact that the proposed
strategies are a Nash equilibrium.

●

Proposition

2.2.1
The one-shot deviation principle A strategy profile σ is subgame perfect if and
only if there are no profitable one-shot deviations.

To confirm that a strategy profile σ is a subgame-perfect equilibrium, we thus need
only consider alternative strategies that deviate from the action proposed by σ once and
then return to the prescriptions of the equilibrium strategy. As our prisoners’ dilemma
example illustrates, this does not imply that the path of generated actions will differ
from the equilibrium strategies in only one period. The deviation prompts a different
history than does the equilibrium, and the equilibrium strategies may respond to this
history by making different subsequent prescriptions.

The importance of the one-shot deviation principle lies in the implied reduction
in the space of deviations that need to be considered. In particular, we do not have
to worry about alternative strategies that might deviate from the equilibrium strategy
in period t , and then again in period t ′ > t , and again in period t ′′ > t ′, and so on.
For example, we need not consider a strategy that deviates from grim trigger in the
prisoners’ dilemma by shirking in period 0, and then deviates from the equilibrium
path (now featuring mutual shirking) in period 3, and perhaps again in period 6, and
so on. Although this is obvious when examining such simple candidate equilibria in
the prisoners’ dilemma, it is less clear in general.

Proof We give the proof only for pure-strategy equilibria in the game without public
correlation. The extensions to mixed strategies and public correlation, though
conceptually identical, are notationally cumbersome.

If a profile is subgame perfect, then clearly there can be no profitable one-shot
deviations.

Conversely, we suppose that a profile σ is not subgame perfect and show there
must then be a profitable one-shot deviation. Because the profile is not subgame
perfect, there exists a history h̃t , player i, and a strategy σ̃i , such that

Ui(σi |h̃t , σ−i |h̃t ) < Ui(σ̃i , σ−i |h̃t ).
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Let ε = Ui(σ̃i , σ−i |h̃t )− Ui(σi |h̃t , σ−i |h̃t ). Let m = mini,a ui(a) and M =
maxi,a ui(a). Let T be large enough that δT (M −m) < ε/2. Then,

(1− δ)
T−1∑
τ=0

δτ ui(a
τ (σi |h̃t , σ−i |h̃t ))+ (1− δ)

∞∑
τ=T

δτ ui(a
τ (σi |h̃t , σ−i |h̃t ))

= (1− δ)
T−1∑
τ=0

δτ ui(a
τ (σ̃i , σ−i |h̃t ))+ (1− δ)

∞∑
τ=T

δτ ui(a
τ (σ̃i , σ−i |h̃t ))− ε,

so

(1− δ)
T−1∑
τ=0

δτ ui(a
τ (σi |h̃t , σ−i |h̃t )) < (1− δ)

T−1∑
τ=0

δτ ui(a
τ (σ̃i , σ−i |h̃t ))−

ε

2
,

(2.2.1)

because δT (M −m) < ε/2 ensures that regardless of how the deviation in ques-
tion affects play in period t + T and beyond, these variations in play have an
effect on player i’s period t continuation payoff of strictly less than ε/2. This in
turn implies that the strategy σ̂i , defined by

σ̂i (h
τ ) =

{
σ̃i (h

τ ), if τ < T,

σi |h̃t (hτ ), if τ ≥ T ,

=
{
σ̃i (h

τ ), if τ < T,

σi(h̃
thτ ), if τ ≥ T ,

is a profitable deviation. In particular, strategy σ̂i agrees with σ̃i over the first T
periods, and hence captures the payoff gains of ε/2 promised by (2.2.1).

The strategy σ̂ only differs from σi |h̃t in the first T periods. We have thus
shown that if an equilibrium is not subgame perfect, there must be a profitable
T period deviation. The proof is now completed by arguing recursively on the
value of T . Let ĥT−1 ≡ (â0, . . . , âT−2) denote the T − 1 period history induced
by (σ̂i , σ−i |h̃t ). There are two possibilities:

1. Suppose Ui(σi |h̃t ĥT−1 , σ−i |h̃t ĥT−1) < Ui(σ̂i |ĥT−1 , σ−i |h̃t ĥT−1). In this case, we

have a profitable one-shot deviation, after the history h̃t ĥT−1(note that σ̂i |ĥT−1

agrees with σi in period T and every period after T ).
2. Alternatively, suppose Ui(σi |h̃t ĥT−1 , σ−i |h̃t ĥT−1) ≥ Ui(σ̂i |ĥT−1 , σ−i |h̃t ĥT−1). In

this case, we define a new strategy, σ̄i as follows:

σ̄i (h
τ ) =

{
σ̂i (h

τ ), if τ < T − 1,

σi |h̃t (hτ ), if τ ≥ T − 1.
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Now,

Ui(σ̂i |ĥT−2 , σ−i |h̃t ĥT−2) = (1− δ)ui(âT−1)+ δUi(σ̂i |ĥT−1 , σ−i |h̃t ĥT−1)

≤ (1− δ)ui(âT−1)+ δUi(σi |h̃t ĥT−1 , σ−i |h̃t ĥT−1)

= Ui(σ̄i |ĥT−2 , σ−i |h̃t ĥT−2),

which implies

Ui(σ̂i , σ−i |h̃t ) ≤ Ui(σ̄i , σ−i |h̃t ),
and so σ̄i is a profitable deviation at h̃t that only differs from σi |h̃t in the first
T − 1 periods.

Proceeding in this way, we must find a profitable one-shot deviation.
■

A key step in the proof is the observation that because payoffs are discounted, any
strategy that offers a higher payoff than an equilibrium strategy must do so within a finite
number of periods. A backward induction argument then allows us to show that if there
is a profitable deviation, there is a profitable one-shot deviation. Fudenberg and Tirole
(1991, section 4.2) show the one-shot deviation principle holds for a more general class
of games with perfect monitoring, those with payoffs that are continuous at infinity (a
condition that essentially requires that actions in the far future have a negligible impact
on current payoffs). In addition, the principle holds for sequential equilibria in any finite
extensive form game (Osborne and Rubinstein 1994, exercise 227.1), as well as for
perfect public equilibria of repeated games with public monitoring (proposition 7.1.1)
and sequential equilibria of private-monitoring games with no observable deviations
(proposition 12.2.2).

Suppose we have a Nash equilibrium σ that is not subgame perfect. Then, from
proposition 2.2.1, there must be a profitable one-shot deviation from the strategy pro-
file σ . However, because σ is a Nash equilibrium, no deviation can increase either
player’s equilibrium payoff. The profitable one-shot deviation must then occur after
a history that is not reached in the course of the Nash equilibrium. Example 2.2.2
provided an illustration.

In light of this last observation, do we have a corresponding one-shot deviation
principle for Nash equilibria? Is a strategy profile σ a Nash equilibrium if and only
if there are no one-shot deviations whose differences from σ occur after histories that
arise along the equilibrium path? The answer is no. It is immediate from the definition
of Nash equilibrium that there can be no profitable one-shot deviations along the
equilibrium path. However, their absence does not suffice for Nash equilibrium, as we
now show.

Example

2.2.3
Consider the prisoners’dilemma, but with payoffs given in figure 2.2.1.9 Consider
the strategy profile in which both players play tit-for-tat, exerting effort in the first
period and thereafter mimicking in each period the action chosen by the opponent

9. With the payoffs of figure 2.2.1, the incentives to shirk are independent of the action of the
partner, and so the set of discount factors for which tit-for-tat is a Nash equilibrium coincides
with the set for which there are no profitable one-shot deviations on histories that appear along
the equilibrium path.
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E S

E 3, 3 −1, 4

S 4,−1 1, 1

Figure 2.2.1 The prisoners’ dilemma with incentives
to shirk that depend on the opponent’s action.

in the previous period. The induced outcome is mutual effort in every period,
yielding an equilibrium payoff of 3. To ensure that there are no profitable one-
shot deviations whose differences appear after equilibrium histories, we need
only consider a strategy for player 1 that shirks in the first period and otherwise
plays as does tit-for-tat. Such a strategy induces a cyclic outcome of the form
SE,ES, SE,ES, . . . , for a payoff of

(1− δ)
(

4(1+ δ2 + δ4 + · · · )− 1(δ + δ3 + δ5 + · · · )
)
= 4− δ

1+ δ .

There are then no profitable one-shot deviations whose differences from the
equilibrium strategy appear after equilibrium histories if and only if

δ ≥ 1
4 .

However, when δ = 1/4, the most attractive deviation from tit-for-tat in this game
is perpetual shirking, which is not a one-shot deviation. For this deviation to be
unprofitable, it must be that

3 ≥ (1− δ)4+ δ = 4− 3δ,

and hence
δ ≥ 1

3 .

For δ ∈ [1/4, 1/3) tit-for-tat is thus not a Nash equilibrium, despite the absence
of profitable one-shot deviations that differ from tit-for-tat only after equilibrium
histories.

●

What goes wrong if we mimic the proof of proposition 2.2.1 in an effort to show that
if there are no profitable one-shot deviations from equilibrium histories, then we have
a Nash equilibrium? Proceeding again with the contrapositive, we would begin with
a strategy profile that is not a Nash equilibrium. A profitable deviation may involve a
deviation on the equilibrium path, as well as subsequent deviations off-the-equilibrium
path. Beginning with a profitable deviation, and following the argument of the proof
of proposition 2.2.1, we find a profitable one-shot deviation. The difficulty is that this
one-shot deviation may occur off the equilibrium path. Although this is immaterial for
subgame perfection, this difficulty scuttles the relationship between Nash equilibrium
and profitable one-shot deviations along the equilibrium path.



2.3 ■ Automaton Representations 29

2.3 Automaton Representations of Strategy Profiles

The one-shot deviation principle simplifies the set of alternative strategies we must
check when evaluating subgame perfection. However, there still remains a potentially
daunting number of histories to be evaluated. This evaluation can often be simplified
by grouping histories into equivalence classes, where each member of an equivalence
class induces an identical continuation strategy. We achieve this grouping by represent-
ing repeated-game strategies as automata, where the states of the automata represent
equivalence classes of histories.

An automaton (or machine) (W , w0, f, τ ) consists of a set of states W , an initial
statew0 ∈ W , an output (or decision) function f : W →∏

i�(Ai) associating mixed
action profiles with states, and a transition function, τ : W × A→ W . The transition
function identifies the next state of the automaton, given its current state and the realized
stage-game pure action profile.

If the function f specifies a pure output at statew, we write f (w) for the resulting
action profile. If a mixture is specified by f at w, f w(a) denotes the probability
attached to profile a, so that

∑
a∈Af w(a) = 1 (recall that we only consider mixtures

over finite action spaces, see remark 2.1.1). We emphasize that even if two automata
only differ in their initial state, they nonetheless are different automata.

Any automaton (W , w0, f, τ ) with f specifying a pure action at every state
induces an outcome {a0, a1, . . .} as follows:

a0 = σ(∅) = f (w0),

a1 = σ(a0) = f (τ(w0, a0)),

a2 = σ(a0, a1) = f (τ(τ (w0, a0), a1)),

...

We extend this to identify the strategy induced by an automaton. First, extend the
transition function from the domain W × A to the domain W ×H \{∅} by recursively
defining

τ(w, ht ) = τ(τ (w, h t−1), a t−1).

With this definition, we have the strategy σ described by σ(∅) = f (w0) and

σ(ht ) = f (τ(w0, ht )).

Similarly, an automaton for which f sometimes specifies mixed actions induces a path
of play and a strategy.

Conversely, it is straightforward that any strategy profile can be represented by
an automaton. Take the set of histories H as the set of states, the null history ∅

as the initial state, f (ht ) = σ(ht ), and τ(ht , a) = ht+1, where ht+1 ≡ (ht , a) is the
concatenation of the history ht with the action profile a.

This representation leaves us in the position of working with the full set of histo-
ries H . However, strategy profiles can often be represented by automata with finite
sets W . The set W is then a partition on H , grouping together those histories that
prompt identical continuation strategies.
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We say that a state w′ ∈ W is accessible from another state w ∈ W if there exists
a sequence of action profiles such that beginning at w, the automaton eventually
reaches w′. More formally, there exists ht such that w′ = τ(w, ht ). Accessibility is
not symmetric. Consequently, in an automaton (W , w0, f, τ ), even if every state in W

is accessible from the initial state w0, this may not be true if some other state replaced
w0 as the initial state (see example 2.3.1).

Remark

2.3.1
Individual automata For most of parts I and II, it is sufficient to use a single
automaton to represent strategy profiles. We can also represent a single strategy
σi by an automaton (Wi , w

0
i , fi, τi). However, because every mixed strategy has

a realization equivalent behavior strategy, we can always choose the automaton
to have deterministic transitions, and so for any strategy profile represented by
a collection of individual automata (one for each player), we can define a single
“grand” automaton to represent the profile in the obvious way. The same is true for
public strategies in public-monitoring games (the topic of much of part II), but is
not true more generally (we will see examples in sections 5.1.2, 10.4.2, and 14.1.1).

Our use of automata (following Osborne and Rubinstein 1994) is also to be dis-
tinguished from a well-developed body of work, beginning with such publications
as Neyman (1985), Rubinstein (1986), Abreu and Rubinstein (1988), and Kalai
and Stanford (1988), that uses automata to both represent and impose restrictions
on the complexity of strategies in repeated games. The technique in such studies is
to represent each player’s strategy as an automaton, replacing the repeated game
with an automaton-choice game in which players choose the automata that will
then implement their strategies. In particular, players in that work have preferences
over the nature of the automaton, typically preferring automata with fewer states.
In this book, players only have preferences over payoff streams and automata
solely represent behavior.

◆

Remark

2.3.2
Continuation profiles When a strategy profile σ is described by the automa-
ton (W , w0, f, τ ), the continuation strategy profile after the history ht , σ |ht , is
described by the automaton obtained by using τ(w0, ht ) as the initial state, that is,
(W , τ (w0, ht ), f, τ ). If every state in W is accessible from w0, then the collec-
tion of all continuation strategy profiles is described by the collection of automata
{(W , w, f, τ ) : w ∈ W }.

◆

Example

2.3.1
We illustrate these ideas by presenting the automaton representation of a pair of
players using grim trigger in the prisoners’ dilemma (see figure 2.3.1). The set of
states is W = {wEE, wSS}, with output function f (wEE) = EE and f (wSS) = SS.
We thus have one state in which both players exert effort and one in which they
both shirk. The initial state is wEE . The transition function is given by

τ(w, a) =
{
wEE, if w = wEE and a = EE,

wSS , otherwise.
(2.3.1)

Grim trigger is described by the automaton (W , wEE, f, τ ), whereas the contin-
uation strategy profile after any history in which EE is not played in at least one
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SSwEEw

EE

SSSEES ,,

SSSEESEE ,,,

0w

Figure 2.3.1 Automaton representation of grim trigger. Circles are states
and arrows transitions, labeled by the profiles leading to the transitions.
The subscript on a state indicates the action profile to be taken at that state.

period is described by (W , wSS , f, τ ). Note that although every state in W is
accessible from wEE , the state wEE is not accessible from wSS .

●

The advantage of the automaton representation is that we need only verify the strat-
egy profile induced by (W , w, f, τ ) is a Nash equilibrium, for eachw ∈ W , to confirm
that the strategy profile induced by (W , w0, f, τ ) is a subgame-perfect equilibrium.
The following result is immediate from remark 2.3.2 (and its proof omitted).

Proposition

2.3.1
The strategy profile with representing automaton (W , w0, f, τ ) is a subgame-
perfect equilibrium if and only if, for all w ∈ W accessible from w0, the strategy
profile induced by (W , w, f, τ ) is a Nash equilibrium of the repeated game.

Each state of the automaton identifies an equivalence class of histories after which
the strategies prescribe identical continuation play. The requirement that the strategy
profile induced by each state of the automaton (i.e., by taking that state to be the initial
state) corresponds to a Nash equilibrium is then equivalent to the requirement that we
have Nash equilibrium continuation play after every history.

This result simplifies matters by transferring our concern from the set of histories
H to the set of states of the automaton representation of a strategy. If W is simply the
set of all histories H , little has been gained. However, it is often the case that W is
considerably smaller than the set of histories, with many histories associated with each
state of (W , w, f, τ ), as example 2.3.1 shows is the case with grim trigger. Verifying
that each state induces a Nash equilibrium is then much simpler than checking every
history.

Remark

2.3.3
Public correlation The automaton representation of a pure strategy profile in
the game with public correlation, (W , µ0, f, τ ) changes the description only in
that the initial state is now randomly determined by a distribution µ0 ∈ �(W )

and the transition function maps into probability distributions over states, that is,
τ : W × A→ �(W ); τw′(w, a) is the probability that next period’s state is w′
when the current state is w and current pure action profile is a. A state w′ ∈ W is
accessible from µ ∈ �(W ) if there exists a sequence of action profiles such that
beginning at some state in the support of µ, the automaton eventually reaches w′
with positive probability. Proposition 2.3.1 holds as stated, with µ0 replacing w0,
under public correlation.

◆
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2.4 Credible Continuation Promises

This section uses the one-shot deviation principle to transform the task of checking
that each state induces a Nash equilibrium in the repeated game to one of checking
that each state induces a Nash equilibrium in an associated simultaneous move, or
“one-shot” game.

Fix an automaton (W , w0, f, τ ) where allw ∈ W are accessible fromw0, and let
Vi(w) be player i’s average discounted value from play that begins in state w. That is,
if play in the game follows the strategy profile induced by (W , w, f, τ ), then Vi(w) is
player i’s average discounted payoff from the resulting outcome path. Although Vi can
be calculated directly from the infinite sum, it is often easier to work with a recursive
formulation, noting that at any statew, Vi(w) is the average of current payoffs ui (with
weight (1− δ)) and continuation payoffs (with weight δ). If the output function f is
pure atw, then current payoffs are simply ui(f (w)), whereas the continuation payoffs
are Vi(τ (w, f (w))), because the current action profile f (w) causes a transition from
w to τ(w, f (w)).

This extends to mixed-action profiles when A is finite. Payoffs are the expected
value of flow payoffs under f , given by∑

a

ui(a)f
w(a),

and continuation payoffs are the expected value of the different states that are reached
from the current realized action profile,∑

a

Vi(τ (w, a))f
w(a).

Consequently, Vi satisfies the system of linear equations,

Vi(w) = (1− δ)
∑
a

ui(a)f
w(a)+ δ

∑
a

Vi(τ (w, a))f
w(a), ∀w ∈ W , (2.4.1)

which has a unique solution in the space of bounded functions on W .10

If an automaton with deterministic outputs is currently in state w, whether on the
equilibrium path or as the result of a deviation, and if player i expects the other players
to subsequently follow the strategy profile described by the automaton, then player i
expects to receive a flow payoff of ui(ai, f−i (w)) from playing ai . The resulting action
profile (ai, f−i (w)) then implies a transition to a new state w′ = τ(w, (ai, f−i (w))).
If all players follow the strategy profile in subsequent periods (a circumstance the
one-shot deviation principle makes of interest), then player i expects a continuation
value of Vi(w′). Accordingly, we interpret Vi(w′) as a continuation promise and view
the profile as making such promises.

Intuitively, a subgame-perfect equilibrium strategy profile is one whose contin-
uation promises are credible. Given the continuation promise Vi(w′) for player i at

10. The mapping described by the right side of (2.4.1) is a contraction on the space of bounded
functions on W , and so has a unique fixed point.



2.4 ■ Credible Continuation Promises 33

each state w′, player i is willing to choose an action a′i in the support of fi(w) if, for
all ai ∈ Ai ,

(1− δ)
∑
a−i

ui(a
′
i , a−i )f w(a−i )+ δ

∑
a−i

Vi(τ (w, (a
′
i , a−i )))f w(a−i )

≥ (1− δ)
∑
a−i

ui(ai, a−i )f w(a−i )+ δ
∑
a−i

Vi(τ (w, (ai, a−i )))f w(a−i ),

or, equivalently, if for all ai ∈ Ai ,

Vi(w) ≥ (1− δ)
∑
a−i

ui(ai, a−i )f w(a−i )+ δ
∑
a−i

Vi(τ (w, (ai, a−i )))f w(a−i ).

We say that continuation promises are credible if the corresponding inequality holds
for each player and state.

Let V (w) = (V1(w), . . . , Vn(w)).

Proposition

2.4.1
Suppose the strategy profile σ is described by the automaton (W , w0, f, τ ). The
strategy profile σ is a subgame-perfect equilibrium if and only if for all w ∈ W

accessible fromw0, f (w) is a Nash equilibrium of the normal form game described
by the payoff function gw : A→ Rn, where

gw(a) = (1− δ)u(a)+ δV (τ(w, a)). (2.4.2)

Proof We give the argument for automata with deterministic output functions. The
extension to mixtures is immediate but notationally cumbersome.

Let σ be the strategy profile induced by (W , w0, f, τ ). We first show that
if f (w) is a Nash equilibrium in the normal-form game gw, for every w ∈ W ,
then there are no profitable one-shot deviations from σ . By proposition 2.2.1,
this suffices to show that σ is subgame perfect. To do this, let σ̂i be a one-shot
deviation, ĥt be the history for which σi(ĥt ) �= σ̂i (ĥt ), and ŵ be the state reached
by the history ĥt , that is, ŵ = τ(w0, ĥt ). Finally, let ai = σ̂i (ĥt ). Then,

Ui(σi |ĥt , σ−i |ĥt ) = Vi(ŵ),

and, because σ̂i is a one-shot deviation,

Ui(σ̂i |ĥt , σ−i |ĥt ) = (1− δ)ui
(
ai, σ−i |ĥt (∅)

)+ δVi(τ(ŵ, (ai, σ−i |ĥt (∅))))
= (1− δ)ui(ai, f−i (ŵ))+ δVi(τ (ŵ, (ai, f−i (ŵ)))).

Thus, if for all ŵ ∈ W , f (ŵ) is a Nash equilibrium of the game gŵ, then no
one-shot deviation is profitable.

Conversely, suppose there is some ŵ ∈ W accessible fromw0 and ai such that

(1− δ)ui(ai, f−i (ŵ))+ δVi(τ (ŵ, (ai, f−i (ŵ)))) > Vi(ŵ), (2.4.3)

so f (ŵ) is not a Nash equilibrium of the game induced by gŵ. Again, by proposi-
tion 2.2.1, it suffices to show that there is a profitable one-shot deviation from σ .
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E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 2.4.1 The prisoners’ dilemma from figure 1.2.1.

Because ŵ is accessible from w0, there is a history ĥt such that ŵ = τ(w0, ĥt ).
Let σ̂i be the strategy defined by

σ̂i (h
τ ) =

{
ai, if hτ = ĥt ,
σi(h

τ ), if hτ �= ĥt .
Then, σ̂i is a one-shot deviation from σi , and it is profitable (from (2.4.3)).

■

Public correlation does not introduce any complications, and so an essentially
identical argument yields the following proposition (the notation is explained in
remark 2.3.3).

Proposition

2.4.2
In the game with public correlation, the strategy profile (W , µ0, f, τ ) is a
subgame-perfect equilibrium if and only if for all w ∈ W accessible from µ0,
f (w) is a Nash equilibrium of the normal form game described by the payoff
function gw : A→ Rn, where

gw(a) = (1− δ)u(a)+ δ
∑

w′∈W V (w′)τw′(w, a).

Example

2.4.1
Consider the infinitely repeated prisoners’ dilemma with the stage game of
figure 1.2.1, reproduced in figure 2.4.1. We argued in section 1.2 that grim trigger
is a subgame-perfect equilibrium if δ ≥ 1/3, and in example 2.3.1 that the pro-
file has an automaton representation (given in figure 2.3.1). It is straightforward
to calculate V (wEE) = (2, 2) and V (wSS) = (0, 0). We can thus view the strat-
egy profile as “promising” 2 if EE is played, and “promising” (or “threatening”)
0 if not.

We now illustrate proposition 2.4.1. There are two one-shot games to be
analyzed, one for each state. The game for w = wEE has payoffs

(1− δ)ui(a)+ δVi(τ (wEE, a)).

The associated payoff matrix is given in figure 2.4.2. If δ < 1/3, SS is the
only Nash equilibrium of the one-shot game, and so grim trigger cannot be a
subgame-perfect equilibrium. On the other hand, if δ ≥ 1/3, both EE and SS
are Nash equilibria. Hence, f (wEE) = EE is a Nash equilibrium, as required by
proposition 2.4.1.11

11. There is no requirement that f (w) be the only Nash equilibrium of the one-shot game.
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E S

E 2, 2 −(1− δ), 3(1− δ)
S 3(1− δ),−(1− δ) 0, 0

Figure 2.4.2 The payoff matrix for w = wEE .

E S

E 2(1− δ), 2(1− δ) −(1− δ), 3(1− δ)
S 3(1− δ),−(1− δ) 0, 0

Figure 2.4.3 The payoff matrix for w = wSS .

The payoff matrix of the one-shot game associated with wSS is displayed in
figure 2.4.3. For any value δ ∈ [0, 1), the only Nash equilibrium is SS, which is
the action profile specified by f in the state wSS . Putting these results together
with proposition 2.4.1, grim trigger is a subgame-perfect equilibrium if and only
if δ ≥ 1/3.

●

Just as there is no corresponding version of the one-shot deviation principle
for Nash equilibrium, there is no result corresponding to proposition 2.4.1 for Nash
equilibrium. We illustrate this in the final paragraph of example 2.4.2.

Example

2.4.2
We now consider tit-for-tat in the prisoners’dilemma of figure 2.2.1. An automaton
representation of tit-for-tat is W = {wEE, wSS , wES , wSE}, w0 = wEE ,

f (wa1a2) = a1a2,

and

τ(wa, a
′
1a
′
2) = wa′2a′1 .

The induced outcome is that both players exert effort in every period, and the only
state reached is wEE .

The linear equations used to define the payoff function gw for the associated
one-shot games (see (2.4.2)), are

V1(wEE) = 3,

V1(wSS) = 1,

V1(wES) = −(1− δ)+ δV1(wSE),

and

V1(wSE) = 4(1− δ)+ δV1(wES).
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Solving the last two equations gives

V1(wES) = 4δ − 1

1+ δ
and

V1(wSE) = 4− δ
1+ δ .

Now, EE is a Nash equilibrium of the game for w = wEE if

3 ≥ (1− δ)4+ δV1(wES) = (1− δ)4+ δ(4δ − 1)

1+ δ ,

which is equivalent to

δ ≥ 1
4 .

Turning to the states wES and wSE , E is a best response if

4δ − 1

1+ δ ≥ (1− δ)1+ δ1 = 1,

giving

δ ≥ 2
3 .

Finally, S is a best response if

4− δ
1+ δ ≥ (1− δ)3+ δ3 = 3,

or

δ ≤ 1
4 .

Given the obvious inability to find a discount factor satisfying these various
restrictions, we conclude that tit-for-tat is not subgame perfect.

The failure of a one-shot deviation principle for Nash equilibrium that we
discussed earlier is also reflected here. For δ ≥ 1/4, the action profile EE is a
Nash equilibrium of the game for state wEE , the only state reached along the
equilibrium path. This does not imply that tit-for-tat is a Nash equilibrium of the
infinitely repeated game. Tit-for-tat is a Nash equilibrium only if a deviation to
always defecting is unprofitable, or

3 ≥ (1− δ)4+ δ = 4− 3δ

⇒ δ ≥ 1
3 ,

a more severe constraint than δ ≥ 1/4. We thus do not have a counterpart of
proposition 2.4.1 for Nash equilibria (that would characterize Nash equilibria as
corresponding to automata that generate Nash equilibria of the repeated game in
every state reached in equilibrium).

●
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2.5 Generating Equilibria

Many arguments in repeated games are based on constructive proofs. We are often
interested in equilibria with certain properties, such as equilibria featuring the highest
or lowest payoffs for some players, and the argument proceeds by exhibiting an equi-
librium with the desired properties. When reasoning in this way, we are faced with the
prospect of searching through a prohibitively immense set of possible equilibria. In the
next two sections, we describe two complementary approaches for finding equilibria.
This section, based on Abreu, Pearce, and Stacchetti (1990), introduces and illustrates
the ideas of a self-generating set of equilibrium payoffs. Section 2.6, based on Abreu
(1986, 1988), uses these results to introduce “simple” strategies and show that any
subgame-perfect equilibrium can be obtained via such strategies.

For expositional clarity, we restrict attention to pure strategies in the next two
sections. The notions of enforceability and pure-action decomposability, introduced in
section 2.5.1, extend in an obvious way to mixed actions (and we do this in chapter 7),
as do the notions of penal codes and optimal penal codes of section 2.6.

2.5.1 Constructing Equilibria: Self-Generation

We begin with a simple observation that has important implications. Denote the set of
pure-strategy subgame-perfect equilibrium payoffs by E p ⊂ Rn. For each v ∈ E p, σv

denotes a pure-strategy subgame-perfect equilibrium yielding the payoff v. Suppose
that for some action profile a∗ ∈ A there is a function, γ : A→ E p, with the property
that, for all players i, and all ai ∈ Ai ,

(1− δ)ui(a∗)+ δγi(a∗) ≥ (1− δ)ui(ai, a∗−i )+ δγi(ai, a∗−i ).
Consider the strategy profile that specifies the action profile a∗ in the initial period,
and after any action profile a ∈ A plays according to σγ (a). Proposition 2.4.1 implies
that this profile is a subgame-perfect equilibrium, with a value of (1− δ)ui(a∗)+
δγi(a

∗) ∈ E p.
Suppose now that instead of taking E p as the range for γ , we take instead some

arbitrary subset W of the set of feasible payoffs, F †.

Definition

2.5.1
A pure action profile a∗ is enforceable on W if there exists some specification of
(not necessarily credible) continuation promises γ : A→ W such that, for all
players i, and all ai ∈ Ai ,

(1− δ)ui(a∗)+ δγi(a∗) ≥ (1− δ)ui(ai, a∗−i )+ δγi(ai, a∗−i ).
In other words, when the other players play their part of an enforceable profile a∗,
the continuation promises γi make (enforce) the choice of a∗i optimal (incentive
compatible) for i.

Definition

2.5.2
A payoff v ∈ F † is pure-action decomposable on W if there exists a pure action
profile a∗ enforceable on W such that

vi = (1− δ)ui(a∗)+ δγi(a∗),
where γ is a function enforcing a∗.
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If a payoff vector is pure-action decomposable on W , then it is “one-period
credible” with respect to promises in the set W . If those promises are themselves
pure-action decomposable on W , then the original payoff vector is “two-period cred-
ible.” If a set of payoffs W is pure-action decomposable on itself, then each such
payoff has “infinite-period credibility.” One might expect such a payoff vector to be a
pure-strategy subgame-perfect equilibrium payoff, and indeed this is correct.

Proposition

2.5.1
Any set of payoffs W ⊂ F † with the property that every payoff in W is pure-
action decomposable on W is a set of pure-strategy subgame-perfect equilibrium
payoffs.

The proof views W as the set of states for an automaton. Pure-action decom-
posability allows us to associate an action profile and a transition function describing
continuation values to each payoff profile in W .

Proof For each payoff profile v ∈ W , let ã(v) and γ v : A→ W be the decomposing
pure-action profile and its enforcing continuation promise. Consider the collection
of automata {(W , v, f, τ ) : v ∈ W }, where the common set of states is given by
W , the common decision function by

f (v) = ã(v)
for all v ∈ W , and the common transition function by

τ(v, a) = γ v(a),
for all a ∈ A. These automata differ only in their initial state v ∈ W .

We need to show that for each v ∈ W , the automaton (W , v, f, τ ) describes a
subgame-perfect equilibrium with payoff v. This will be an implication of propo-
sition 2.4.1 and the pure-action decomposability of each v ∈ W , once we have
shown that

vi = Vi(v),
where Vi(v) is the value to player i of being in state v.

Because each v ∈ W is decomposable by a pure action profile, for any vwe can
define a sequence of payoff-action profile pairs {(vk, ak)}∞k=0 as follows: v0 = v,

a0 = ã(v0), vk = γ vk−1
(ak−1), and ak = ã(vk). We then have

vi = (1− δ)ui(a0)+ δv1
i

= (1− δ)ui(a0)+ δ{(1− δ)ui(a1)+ δv2
i }

= (1− δ)
t−1∑
s=0

δsui(a
s)+ δtvti .

Since vti ∈ F †, {vti } is a bounded sequence, and taking t →∞ yields

vi = (1− δ)
∞∑
s=0

δsui(a
s)

and so vi = Vi(v).
■
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Definition

2.5.3
A set W is pure-action self-generating if every payoff in W is pure-action
decomposable on W .

An immediate implication of this result is the following important result.

Corollary

2.5.1
The set E p of pure-strategy subgame-perfect equilibrium payoffs is the largest
pure-action self-generating set.

In particular, it is clear that any pure-strategy subgame-perfect equilibrium payoff is
pure-action decomposable on the set E p, because this is simply the statement that
every history must give rise to continuation play that is itself a pure-strategy subgame-
perfect equilibrium. The set E P is thus pure-action self-generating. Proposition 2.5.1
implies that any other pure-action self-generating set is also a set of pure-strategy
subgame-perfect equilibria, and hence must be a subset of E p.

Remark

2.5.1
Fixed point characterization of self-generation For any set W ⊂ F †, let Ba(W )

be the set of payoffs v ∈ F † decomposed by a ∈ A and continuations in W .
Corollary 2.5.1 can then be written as: The set E p is the largest set W satisfying

W = ∪a∈ABa(W ).

When players have access to a public correlating device, a payoff v is decom-
posed by a distribution over action profiles α and continuation values. Hence the
set of payoffs that can be decomposed on a set W using public correlation is

co(∪a∈ABa(coW )),

where coW denotes the convex hull of W . Hence, the set of equilibrium payoffs
under public correlation is the largest convex set W satisfying

W = co(∪a∈ABa(W )).

◆

We then have the following useful result (a similar proof shows that the set of
subgame-perfect equilibrium payoffs is compact).

Proposition

2.5.2
The set E p ⊂ Rn of pure-strategy subgame-equilibrium payoffs is compact.

Proof Because E p is a bounded subset of a Euclidean space, it suffices (from corol-

lary 2.5.1) to show that its closure E p is pure-action self-generating. Let
v be a payoff profile in E p, and suppose {v(�)}∞�=0 is a sequence of pure-
strategy subgame-perfect equilibrium payoffs, converging to v, with each v(�)

decomposable via the action profile a(�) and continuation promise γ (�).
If every Ai is finite, {(a(�), γ (�))}� lies in the compact set A× (E p)A, and so

there is a subsequence converging to (a∞, γ∞), with a∞ ∈ A and γ∞(a) ∈ E p

for all a ∈ A. Moreover, it is immediate that (a∞, γ∞) decomposes v on E p.
Suppose now that Ai is a continuum action space for some i. Although (E p)A

is not sequentially compact, we can proceed as follows. For each � and i, let
v(�),i ∈ E p such that
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v
(�),i
i = inf

a′i �=a(�)i
γ
(�)
i (a′i , a

(�)
−i )

and

γ̂ (�)(a) =
{
v(�),i , if ai �= a(�)i and a−i = a(�)−i for some i,

γ (�)(a(�)), otherwise.

Clearly, each v(�) is decomposed by a(�) and γ̂ (�). Let A (�) denote the finite
partition of A given by {A(�),k : k = 0, . . . , n}, where A(�),i = {a ∈ A : ai �=
a
(�)
i , a−i = a(�)−i } and A(�),0 = A \ ∪iA(�),i . Because γ̂ (�) is measurable with

respect to A (�), which has n+ 1 elements, we can treat γ̂ (�) as a function from
the finite set {0, . . . , n} into E p, and so there is a convergent subsequence, and
the argument is completed as for finite Ai .

■

2.5.2 Example: Mutual Effort

This and the following two subsections illustrate decomposability and self-generation.
We work with the prisoners’ dilemma shown in figure 2.5.1.

We first identify the set of discount factors for which there exists a subgame-
perfect equilibrium in which both players exert effort in every period. In light of
proposition 2.5.1, this is equivalent to identifying the discount factors for which there
is a self-generating set of payoffs W containing (2, 2). If such a set W is to exist, then
the action profile EE is enforceable on W , or,

(1− δ)2+ δγ1(EE) ≥ (1− δ)b + δγ1(SE)

and

(1− δ)2+ δγ2(EE) ≥ (1− δ)b + δγ2(ES),

for γ (EE), γ (SE) and γ (ES) in W ⊂ F †. These inequalities are least restric-
tive when γ1(SE) = γ2(ES) = 0. Because the singleton set of payoffs {(0, 0)} is
itself self-generating, we sacrifice no generality by assuming the self-generating set
contains (0, 0). We can then set γ1(SE) = γ2(ES) = 0. Similarly, the pair of inequal-
ities is least restrictive when γi(EE) = 2 for i = 1, 2. Taking this to the case, the
inequalities hold when

E S

E 2, 2 −c, b

S b,−c 0, 0

Figure 2.5.1 Prisoners’ dilemma, where b > 2, c > 0, and b − c < 4.
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δ ≥ b−2
b
. (2.5.1)

The inequality given by (2.5.1) is thus necessary for the existence of a subgame-perfect
equilibrium giving payoff (2, 2). The inequality is sufficient as well, because it implies
that the set {(0, 0), (2, 2)} is self-generating. For the prisoners’dilemma of figure 2.4.1,
we have the familiar result that δ ≥ 1/3.

2.5.3 Example:The Folk Theorem

We next identify the set of discount factors under which a pure-strategy folk theorem
result holds, in the sense that the set of pure strategy subgame-perfect equilibrium
payoffs E P contains the set of feasible, strictly individually rational payoffs F †p,
which equals F ∗ for the prisoners’ dilemma. Hence, we seek a pure-action self-
generating set W containing F ∗. Because the set of pure-strategy subgame-perfect
equilibrium payoffs is compact, if F ∗ is pure-action self-generating, then so is its
closure F ∗. The payoff profiles in F ∗ are feasible and weakly individually rational,
differing from those in F ∗ by including profiles in which one or both players receive
their minmax payoff of 0. Because the set of pure-action subgame-perfect equilibria
is the largest pure-action self-generating set, our candidate for the pure-action self-
generating set W must be F ∗.

If F ∗ is pure-action self-generating, then every v ∈ F ∗ is precisely the payoff
of some pure strategy equilibrium. Note that this includes those v that are convex
combinations of payoffs in Fp with irrational weights (reflecting the denseness of
the rationals in the reals).

We begin by identifying the sets of payoffs that are pure-action decomposable
using the four pure action profiles EE, ES, SE, and SS, and continuation payoffs in F ∗.

Consider first EE. This action profile is enforced by γ on F ∗ if

(1− δ)2+ δγ1(EE) ≥ (1− δ)b + δγ1(SE)

and
(1− δ)2+ δγ2(EE) ≥ (1− δ)b + δγ2(ES).

We are interested in the set of payoffs that can be decomposed using the action profile
EE. The first step in finding this set is to identify the continuation payoffs γ (EE) that
are consistent with enforcing EE. Because vi ≥ 0 for all v ∈ F ∗ and (0, 0) ∈ F ∗,
the largest set of values of γ (EE) consistent with enforcing EE is found by setting
γ1(SE) = γ2(ES) = 0 (which minimizes the right side). The set AEE of continuation
payoffs γ (EE) consistent with enforcing EE is, then,

AEE =
{
γ ∈ F ∗ : γi ≥ (b − 2)(1− δ)

δ

}
,

and the set of payoffs that are decomposable using EE and F ∗ is

BEE = {γ ∈ F ∗ : γ = (1− δ)(2, 2)+ δγ (EE), γ (EE) ∈ AEE}.
This set is simply BEE(F ∗) (see remark 2.5.1).
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The incentive constraints for the action profile ES are

−(1− δ)c + δγ1(ES) ≥ δγ1(SS)

and
(1− δ)b + δγ2(ES) ≥ (1− δ)2+ δγ2(EE).

We are again interested in the largest set of continuation values, in this case values
γ (ES), consistent with the incentive constraints. The second inequality can be ignored,
because we can set γ (EE) = γ (ES), implying γ2(EE) = γ2(ES). As before, we min-
imize the right side of the first inequality by setting γ1(SS) = 0 (which we can do by
taking γ (SS) = (0, 0)). Hence, the set of continuation payoffs γ (ES) consistent with
enforcing the profile ES is

AES =
{
γ ∈ F ∗ : γ1 ≥ c(1− δ)

δ

}

and the set of payoffs decomposable using ES and F ∗ is

BES = {γ ∈ F ∗ : γ = (1− δ)(−c, b)+ δγ (ES), γ (ES) ∈ AES}.
A similar argument shows that the set of continuation payoffs consistent with

enforcing the profile SE is

ASE =
{
γ ∈ F ∗ : γ2 ≥ c(1− δ)

δ

}
,

and the set of payoffs decomposable using SE and F ∗ is

BSE = {γ ∈ F ∗ : γ = (1− δ)(b,−c)+ δγ (SE), γ (SE) ∈ ASE}.
Finally, because SS is a Nash equilibrium of the stage game, and hence no appeal

to continuation payoffs need be made when constructing current incentives to play SS,
the set of continuation payoffs consistent with enforcing SS as an initial period action
profile is the set

ASS = F ∗,
and the set of payoffs decomposable using SS and F ∗ is

BSS = {γ ∈ F ∗ : γ = δγ (SS), γ (SS) ∈ F ∗}.
A geometric representation of the sets Ba1a2 is helpful. We can write them as:

BEE = {v ∈ (1− δ)(2, 2)+ δF ∗ : vi ≥ (1− δ)b, i = 1, 2},
BES = {v ∈ (1− δ)(−c, b)+ δF ∗ : v1 ≥ 0},
BSE = {v ∈ (1− δ)(b,−c)+ δF ∗ : v2 ≥ 0},

and
BSS = δF ∗.

Each set is a subset of the convex combination of the flow payoffs implied by the
relevant pure action profile and F ∗, with the appropriate restriction implied by incen-
tive compatibility. For example, the restriction inAEE that γi(EE) ≥ (b − 2)(1− δ)/δ
implies
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vi = (1− δ)2+ δγi(EE) ≥ (1− δ)2+ δ
(
(b − 2)(1− δ)

δ

)
= (1− δ)b.

Similarly, the restriction in AES that γ1(ES) ≥ c(1− δ)/δ implies

v1 ≥ (1− δ)(−c)+ δ c(1− δ)
δ

= 0.

Figure 2.5.2 illustrates these sets for a case in which they are nonempty and do not
intersect. The setBEE is nonempty when (2.5.1) holds (i.e., δ ≥ (b − 2)/b) and includes
all those payoff profiles in F ∗ whose components both exceed (1− δ)b. Hence, when
nonempty, BEE includes the upper right corner of the set F ∗.

The set BSS is necessarily nonempty and reproduces F ∗ in miniature, anchored
at the origin. The set BES is in the upper left, if it is nonempty, consisting of a shape
with either three or four sides, one of which is the line γ2 = (1− δ)b and one of which
is the vertical axis, with the remaining two sides (or single side) being parallel to the
efficient frontier (parallel to the efficient frontier between (2, 2) and the horizontal
axis). Whether this shape has three or four sides depends on whether (1− δ)(−c, b)+
δ(2, 2), the payoff generated by (2, 2), lies to the left (three sides) or right (four sides)
of the vertical axis.

When do the setsBEE , BES , BSE , andBSS have F ∗ as their union? If they do, then
F ∗ is self-generating, and hence we can support any payoff in F ∗ as a subgame-perfect
equilibrium payoff. From figure 2.5.2 we can derive a pair of simple necessary and
sufficient conditions for this to be the case. First, the point (1− δ)(−c, b)+ δ(2, 2),
the top right corner of BES , must lie to the right of the top-left corner of BEE . This
requires

(1− δ)(−c)+ δ2 ≥ (1− δ)b.
Applying symmetric reasoning to BSE , this condition will suffice to ensure that any
payoff in F ∗ with at least one component above (1− δ)b is contained in either BEE ,

)2,2(
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)0,0(
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)0,(),)(1( vbc δδ +−−
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Figure 2.5.2 Illustration of the sets BEE , BES , BSE , and BSS . This is drawn
for δ = 1/2 and the payoffs from figure 2.4.1. Because b = c + 2, the right
edge of BES is a continuation of the right edge of BSS ; a similar comment
applies to the top edges of BSS and BSE .
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BES , or BSE . To ensure that BSS contains the rest, it suffices that the top right corner
of BSS lie above the bottom left boundary of BEE , which is

δ2 ≥ (1− δ)b.

Solving these two inequalities, we have12

δ ≥ max

{
b + c

b + c + 2
,

b

b + 2

}
= b + c
b + c + 2

.

For the prisoners’ dilemma of figure 2.4.1, we have δ ≥ 2/3. The previous section
showed that when δ ≥ 1/3, there exist equilibria supporting mutual effort in every
period. When δ ≥ 2/3, there are also equilibria in which every other feasible weakly
individually rational payoff profile is an equilibrium outcome.

2.5.4 Example: Constructing Equilibria for Low δ

We now return to the prisoners’ dilemma in figure 2.4.1. We examine the set of
subgame-perfect equilibria in which player 2 always plays E. Mailath, Obara, and
Sekiguchi (2002) provide a detailed analysis. We proceed just far enough to illustrate
how equilibria can be constructed using decomposability. Deviations from the candi-
date equilibrium outcome path trigger a switch to perpetual shirking, the most severe
punishment available. It is immediate that if player 2’s incentive constraint is satisfied,
then so is player 1’s, so we focus on player 2.

Let γ t2 denote the normalized discounted value to player 2 of the continuation
outcome path {(aτ1 , E)}∞τ=t beginning in period t . Given the punishment of persistent
defection, the condition that it be optimal for player 2 to continue with the equilibrium
action of effort in period t ≥ 0 is

(1− δ)u2(a
t
1, E)+ δγ t+1

2 ≥ (1− δ)u2(a
t
1, S)+ δ × 0,

which holds if and only if

γ t+1
2 ≥ 1− δ

δ
. (2.5.2)

Thus, player 2’s continuation value is always at least (1− δ)/δ in any equilibrium in
which 2 currently exerts effort.

Denote by W EE
2 the set of payoffs for player 2 that can be decomposed through

a combination of mutual effort (EE) in the current period coupled with a payoff γ2 ∈
[(1− δ)/δ, 2]. Then we have

v2 ∈ W EE
2 ⇐⇒ ∃γ2 ∈ [(1− δ)/δ, 2]

s.t. v2 = (1− δ)u2(EE)+ δγ2 = (1− δ)2+ δγ2.

Hence, W EE
2 = [3− 3δ, 2].

12. Notice that if this condition is satisfied, we automatically have δ > (b − 2)/b, ensuring thatBEE
is nonempty.
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Similarly, denote by W SE
2 the set of payoffs for player 2 that can be decomposed

using current play of SE and a continuation payoff γ2 ∈ [(1− δ)/δ, 2]:
v2 ∈ W SE

2 ⇐⇒ ∃γ2 ∈ [(1− δ)/δ, 2]
s.t. v2 = (1− δ)u2(SE)+ δγ2 = (1− δ)(−1)+ δγ2.

This yields W SE
2 = [0, 3δ − 1].

Collecting these results, we have

W EE
2 = [3− 3δ, 2] (2.5.3)

and

W SE
2 = [0, 3δ − 1]. (2.5.4)

We now consider several possible values of the discount factor. First, suppose
δ < 1/3. Then it is immediate from (2.5.3)–(2.5.4) that W EE

2 and W SE
2 are both empty.

Hence, there are no continuation payoffs available that can induce player 2 to exert
effort in the current period, regardless of player 1’s behavior. Applying an analogous
argument to player 1, the only possible equilibrium payoff for this case (δ < 1/3) is
(0, 0), obtained by perpetual shirking.

Suppose instead that δ ≥ 2/3. Then (2.5.3)–(2.5.4) imply that W EE
2 ∪W SE

2 =
[0, 2]. In this case, proposition 2.5.1 implies that every payoff on the segment {(v1, v2):
v1 = 8

3 − v2
3 , v2 ∈ [0, 2]} (including irrational values) can be supported as an equilib-

rium payoff in the first period. This case is illustrated in figure 2.5.3. The line SE is
given by the equation γ2 = (1− δ)/δ + v2/δ for v2 ∈ W SE

2 . The line EE is given by
the equation γ2 = −2(1− δ)/δ + v2/δ for v2 ∈ W EE

2 . For any payoff in [0, 2], either
v2 ∈ W EE

2 or W SE
2 . If v2 ∈ W EE

2 , then the payoff v2 can be achieved by coupling

2

2

EE

SE

2γ

2υ

SE
2 EE

2

δ−1

δ33 − 13 −δ0

δ

Figure 2.5.3 The case where W EE
2 ∪W SE

2 = [0, 2]; this is drawn for
δ = 3/4. The equation for the line labeled SE is γ2 = (1− δ)/δ + v2/δ, and
for the line EE is γ2 = −2(1− δ)/δ + v2/δ.
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Figure 2.5.4 An illustration of the recursion (2.5.5) and (2.5.6) for an
equilibrium with player 2 payoff v̂2, for δ = 3/4. The outcome path is
(SE, (SE,EE,EE, SE,EE)∞), with the path after the initial period
corresponding to the labeled cycle 12345.

current play of EE with a continuation payoff γ2 ∈ [(1− δ)/δ, 2] (yielding a point
(v2, γ2) on the line labeled EE). If v2 ∈ W SE

2 , then v2 can be achieved by coupling
current play of SE with a continuation payoff γ2 ∈ [(1− δ)/δ, 2] (yielding a point
(v2, γ2) on the line SE) .

To construct an equilibrium with payoff to player 2 of v2 ∈ [0, 1], we proceed
recursively as follows: Set γ 0

2 = v2. Then,13

γ t+1
2 =

{
−2(1− δ)/δ + γ t2/δ, if γ t2 ∈ W EE

2 ,

(1− δ)/δ + γ t2/δ, if γ t2 ∈ [0, 3− 3δ).
(2.5.5)

An outcome path yielding payoff v2 to player 2 is then given by

at =
{

EE, if γ t2 ∈ W EE
2 ,

SE, if γ t2 ∈ [0, 3− 3δ).
(2.5.6)

This recursion is illustrated in figure 2.5.4.

2.5.5 Example: Failure of Monotonicity

The analysis of the previous subsection suggests that the set of pure-strategy equilib-
rium payoffs is a monotonic function of the discount factor. When δ is less than 1/3, the
set of equilibrium payoffs is a singleton, containing only (0, 0). At δ = 1/3, we add the
payoff (8/3, 0) (from the equilibrium outcome path (SE,EE∞)). For δ in the interval

13. There are potentially many equilibria with player 2 payoff v2, arising from the possibility that
a continuation falls into both W EE

2 and W SE
2 . We construct the equilibrium corresponding to

decomposing the continuation on W EE
2 whenever possible.
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[2/3, 1), we have all the payoffs in the set {(v1, v2) : v1 = 8
3 − v2

3 , v2 ∈ [0, 2]}. The
next lemma, however, implies that the set of pure-strategy equilibrium payoffs is not
monotonic.

Lemma

2.5.1
For δ ∈ [1/3, 0.45), in every pure subgame-perfect outcome, if a player plays E
in period t , then the opponent must play E in period t + 1. Consequently, the
equilibrium payoff to player 1 (consistent with player 2 always exerting effort) is
maximized by the outcome path (SE,EE∞). Player 1’s maximum payoff over the
set of all subgame-perfect equilibria is decreasing in δ in this range.

Proof Consider an outcome path in which a player (say, 2) is supposed to play E in
period t and the other player is supposed to play S in period t + 1. As we saw
from (2.5.2), we need player 2’s period t+1 continuation value to be at least
(1− δ)/δ to support such actions as part of equilibrium behavior. However, the
continuation value is given by

(1− δ)u2(Sa
t+1
2 )+ δγ t+2

2 ≤ (1− δ)× 0+ δ 8
3 = 8δ

3 ,

and 8δ/3 ≥ (1− δ)/δ requires δ > 0.45, a contradiction. Hence, if a player exerts
effort, the opponent must exert effort in the next period.

Player 1’s stage-game payoff is maximized by playing S while 2 plays E.
Hence, player 1’s equilibrium payoff is maximized, subject to 2 always exerting
effort, by either the outcome path EE∞ or (SE,EE∞). If there is to be any prof-
itable one-shot deviation from the latter, it must be profitable for player 2 to defect
in the first period or player 1 to defect in the second period. Acalculation shows that
because δ ∈ [1/3, 0.45), neither deviation is profitable. Hence, the latter path is an
equilibrium outcome path, supported by punishments of mutual perpetual shirk-
ing. Moreover, player 1’s payoff from this equilibrium is a decreasing function of
the discount factor, maximized at δ = 1/3.

Finally, we need to show that, when δ ∈ [1/3, 0.45), the outcome path
(SE,EE∞) yields a higher payoff to player 1 than any other equilibrium outcome.
Because δ < 0.8, the outcome path (SE,EE∞) yields a higher player 1 payoff
than (ES, SE∞), and so the outcome path a that maximizes 1’s payoff must have
SE in period 0, and by the first claim in the lemma, 1 must play E in period 1.
If player 2 plays E as well, then the resulting outcome path is (SE,EE∞). Sup-
pose a �= (SE,EE∞), so that player 2 plays S in period 1. But the outcome path
(SE,EE∞) yields a higher player 1 payoff than (SE,ES, SE∞), a contradiction.

■

Lemma 2.5.1 is an instance of an important general phenomenon. For the outcome
path (SE,EE∞) and δ ∈ (1/3, 0.45), player 2’s incentive constraint holds strictly in
every period. In other words, player 2’s incentive constraint is still satisfied when 2’s
equilibrium continuation value is reduced by a small amount. This suggests that we
should be able to increase player 1’s total payoff by a corresponding small amount.
However, there is a discreteness in incentives: The only way to increase player 1’s
total payoff is for him to play S in some future period, and, as lemma 2.5.1 reveals, for
δ < 0.45, this is inconsistent with player 2 playing E in the previous period. That is,
the effect on payoffs of having player 1 choose S in some future period is sufficiently
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large to violate 2’s incentive constraints. It is not possible to increase player 1’s value
by a small enough amount that player 2’s incentive constraint is preserved.

There remains the possibility of mixing: Could we produce a smaller increase
in player 1’s value while preserving player 2’s incentives by having player 1 choose
S in some future period with a probability less than 1? Such a randomization will
preserve player 2’s incentives. However, it will not increase player 1’s value, because
in equilibrium, player 1 must be indifferent between E and S in any period in which
he is supposed to randomize.

A public correlating device allows an escape from these constraints by allowing
1 to play S and E with positive probability in the same period, conditioning on the
public signal, without indifference between S and E. In particular, player 1 can now
be punished for not playing the action appropriate for the realization of the public
signal, allowing incentives for mixing without indifference. Section 2.5.6 develops
this possibility (see also the discussion just before proposition 7.3.4).

We conclude this subsection with some final comments on the structure of equilib-
rium. The outcome path (SE,EE∞) is the equilibrium outcome path that maximizes
1’s payoff, when 2 always chooses E, for δ ∈ [1/3, 1/

√
3). The critical implica-

tion of δ < 1/
√

3 ≈ 0.577 is (1− δ)/δ > 3δ − 1 (see figure 2.5.5), so that player
2’s payoff from (SE, SE,EE∞) is negative, and applying (2.5.5) to any γ2 ∈ W EE

2
with γ2 < 2 eventually yields a value γ t2 �∈ W EE

2 ∪W SE
2 . Figure 2.5.5 illustrates the

recursion (2.5.5)–(2.5.6) for δ = 1/
√

3.
Finally, for δ ∈ [1/√3, 2/3), although W SE

2 is disjoint from W EE
2 (and so [0, 2] is

not self-generating), there are nontrivial self-generating sets and so subgame-perfect
equilibria. The smallest value of δ with efficient equilibrium outcome paths in which 2
always choosesE and 1 chooses S more than once is δ = 1/

√
3. Figure 2.5.5 illustrates

this for the critical value of δ. The value v′ < 3δ − 1 in the figure is the value of the

2

2

EE

SE

2γ

2υ

SE
2

EE
2

δ
δ−1

δ33−
13 −δ

v′v ′′

Figure 2.5.5 An illustration of the recursion for an equilibrium with player 2
payoff v′, for δ = 1/

√
3. The outcome path of this equilibrium is

(SE,EE,EE,EE, SE,EE∞). Any strictly positive player 2 payoff strictly
less than v′′ is not an equilibrium payoff.
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outcome path (SE,EE3, SE,EE∞). For this value of δ, there are a countable number
of efficient equilibrium payoffs, associated with outcome paths (SEx,EEt , SE,EE∞),
where x ∈ {0, 1} and t is a nonnegative integer.

2.5.6 Example: Public Correlation

In this section, we illustrate the impact of allowing players to use a public correlating
device. In particular, we will show that for the prisoners’ dilemma of figure 2.5.1,
the set of subgame-perfect equilibrium payoffs (with public correlation) is increasing
in δ. We consider the case in which c < b − 2 (retaining, of course, the assumption
b − c < 4). This moves us away from the c = b − 2 case of figure 2.4.1, on which we
comment shortly.

With public correlation, it suffices for E p(δ) = F ∗ that each of the four
sets in figure 2.5.2 be nonempty, and their union contains the extreme points
{(0, 0), (v̄, 0), (0, v̄), (2, 2)} of F ∗. We have noted that (2, 2) ∈ BEE when δ ≥
(b − 2)/b. From figure 2.5.2, it is clear that (0, v̄) ∈ BES when δ ≥ c/(c + 2). Hence,
E p(δ) = F ∗ when

δ ≥ max
{
b−2
b
, c
c+2

} = b−2
b
.

(The equality is implied by our assumption that c < b − 2.) In this case, public cor-
relation allows the players to achieve any payoff in F ∗ (recall remark 2.5.1): First
observe that each extreme point can be decomposed using one of the action profiles
EE, ES, SE, or SS and continuations in F ∗. Any payoff v ∈ F ∗ can be written as
v = α1(0, 0)+ α2(v̄, 0)+ α3(0, v̄)+ α4(2, 2), where α is a correlated action profile.
The payoff v is decomposed by α and continuations in F ∗, where the continuations
depend on the realized action profile under α.

We now turn to values of δ < (b − 2)/b. Because BEE is empty, EE cannot be
enforced on F ∗, even using public correlation. Hence, only the action profiles SS, SE,
and ES can be taken in equilibrium. Recalling remark 2.5.1 again, the set E p is the
largest convex set W satisfying

W = co(BSS(W ) ∪BES(W ) ∪BSE(W )). (2.5.7)

Because every payoff in E p is decomposed by an action profile ES, SE, or SS and
a payoff in E p, it is the discounted average value of the flow payoffs from ES, SE,
and SS. Consequently, E p must be a subset of the convex hull of (−c, b), (b,−c), and
(0, 0) (the triangle in figure 2.5.6). Let W denote the intersection of R2+ and the convex
hull of (−c, b), (b,−c), and (0, 0), that is, W = {(v : vi ≥ 0, v1 + v2 ≤ b − c}.

The set W satisfies (2.5.7) if and only if the extreme points of W can be decom-
posed on W . Because (0, 0) can be trivially decomposed, symmetry allows us to focus
on the decomposition of (0, b − c).

Decomposing this point requires continuations γ ∈ W to satisfy

(0, b − c) = (1− δ)(−c, b)+ δγ (2.5.8)

and player 1’s incentive constraint,

γ1 ≥ c(1− δ)
δ

. (2.5.9)
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Figure 2.5.6 The sets Ba = Ba(W ) for a ∈ {ES, SE, SS} and
W = R

2+ ∩ co({(−c, b), (b,−c), (0, 0)}), where c < b − 2
and δ < (b − 2)/b.

Equation (2.5.8) implies γ1 = c(1− δ)/δ, that is, (2.5.9) holds. The requirement
that γ ∈ W is then equivalent to

0 ≤ γ2 ≤ b − c − γ1

= b − c − c(1− δ)
δ

= δb − c
δ

,

that is, δb ≥ c.
Finally, suppose δb < c, so that W does not satisfy (2.5.7). We now argue

that the only set that can is {(0, 0)}, and so always SS is the only equilibrium. We
derive a contradiction from the assumption that v �= (0, 0) can be decomposed by
ES. Because v = (1− δ)(−c, b)+ δγ , γ1 = [v1 + (1− δ)c]/δ ≥ (1− δ)c/δ, and so
γ2 ≤ (b − c)− γ1 ≤ (δb − c)/δ. But δb < c implies γ2 < 0, which is impossible.

This completes the characterization of the prisoners’ dilemma for this case. The
set of equilibrium payoffs is:

E p =




F ∗, if δ ≥ b−2
b

,

R2+ ∩ co({(−c, b), (b,−c), (0, 0)}), if δ ∈ [ c
b
, b−2

b

)
,

{(0, 0)}, otherwise.

The critical value of δ, (b − 2)/b, is less than (b + c)/(b + c + 2), the critical value
for a folk theorem without public correlation.

The set of subgame-perfect equilibrium payoffs is monotonic, in the sense that
the set of equilibrium payoffs at least weakly expands as the discount factor increases.
However, the relationship is neither strictly monotonic nor smooth. Instead, we take
two discontinuous jumps in the set of payoffs that can be supported, one (at δ = c/b)
from the trivial equilibrium to a subset of the set of feasible, weakly individually
rational payoffs, and one (at δ = (b − 2)/b) to the set of all feasible and weakly
individually rational payoffs. Stahl (1991) shows that the monotonicity property is
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preserved for other specifications of the parameters b and c consistent with the game
being a prisoners’ dilemma, though the details of the solutions differ. For example,
when c = b − 2, as in figure 2.4.1, there is a single jump from the trivial equilibrium
to being able to support the entire set of feasible, weakly individually rational payoffs.

2.6 Constructing Equilibria: Simple Strategies and Penal Codes

As in the previous section, we restrict attention to pure strategies (the analysis can
be extended to mixed strategies at a significant cost of increased notation). By corol-
lary 2.5.1, any action profile appearing on a pure-strategy subgame-perfect equilibrium
path is decomposable on the set E p of pure-strategy subgame-perfect equilibrium pay-
offs. By compactness of E p, there is a collection of pure-strategy subgame-perfect
equilibrium profiles {σ 1, . . . , σ n}, with σ i yielding the lowest possible pure-strategy
subgame-perfect equilibrium payoff for player i. In this section, we will show that
out-of-equilibrium behavior in any pure-strategy subgame-perfect equilibrium can be
decomposed on the set {U(σ 1), . . . , U(σn)}. This in turn leads to a simple recipe for
constructing equilibria.

2.6.1 Simple Strategies and Penal Codes

We begin with the concept of a simple strategy profile:14

Definition

2.6.1
Given (n+ 1) outcomes {a(0), a(1), . . . , a(n)}, the associated simple strategy
profile σ(a(0), a(1), . . . , a(n)) is given by the automaton:

W = {0, 1, . . . , n} × {0, 1, 2, . . .},
w0 = (0, 0),

f (j, t) = at (j),

and

τ((j, t), a) =
{
(i, 0), if ai �= ati (j) and a−i = at−i (j),
(j, t + 1), otherwise.

A simple strategy consists of a prescribed outcome a(0) and a “punishment” out-
come a(i) for each player i. Under the profile, play continues according to the outcome
a(0). Players respond to any deviation by player i with a switch to the player i pun-
ishment outcome path a(i). If player i deviates from the path a(i), then a(i) starts
again from the beginning. If some other player j deviates, then a switch is made to
the player j punishment outcome a(j). A critical feature of simple strategy profiles is
that the punishment for a deviation by player i is independent of when the deviation
occurs and of the nature of the deviation. The profiles used to prove the folk theorem
for perfect-monitoring repeated games (in sections 3.3 and 3.4) are simple.

14. Recall that a is an outcome path (a0, a1, . . .) with at ∈ A an action profile.
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We can use the one-shot deviation principle to identify necessary and sufficient
conditions for a simple strategy profile to be a subgame-perfect equilibrium. Let

Uti (a) = (1− δ)
∞∑
τ=t

δτ−t ui(aτ )

be the payoff to player i from the outcome path (at , at+1, . . .) (note that for any strategy
profile σ , Ui(σ ) = U0

i (a(σ ))).

Lemma

2.6.1
The simple strategy profile σ(a(0), a(1), . . . , a(n)) is a subgame-perfect equilib-
rium if and only if

Uti (a(j)) ≥ max
ai∈Ai

(1− δ)ui(ai, at−i (j))+ δU0
i (a(i)), (2.6.1)

for all i = 1, . . . , n, j = 0, 1, . . . , n, and t = 0, 1, . . .

Proof The right side of (2.6.1) is the payoff to player i from deviating from outcome
path a(j) in the t th period, and the left side is the payoff from continuing with
the outcome. If this condition holds, then no player will find it profitable to devi-
ate from any of the outcomes (a(0), . . . , a(n)). Condition 2.6.1 thus suffices for
subgame perfection.

Because a player might be called on (in a suitable out-of-equilibrium event)
to play any period t of any outcome a(j) in a simple strategy profile, condition
(2.6.1) is also necessary for subgame perfection.

■

Remark

2.6.1
Nash reversion and trigger strategies A particularly simple simple strategy pro-
file has, for all i = 1, . . . , n, a(i) being a constant sequence of the same static
Nash equilibrium. Such a simple strategy profile uses Nash reversion to provide
incentives. We also refer to such Nash reversion profiles as trigger strategy profiles
or trigger profiles.

A trigger profile is a grim trigger profile if the Nash equilibrium minmaxes
the deviator. If the trigger profile uses the same Nash equilibrium to punish all
deviators, grim trigger mutually minmaxes the players.

◆

A simple strategy profile specifies an equilibrium path a(0) and a penal code
{a(1), . . . , a(n)} describing responses to deviations from equilibrium play. We are
interested in optimal penal codes, embodying the most severe such punishments. Let

v∗i = min{Ui(σ ) : σ ∈ E p}

be the smallest pure-strategy subgame-perfect equilibrium payoff for player i (which
is well defined by the compactness of E p). Then:

Definition

2.6.2
Let {a(i) : i = 1, . . . , n} be n outcome paths satisfying

U0
i (a(i)) = v∗i , i = 1, . . . , n. (2.6.2)
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The collection of n simple strategy profiles {σ(i) : i = 1, . . . , n},
σ(i) = σ(a(i), a(1), . . . , a(n)),

is an optimal penal code if

σ(i) ∈ E p, i = 1, . . . , n.

Do optimal penal codes exist? Compactness of E p yields the subgame-perfect
outcome paths a(i) satisfying (2.6.2). The remaining question is whether the associated
simple strategy profiles constitute equilibria.

The first statement of the following proposition shows that optimal penal codes
exist. The second, reproducing the key result of Abreu (1988, theorem 5), is the punch-
line of the characterization of subgame-perfect equilibria: Simple strategies suffice to
achieve any feasible subgame-perfect equilibrium payoff.

Proposition

2.6.1
1. Let {a(i)}ni=1 be n outcome paths of pure-strategy subgame-perfect equilib-

ria {σ̂ (i)}ni=1 satisfying Ui(σ̂ (i)) = v∗i , i = 1, . . . , n. The simple strategy
profile σ(i) = σ(a(i), a(1), . . . , a(n)) is a pure-strategy subgame-perfect
equilibrium, for i = 1, . . . , n, and hence {σ(i)}ni=1 is an optimal penal code.

2. The pure outcome path a(0) can be supported as an outcome of a pure-strategy
subgame-perfect equilibrium if and only if there exist pure outcome paths
{a(1), . . . , a(n)} such that the simple strategy profile σ(a(0), a(1), . . . , a(n))
is a subgame-perfect equilibrium.

Hence, anything that can be accomplished with a subgame-perfect equilibrium in
terms of payoffs can be accomplished with simple strategies. As a result, we need never
consider complex hierarchies of punishments when constructing subgame-perfect equi-
libria, nor do we need to tailor punishments to the deviations that prompted them
(beyond the identity of the deviator). It suffices to associate one punishment with each
player, to be applied whenever needed.

Proof The “if” direction of statement 2 is immediate.
To prove statement 1 and the “only if” direction of statement 2, let a(0) be

the outcome of a subgame-perfect equilibrium. Let (a(1), . . . , a(n)) be outcomes
of subgame-perfect equilibria (σ̂ (1), . . . , σ̂ (n)), with Ui(σ̂i) = v∗i . Now con-
sider the simple strategy profile given by σ(a(0), a(1), . . . , a(n)). We claim that
this strategy profile constitutes a subgame-perfect equilibrium. Considering arbi-
trary a(0), this argument establishes statement 2. For a(0) ∈ {a(1), . . . , a(n)}, it
establishes statement 1.

From lemma 2.6.1, it suffices to fix a player i, an index j ∈ {0, 1, . . . , n}, a
time t , and action ai ∈ Ai , and show

Uti (a(j)) ≥ (1− δ)ui(ai, at−i (j))+ δU0
i (a(i)). (2.6.3)

Now, by construction, a(j) is the outcome of a subgame-perfect equilibrium—
the outcome a(0) is by assumption produced by a subgame-perfect equilibrium,
whereas each of a(1), . . . , a(n) is part of an optimal penal code. This ensures that
for any t and ai ∈ Ai ,
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Uti (a(j)) ≥ (1− δ)ui(ai, a−i (j))+ δUdi (a(j), t, ai), (2.6.4)

whereUdi (a(j), t, ai) is the continuation payoff received by player i in equilibrium
σ(j) after the deviation to ai in period t . Because σ(j) is a subgame-perfect equi-
librium, the payoff Udi (a(j), t, ai) must itself be a subgame-perfect equilibrium
payoff. Hence,

Udi (a(j), t, ai) ≥ U0
i (a(i)) = v∗i ,

which with (2.6.4), implies (2.6.3), giving the result.
■

It is an immediate corollary that not only can we restrict attention to simple
strategies but we can also take the penal codes involved in these strategies to be
optimal.

Corollary

2.6.1
Suppose a(0) is the outcome path of some subgame-perfect equilibrium. Then
the simple strategy σ(a(0), a(1), . . . , a(n)), where each a(i) yields the lowest
possible subgame-perfect equilibrium payoff v∗i to player i, is a subgame-perfect
equilibrium.

2.6.2 Example: Oligopoly

We now present an example, based on Abreu (1986), of how simple strategies can
be used in the characterization of equilibria. We do this in the context of a highly
parameterized oligopoly problem, using the special structure of the latter to simplify
calculations.

There are n firms, indexed by i. In the stage game, each firm i chooses a quantity
ai ∈ R+ (notice that in this example, action spaces are not compact). Given outputs,
market price is given by 1−∑n

i=1 ai , when this number is nonnegative, and 0 other-
wise. Each firm has a constant marginal and average cost of c < 1. The payoff of firm
i from outputs a1, . . . , an is then given by

ui(a1, . . . , an) = ai
(

max
{

1−
∑n

j=1
aj , 0

}
− c

)
.

The stage game has a unique Nash equilibrium, denoted by aN1 , . . . , a
N
n , where

aNi =
1− c
n+ 1

, i = 1, . . . , n.

Firm payoffs in this Nash equilibrium are given by, for i = 1, . . . , n,

ui(a
N
1 , . . . , a

N
n ) =

(
1− c
n+ 1

)2

.

In contrast, the symmetric allocation that maximizes joint profits, denoted by
am1 , . . . , a

m
n , is

ami =
1− c

2n
.
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Firm payoffs at this allocation are given by, for i = 1, . . . , n,

ui(a
m
1 , . . . , a

m
n ) =

1

n

(
1− c

2

)2

.

As usual, this stage game is infinitely repeated with each firm characterized by
the discount factor δ ∈ (0, 1). We restrict attention to strongly symmetric equilibria of
the repeated game, that is, equilibria in which, after each history, the same quantity is
chosen by every firm.

We can use the restriction to strongly symmetric equilibria to economize on
notation. Let q ∈ R+ denote a quantity of output and µ : R+ → R be defined by

µ(q) = q(max{1− nq, 0} − c). (2.6.5)

Hence, µ(q) is the stage-game payoff obtained by each of the n firms when they each
produce output level q ∈ R+. The function µ is essentially the function u, confined
to the equal-output diagonal. The shift from u(a) to µ(q) allows us to distinguish the
(potentially asymmetric) action profile a ∈ Rn+ from the (commonly chosen) output
level q ∈ R+. In keeping with the elimination of subscripts, we let aN ∈ R+ and
am ∈ R+ denote the output chosen by each firm in the stage-game Nash equilibrium
and symmetric joint-profit maximizing profile, respectively.

Let µd(q) be the payoff to a single firm when every other firm produces output
q and the firm in question maximizes its stage-game payoff. Hence (exploiting the
symmetry to focus on 1’s payoff),

µd(q) = max
a1∈[0,1]

u1(a1, q, . . . , q)

=
{

1
4 (1− (n− 1)q − c)2, if 1− (n− 1)q − c ≥ 0

0, otherwise.
(2.6.6)

These functions exhibit the convenient structure of the oligopoly problem. The
function (2.6.5) is concave, whereas (2.6.6) is convex in the relevant range, with the
two being equal at the output corresponding to the unique Nash equilibrium. Figure
2.6.1 illustrates these functions. Notice that as q becomes arbitrarily large, the payoff
µ(q) becomes arbitrarily small, as firms incur ever larger costs to produce so much
output that they must give it away. This is an important feature of the example. The
ability to impose arbitrarily large losses in a single period ensures that we can work
with single-period punishments. If we had assumed an upper bound on quantities,
punishments may require several periods. When turning to the folk theorem for more
general games in the next chapter, the inability to impose large losses forces us to work
with multiperiod punishments.

As is typically the case, our characterization of the set of subgame-perfect equi-
librium payoffs begins with the lowest such payoff. A symmetric subgame-perfect
equilibrium is an optimal punishment if it achieves the minimum payoff, for each
player, possible under a (strongly symmetric) subgame-perfect equilibrium. We can-
not assume the set of subgame-perfect equilibria is compact, because the action spaces
are unbounded. Instead, we let v∗ denote the infimum of the common payoff received
in any subgame-perfect equilibrium and prove that the infimum can be achieved.
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qNama 0q

)(qµ

)(qdµ

Figure 2.6.1 Illustration of the functions µ(q) = q(1− nq − c), identifying
the payoff of each firm when each chooses an output of q, and
µd(q) = (1− (n− 1)q − c)2/4, identifying the largest profit available to
one firm, given that the n− 1 other firms produce output q.

To construct a simple equilibrium giving payoff v∗, we begin with the largest
payoff that can be achieved in a (strongly symmetric) subgame-perfect equilibrium.
Let q̄ be the most collusive output level that can be enforced by v∗, that is,15

q̄ = arg max
q∈[am,aN ]

µ(q) = arg max
q∈
[

1−c
2n ,

1−c
n+1

] q(1− nq − c)
subject to the constraint

µ(q) ≥ (1− δ)µd(q)+ δv∗. (2.6.7)

The left side of the constraint is the payoff achieved from playing q̄ in every period,
and the right side is the payoff received from an optimal deviation from q̄, followed
by a switch to the continuation payoff v∗. Note that q̄ ≥ am.

Because am is the joint-profit maximizing quantity, if q = am satisfies (2.6.7), then
the most collusive equilibrium output is q̄ = am. If (2.6.7) is not satisfied at q = am,
then (noting that µ(q) is decreasing in q > am and (2.6.7) holds strictly for q = aN ),
the most collusive equilibrium output is the smallest q̄ < aN satisfying

µ(q̄) = (1− δ)µd(q̄)+ δv∗.
We now find a particularly simple optimal punishment. For any two quantities of

output (q̄, q̃), define a carrot-and-stick punishment σ(q̄, q̃) to be strategies in which
all firms play q̃ in the first period and thereafter play q̄, with any deviation from these

15. We drop the nonnegativity constraint on prices in the following calculations because it is not
binding. It is also clear from figure 2.6.1 that we lose nothing in excluding outputs in the interval
[0, am) from consideration. In particular, any payoff achieved by outputs in the interval [0, am)
can also be achieved by outputs larger than am, with the payoff from deviating from the former
output being larger than from the latter. Any equilibrium featuring the former output thus remains
an equilibrium when the latter is substituted. This restriction in turn implies thatµ(q) andµd(q)
are both decreasing functions, a property we use repeatedly.
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strategies causing this prescription to be repeated. Intuitively, q̃ is the “stick” and q̄
the “carrot.” The punishment specifies a single-period penalty followed by repeated
play of the carrot. Deviations from the punishment simply cause it to begin again.

The basic result is that carrot-and-stick punishments are optimal. Note in particular
that (2.6.8) implies q̃ > aN .

Proposition

2.6.2
1. There exists an output q̃ such that the carrot-and-stick punishment σ(q̄, q̃) is

an optimal punishment.
2. The optimal carrot-and-stick punishment satisfies

µd(q̃) = (1− δ)µ(q̃)+ δµ(q̄) = v∗, (2.6.8)

µd(q̄) = µ(q̄)+ δ(µ(q̄)− µ(q̃)) if q̄ > am, (2.6.9)

and

µd(q̄) ≤ µ(q̄)+ δ(µ(q̄)− µ(q̃)) if q̄ = am. (2.6.10)

3. Letv be a symmetric subgame-perfect equilibrium payoff withµ(q) = v. Thenv
is the outcome of a subgame-perfect equilibrium consisting of simple strategies
{a0, σ (q̄, q̃), . . . , σ (q̄, q̃)}, where a0 plays q in every period.

Because σ(q̄, q̃) is an optimal punishment and q̄ is the most collusive output, the best
(strongly symmetric) subgame-perfect equilibrium payoff is given by an equilibrium
that plays q̄ in every period, with any deviation prompting a switch to the optimal pun-
ishment σ(q̄, q̃). Any other symmetric equilibrium payoff can be achieved by playing
an appropriate quantity q in every period, enforced by the optimal punishment σ(q̄, q̃).

The implication of this result is that solving (the symmetric version of) this
oligopoly problem is quite simple. If we are concerned with either the best or the
worst subgame-perfect equilibrium, we need consider only two output levels, the car-
rot q̄ and the stick q̃. Having found these two, every other subgame-perfect equilibrium
payoff can be attained through consideration of only three outputs, one characteriz-
ing the equilibrium path and the other two involved in the optimal punishment. In
addition, calculating q̄ and q̃ is straightforward. We can first take q̄ = am, checking
whether the most collusive output can be supported in a subgame-perfect equilibrium.
To complete this check, we find the value of q̃ satisfying (2.6.8), given q̄ = am. At
this point, we can conclude that the most collusive output am can indeed be supported
in a subgame-perfect equilibrium and that we have identified q̄ = am and q̃, if and
only if the inequality (2.6.10) is also satisfied. If it is not, then the output am cannot be
supported in equilibrium, and we solve the equalities (2.6.8)–(2.6.9) for q̄ and q̃.

Proof Statement 1. Given v∗, the infimum of symmetric subgame perfect equilibrium
payoffs, and hence q̄, choose q̃ so that

(1− δ)µ(q̃)+ δµ(q̄) = v∗.

We now argue that the carrot-and-stick punishment defined by σ(q̄, q̃) is a
subgame-perfect equilibrium. By construction, this punishment has value v∗.
Because deviations from q̄ would (also by construction) be unprofitable when
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punished by v∗, they are unprofitable when punished by σ(q̄, q̃). We need only
argue that deviations from q̃ are unprofitable, or

(1− δ)µd(q̃)+ δv∗ ≤ (1− δ)µ(q̃)+ δµ(q̄) = v∗.
Suppose this inequality fails. Then, because v∗ is the infimum of strongly sym-
metric subgame-perfect payoffs, there exists a strongly symmetric equilibrium σ ∗
such that

(1− δ)µd(q̃)+ δv∗ > (1− δ)µ(q∗)+ U(σ ∗|q∗),
where q∗ is the first-period output under σ ∗ and U(σ ∗|q∗) is the continuation
value (from symmetry, to any firm) under σ ∗ after q∗ has been chosen by all
firms. Because σ ∗ is an equilibrium,

(1− δ)µd(q̃)+ δv∗ > (1− δ)µd(q∗)+ δv∗.
Because µd(q) is decreasing in q, it thus suffices for the contradiction to show
q̃ ≥ q∗. But σ ∗ can never prescribe an output lower than q̄, because the latter is
the most collusive output supported by the (most severe) punishment v∗. Hence,
the carrot-and-stick punishment σ(q̄, q̃) features higher payoffs than σ ∗ in every
period beyond the first. Because v∗, the value of the carrot-and-stick punishment,
is no larger than the value of σ ∗, it must be that the carrot-and-stick punishment
generates a lower first-period payoff, and hence q̃ ≥ q∗. This ensures that σ(q̄, q̃)
is an optimal punishment.

Statement 2. Suppose σ(q̄, q̃) is an optimal carrot-and-stick punishment. The
requirement that firms not deviate from the stick output q̃ is given by

(1− δ)µ(q̃)+ δµ(q̄) ≥ (1− δ)µd(q̃)+ δ(1− δ)µ(q̃)+ δ2µ(q̄).

Similarly, the requirement that agents not deviate from the carrot output q̄ is

µ(q̄) ≥ (1− δ)µd(q̄)+ (1− δ)δµ(q̃)+ δ2µ(q̄).

Rearranging these two inequalities gives

µd(q̃) ≤ (1− δ)µ(q̃)+ δµ(q̄) = v∗ (2.6.11)

and

µd(q̄) ≤ µ(q̄)+ δ(µ(q̄)− µ(q̃)), (2.6.12)

where the right side of (2.6.11) is the value of the punishment. If (2.6.11) holds
strictly, we can increase q̃ and hence reduce µ(q̃),16 while preserving (2.6.12),
because µ(q̃) appears only on the right side of the latter (i.e., a more severe
punishment cannot make deviations from the equilibrium path more attractive).
This yields a lower punishment value, a contradiction. Hence, under an optimal
carrot-and-stick punishment, (2.6.11) must hold with equality, which is (2.6.8).

It remains only to argue that if q̄ > am, then (2.6.12) holds with equality
(which is (2.6.9)). Suppose not. Although unilateral adjustments in either q̄ or q̃

16. Recall that we can restrict attention to q ≥ am.
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will violate (2.6.8), we can increase q̃ while simultaneously reducing q̄ to preserve
(2.6.8). From (2.6.8), the punishment value must fall (because µd is decreasing
in q). Moreover, a small increase in q̃ in this manner will not violate (2.6.12), so we
have identified a carrot-and-stick punishment with a lower value, a contradiction.

Statement 3. This follows immediately from the optimality of the carrot-and-stick
punishment and proposition 2.6.1.

■

Has anything been lost by our restriction to strongly symmetric equilibria? There
are two possibilities. One is that, on calculating the optimal carrot-and-stick punish-
ment, we find that its value is 0. The minmax values of the players are 0, implying
that a 0 punishment is the most severe possible. A carrot-and-stick punishment whose
value is 0 is thus the most severe possible, and nothing is lost by restricting attention to
strongly symmetric punishments. However, if the optimal carrot-and-stick punishment
has a positive expected value, then there are more severe, asymmetric punishments
available.17

When will optimal symmetric carrot-and-stick punishments be optimal overall,
that is, have a value of 0? Because 0 is the minmax value for the players, the subgame-
perfect equilibrium given by the carrot-and-stick punishment σ(q̄, q̃) can have a value
of 0 only if

µd(q̃) = 0,

that is, only if 0 is the largest payoff one can obtain by deviating from the stick phase
of the equilibrium. (If µd(q̃) > 0 with a punishment value of 0, a current deviation
followed by perpetual payoffs of 0 is profitable, a contradiction.) Hence, the stick must
involve sufficiently large production that the best response for any single firm is simply
to shut down and produce nothing.

The condition µd(q̃) = 0 requires that q̃ be sufficiently large, and hence µ(q̃)
sufficiently negative (indeed, as δ→ 1, q̃ →∞). To preserve the 0 equilibrium value,
this negative initial payoff must be balanced by subsequent positive payoffs. For this
to be possible, the discount factor must be sufficiently large. Let (q̄(δ), q̃(δ)) be the
optimal carrot-and-stick punishment quantities given discount factor δ, and v∗(δ) the
corresponding punishment value. Then:

Lemma

2.6.2
1. The functions q̄(δ) and v∗(δ) are decreasing and q̃(δ) is increasing in δ.
2. There exists δ < 1, such that for all δ ∈ (δ, 1), the optimal strongly symmetric

carrot-and-stick punishment gives a value of 0 and hence is optimal overall.

Proof Suppose first that q̄(δ) = am. Then the output q̃(δ) and value v∗(δ) satisfy (from
(2.6.8))

µd(q̃(δ))− µ(q̃(δ)) = δ(µ(am)− µ(q̃(δ))) (2.6.13)

and

µd(q̃(δ)) = v∗(δ), (2.6.14)

17. Abreu (1986) shows that if the optimal carrot-and-stick punishment gives a positive payoff, then
it is the only strongly symmetric equilibrium yielding this payoff. If it yields a 0 payoff, there
may be other symmetric equilibria yielding the same payoff.
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while subgame perfection requires the incentive constraint

µd(am) ≤ µ(am)+ δ(µ(am)− µ(q̃(δ)).
The function h(q) = µd(q)− (1− δ)µ(q) is convex and differentiable every-
where. From (2.6.13),

h(aN)+
∫ q̃(δ)

aN
h′(q)dq = δµ(am),

and because q̃(δ) > aN , h(aN) = δµ(aN) implies h′(q̃(δ)) > 0. It then follows
that an increase in δ increases q̃ (to preserve (2.6.13)), thus decreasing v∗ (from
(2.6.14)) and preserving the incentive constraint. In addition, it is immediate that
there exists δ < 1 such that q̄(δ) = am.18 As a result, we have established that there
exists δ∗ < 1 such that q̄(δ) = am if and only if δ ≥ δ∗, and that the comparative
statics in lemma 2.6.2(1) hold on [δ∗, 1).

Now consider δ < δ∗. Here, the carrot-and-stick punishment is character-
ized by

µd(q̃(δ))− µ(q̃(δ)) = δ(µ(q̄(δ))− µ(q̃(δ))) (2.6.15)

and

µd(q̄(δ))− µ(q̄(δ)) = δ(µ(q̄(δ))− µ(q̃(δ))), (2.6.16)

with the value of the punishment again given by v∗(δ) = µd(q̃(δ)). This implies
that the outputs q̄ < aN < q̃must be such that the payoff increment from deviating
from the carrot must equal that of deviating from the stick.

Now fix δ and its corresponding optimal punishment quantities q̄(δ), q̃(δ) and
payoff v∗(δ), and consider δ′ > δ (but δ′ < δ∗). We then have

µd(q̃(δ)) < (1− δ′)µ(q̃(δ))+ δ′µ(q̄(δ)).
Because dµd(q)/dq > dµ(q)/dq for q > aN (because the first function is con-
vex and the second concave, and the two are tangent at aN ), there exists a value
q ′ > q̃(δ) > aN at which

µd(q ′) = (1− δ′)µ(q ′)+ δ′µ(q̄(δ)).
The carrot-and-stick punishment σ(q̄(δ), q ′) is thus a subgame-perfect equilib-
rium giving value v = µd(q ′) < v∗(δ), ensuring that v∗(δ′) < v∗(δ). This in turn
ensures that q̄(δ′) < q̄(δ), which, from (2.6.15)–(2.6.16), gives q̃(δ′) > q̃(δ). This
completes the proof of statement 1.

For v∗ = (1− δ)µ(q̃)+ δµ(q̄) to equal 0, we need µ(q̃) < 0 and (as dis-
cussed just before the statement of the lemma) µd(q̃) = 0. For sufficiently large
δ ≥ δ∗, q̄(δ) = am and (because q̃(δ) > aN ) δµ(am)− µd(q̃(δ)) > δµ(am)−
µ(aN) > 0. From (2.6.13), µ(q̃(δ))→−∞ as δ→ 1 and so eventually q̃(δ) >
(1− c)/(n− 1).

■

18. For δ sufficiently close to 1, permanent reversion to the stage-game Nash equilibrium suf-
fices to support am as a subgame-perfect equilibrium outcome, and hence so must the optimal
punishment.
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2.7 Long-Lived and Short-Lived Players

We now consider games in which some of the players are short-lived. There are n
long-lived players, numbered 1, . . . , n, and N − n short-lived players numbered n+
1, . . . , N .19 As usual, Ai is the set of player i’s pure stage-game actions, and A ≡∏N
i=1Ai the set of pure stage-game action profiles. A long-lived player i plays the

game in every period and maximizes, as before, the average discounted payoff of the
payoff sequence (u0

i , u
1
i , u

2
i , . . .), given by

(1− δ)
∞∑
t=0

δtui(a
t ).

Short-lived players are concerned only with their payoffs in the current period and
hence are often referred to as myopic. One interpretation is that in each period, a new
collection of short-lived players n+ 1, . . . , N enters the game, is active for only that
period, and then leaves the game. An example of such a scenario is one in which the
long-lived players are firms and the short-lived players customers. Another example
has a single long-lived player, representing a government agency or court, with the
short-lived players being a succession of clients or disputants who appear before it.
A common interpretation of the product-choice game is that player 2 is a sequence of
customers, with a new customer in each period.

An alternative interpretation is that each so-called short-lived player represents a
continuum of long-lived agents, such as a long-lived firm facing a competitive market
in each period, or a government facing a large electorate in each period. Under this
interpretation, members of the continuum are sometimes referred to as small players
and the long-lived players as large. Each player’s payoff depends on his own action,
the actions of the large players, and the average of the small players’ actions.20 All
players maximize the average discounted sum of payoffs. In addition to the plays of
the long-lived players, histories of play are assumed to include only the distribution of
play produced by the small players. Because each small player is a negligible part of the
continuum, a change in the behavior of a member of the continuum does not affect the
distribution of play, and so does not influence future behavior of any (small or large)
player. For this reason, players whose individual behavior is unobserved are also called
anonymous. As there is no link between current play of a small anonymous player and
her future treatment, such a player can do no better than myopically optimize.

Remark

2.7.1
The anonymity assumption The assumption that small players are anonymous is
critical for the conclusion that small players necessarily myopically optimize. Con-
sider the repeated prisoners’ dilemma of figure 2.4.1, with player 1 being a large

19. The literature also uses the terms long-run for long-lived, and short-run for short-lived.

20. Under this interpretation of the model described above, if N = n+ 1, a small player’s payoff
depends only on her own action (in addition to the long-lived players’ actions), not the average
of the other small players’ actions. Allowing the payoffs of each small player to also depend on
the average of the other players’ actions in this case does not introduce any new issues.

We follow the literature in assuming that small players make choices so that the distribution
over actions is well defined (i.e., the set of small players choosing any action is assumed mea-
surable). Because we will be concerned with equilibria and with deviations from equilibria on
the part of a single player, this will not pose a constraint.
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player and player 2 a continuum of small players. Each of the small players receives
the payoff given by the prisoners’dilemma, given her action and player 1’s action.
Player 1’s payoff depends only on the aggregate play of the player 2’s, which
is equivalent to the payoff received against a single opponent playing a mixed
strategy with probability of E given by the proportion of player 2’s choosing E.

If, as described, the distribution of player 2’s actions is public (but individual
player 2 actions are private), then all player 2’s myopically optimize, playing S in
every period, and so the equilibrium is unique, and in this equilibrium, all players
choose S in every period.

On the other hand, if all players observe the precise details of every player 2’s
choice, then if δ ≥ 1/3, an equilibrium exists in which effort is exerted after every
history devoid of shirking, with any instance of shirking triggering a punishment
phase of persistent shirking thereafter. It thus takes more than a continuum of
players to ensure that the players are anonymous and behavior is myopic.

Consider now the same game but with a finite number of player 2s. Perfect
monitoring requires that each player 2’s action be publicly observed and so, for
any finite number of player 2s and δ ≥ 1/3, always exerting effort is an equilib-
rium outcome. Consequently, there is a potentially troubling discontinuity as we
increase the number of player 2s. Suppose δ ≥ 1/3. For a finite number (no matter
how large) of player 2s, always exerting effort is an equilibrium outcome, whereas
for a continuum of anonymous player 2s, it is not. Section 7.8 discusses one resolu-
tion: If actions are only imperfectly observed, then the behavior of a large but finite
population of player 2s is similar to that of a continuum of anonymous player 2s.

◆

We present the formal development for short-lived players. Restricting attention
to pure strategies for the short-lived players, the model can be reinterpreted as one
with small anonymous players who play identical pure equilibrium strategies. The
usual intertemporal considerations come into play in shaping the behavior of long-
lived players. As might be expected, the special case of a single long-lived player is
often of interest and is the typical example.

Again as usual, a period t history is an element of the set H t ≡ At . The set of all
histories is given by H = ∪∞t=0H

t , where H 0 = {∅}. A behavior strategy for player
i, i = 1, . . . , n, is a function σi :H → �(Ai).

The role of player i, for i = n+ 1, . . . , N is filled by a countable sequence of
players, denoted i0, i1, . . . A behavior strategy for player it is a function σ ti :H t →
�(Ai).We then let σi = (σ 0

i , σ
1
i , σ

2
i , . . .) denote the sequence of such strategies. We

will often simply refer to a short-lived player i, rather than explicitly referring to the
sequence of player i’s. Note that each player it observes the history ht ∈H t .

As usual, σ |ht is the continuation strategy profile after the history ht ∈H . Given
a strategy profile σ , Ui(σ ) denotes the long-lived player i’s payoff in the repeated
game, that is, the average discounted value of {ui(at (σ ))}.

Definition

2.7.1
A strategy profile σ is a Nash equilibrium if,

1. for i = 1, . . . , n, σi maximizes Ui(·, σ−i ) over player i’s repeated game
strategies, and
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2. for i = n+ 1, . . . , N , all t ≥ 0, and all ht ∈H t that have positive probability
under σ ,

ui(σ
t
i (h

t ), σ−i (ht )) = max
ai∈Ai

ui(ai, σ−i (ht )).

A strategy profile σ is a subgame-perfect equilibrium if, for all histories ht ∈H ,
σ |ht is a Nash equilibrium of the repeated game.

The notion of a one-shot deviation for a long-lived player is identical to that
discussed in section 2.2 and applies in an obvious manner to short-lived players. Hence,
we immediately have a one-shot deviation principle for games with long- and short-
lived players (the proof is the same as that for proposition 2.2.1).

Proposition

2.7.1
The one-shot deviation principle A strategy profile σ is subgame perfect if and
only if there are no profitable one-shot deviations.

2.7.1 Minmax Payoffs

Because the short-lived players play myopic best replies, given the actions of the long-
lived players, the short-lived players must play a Nash equilibrium of the induced stage
game. Let B :∏n

i=1�(Ai) ⇒
∏N
i=n+1�(Ai) be the correspondence that maps any

mixed-action profile for the long-lived players to the corresponding set of static Nash
equilibria for the short-lived players. The graph of B is denoted by B ⊂∏N

i=1�Ai , so
that B is the set of the profiles of mixed actions with the property that, for each player
i = n+ 1, . . . , N , αi is a best response to α−i . Note that under assumption 2.1.1, for
all αLL ∈∏n

i=1�(Ai), there exists αSL ∈∏N
i=n+1�(Ai) such that (αLL, αSLL) ∈ B.

It will be useful for the notation to cover the case of no short-lived players, in which
case, B =∏n

i=1�(Ai). (If a player has a continuum action space, then that player
does not randomize; see remark 2.1.1.)

For each of the long-lived players i = 1, . . . , n, define

vi = min
α∈B

max
ai∈Ai

ui(ai, α−i ), (2.7.1)

and let α̂i ∈ B be an action profile satisfying

α̂i = arg min
α∈B

{
max
ai∈Ai

ui(ai, α−i )
}
.

The payoff vi , player i’s (mixed-action) minmax payoff with short-lived players,
is a lower bound on the payoff that player i can obtain in an equilibrium of the repeated
game.21 Notice that this payoff is calculated subject to the constraint that short-lived
players choose best responses: The strategies α̂i−i minmax player i, subject to the
constraint that there exists some choice α̂ii for player i that gives (α̂ii , α̂

i−i ) ∈ B, that is,
that makes the choices of the short-lived players a Nash equilibrium. Lower payoffs
for player i might be possible if the short-lived players were not constrained to behave
myopically (as when they are long-lived). In particular, reducing i’s payoffs below vi

21. Restricting the long-lived players to pure actions gives player i’s pure-action minmax payoff with
short-lived players. We discuss pure-action minmaxing in detail when all players are long-lived
and therefore restrict attention to mixed-action minmax when some players are short-lived.
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h �

H 2, 3 0, 2

L 3, 0 1, 1

h �

H 2, 3 1, 2

L 3, 0 0, 1

Figure 2.7.1 The left game is the product-choice game of figure 1.5.1.
Player 1’s action L is a best reply to 2’s choice of � in the left game, but not
in the right.

requires actions on the part of the short-lived players that cannot be best responses or
part of a stage-game Nash equilibrium but that long-lived players potentially could be
induced to play via the use of appropriate intertemporal incentives.

We use the same notation for minmax payoffs and strategies, vi and α̂i , as
for the case in which all players were long-lived, because they are the appropriate
generalization in the presence of short-lived players.

It is noteworthy that α̂ii need not be a best response for player i to α̂i−i . When α̂ii is
not a best response, ui(α̂i) is strictly smaller than vi . Hence, minmaxing player i may
require i to incur a cost, in the sense of not playing a best response, to ensure that α̂i

specifies stage-game best responses for the short-lived players.22 If we are to punish
player i through the play of α̂i , player i will have to be subsequently compensated
for any costs incurred, introducing a complication not found when all players are
long-lived.23

Example

2.7.1
Consider the product-choice game of figure 1.5.1,where player 1 is a long-lived
and player 2 a short-lived player, reproduced as the left game in figure 2.7.1. Every
pure or mixed action for player 2 is a myopic best reply to some player 1 action.
Hence, the constraint α ∈ B on the minimization in (2.7.1) imposes no constraints
on the action α2 appearing in player 1’s utility function. We have v1 = 1 and
α̂1 = L�, as would be the case with two long-lived players. In addition, L is a
best response for player 1 to player 2’s play of �. There is then no discrepancy
here between player 1’s best response to the player 2 action that minmaxes player
1 and the player 1 action that makes such behavior a best response for player 2. It
is also straightforward to verify, as a consequence, that the trigger-strategy profile
in which play begins with Hh, and remains there until the first deviation, after
which play is perpetual L�, is a subgame-perfect equilibrium for δ ≥ 1/2.

Now consider a modified version of this game, displayed on the right in fig-
ure 2.7.1. Once again, every pure or mixed action for player 2 is a myopic best

22. Formally, given any α ∈ B that solves the minimization in (2.7.1), the subsequent maximization
does not impose ai = αi .

23. With long-lived players, we can typically assume that player 1 plays a stage-game best response
when being minmaxed, using future play to create the incentives for the other players to do
the minmaxing. Here the short-lived players must find minmaxing a stage-game best response,
potentially requiring player 1 to not play a best response, being induced to do so by incentives
created by future play.
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h � r

H 2, 3 1, 2 0, 0

L 3, 0 0, 1 −1, 0

Figure 2.7.2 A further modification to the product-choice
game of figure 1.5.1.

reply to some player 1 action, implying no constraints on α2 in (2.7.1). We have
v1 = 1 with α̂1 = L� and u1(α̂

1) = 0. In this case, however, α̂1 does not fea-
ture a best response for player 1, who would rather choose H . If player 1 is to
be minmaxed, 1 will have to choose L to create the appropriate incentives for
player 2, and 1 will have to be compensated for doing so. Because L� is not
a Nash equilibrium of the stage game, there is no pure-strategy equilibrium in
trigger strategies. However, (Hh)∞ can still be supported as a subgame-perfect
equilibrium-outcome path for δ ≥ 1/2, using a carrot-and-stick approach: The
profile specifies Hh on the outcome path and after any deviation one period of
L�, after which play returns toHh; in particular, if player 1 does not play Lwhen
required, L� is specified in the subsequent period. The set of equilibrium payoffs
for this example is discussed in detail in section 7.6.

Consider a further modification, displayed in figure 2.7.2. When player 2 is
long-lived, then we have v1 = 0 and α̂1 = Hr . When player 2 is short-lived,
the restriction that player 2 always choose best responses makes action r irrel-
evant, because it is strictly dominated by �. We then again have v1 = 1 and
α̂1 = L�.

●

This example illustrates two features of repeated games with short-lived players.
First, converting some players from long-lived to short-lived players imposes restric-
tions on the payoffs that can be achieved for the remaining long-lived players. In the
game of figure 2.7.2, player 1’s minmax value increases from 0 to 1 when player 2
becomes a short-lived player. Payoffs in the interval (0, 1) are thus possible equilib-
rium payoffs for player 1 if player 2 is long-lived but not if player 2 is short-lived. As a
result, the range of discount factors under which we can support relatively high payoffs
for player 1 as equilibrium outcomes may be broader when player 2 is a long-lived
rather than short-lived player. As we will see in the next section, the maximum payoff
for long-lived players is typically reduced when some players are short-lived rather
than long-lived.

Second, the presence of short-lived players imposes restrictions on the structure of
the equilibrium. To minmax player 1, player 2 must play �. To make � a best response
for player 2, player 1 must put at least probability 1/2 on L, effectively cooperating in
the minmaxing. This contrasts with the equilibria that will be constructed in the proof
of the folk theorem without short-lived players (proposition 3.4.1), where a player
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being minmaxed is allowed to play her best response to the minmax strategies, and the
incentives for the punishing players to do so are created by future play.

2.7.2 Constraints on Payoffs

In restricting attention to action profiles drawn from the set B, short-lived players
impose restrictions on the set of equilibrium payoffs that go beyond the specification
of minmax payoffs.

Example

2.7.2
Return to the product-choice game (left game of figure 2.7.1). Minmax payoffs are
1 for both players, whether player 2 is a long-lived or short-lived player. When
player 2 is long-lived, because F ∗ contains (8/3, 1), it follows from proposi-
tion 3.3.1 that there are equilibria (for sufficiently patient players) with payoffs
for player 1 arbitrarily close to 8/3.24 This is impossible, however, when player
2 is short-lived. For player 1 to obtain a payoff close to 8/3, there must be some
periods in which the action profile Lh appears with probability at least 2/3. But
whether the result of pure independently mixed or correlated actions, this outcome
cannot involve a best response for player 2. The largest equilibrium payoff for
player 1, even when arbitrarily patient, is bounded away from 8/3.

Consider, then, the problem of choosing α ∈ B to maximize player 1’s stage-
game payoff. Player 2 is willing to play h as long as the probability that 1 playsH
is at least 1/2, and so 1’s payoff is maximized by player 1 mixing equally between
H and L and player 2 choosing the myopic best reply of h. The payoff obtained is
often called the (mixed-action) Stackelberg payoff, because this is the payoff that
player 1 can guarantee himself by publicly committing to his mixed action before
player 2 moves.25

However, the mixed-action Stackelberg payoff cannot be achieved in any equi-
librium. Indeed, there is no equilibrium of the repeated game in which player 1’s
payoff exceeds 2, the pure action Stackelberg payoff, independently of player 1’s
discount factor.

To see why this is the case, let v̄1 be the largest subgame-perfect equilibrium
payoff available to player 1, and assume v̄1 > 2. Any period in which player 2
chooses � or player 1 chooses H cannot give player 1 a payoff in excess of 2.
If player 1 chooses L, the best response for 2 is �, which again gives a payoff
short of 2. Informally, there must be some period in which player 2 chooses h
with positive probability and player 1 mixes between H and L. Consider the first
such period, and consider the equilibrium that begins with this period. The payoff
for player 1 in this equilibrium must be at least v̄1, because all previous periods

24. Using Nash reversion as a punishment and an algorithm similar to that in section 2.5.4 to
construct an outcome path that switches appropriately between Hh and Lh, we can obtain
precisely (8/3, 1) as an equilibrium payoff.

25. More precisely, it is the supremum of such payoffs. When player 1 mixes equally betweenH and
L, player 2 has two best replies, only one of which maximizes 1’s payoff. However, by putting
ε > 0 higher probability on H , 1 can guarantee that 2 has a unique best reply (see 15.2.2).

The pure-action Stackelberg payoff is the payoff that player 1 can guarantee by committing to
a public action before player 2 moves (see 15.2.1). It is the subgame-perfect equilibrium payoff
of the extensive form where 1 chooses a1 ∈ A1 first, and then 2, knowing 1’s choice, chooses
a2 ∈ A2.
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(if any) must give lower payoffs. However, because player 1 is mixing, he must
be indifferent between H and L, and hence the payoff to player 1 when choosing
H must be at least as large as v̄1. On the other hand, because 2 bounds the current
period payoff from H and v̄1 bounds the continuation payoff by hypothesis, we
have the following upper bound on the payoff from playingH , and hence an upper
bound on v̄1,

v̄1 ≤ (1− δ)2+ δv̄1.

This inequality implies v̄1 ≤ 2, contradicting our assumption that v̄1 > 2.
●

This result generalizes. Let i be a long-lived player in an arbitrary game, and
define

v̄i = sup
α∈B

min
ai∈supp(αi )

ui(ai, α−i ), (2.7.2)

where supp(αi) denotes the support of the (possibly mixed) action αi . Hence, we
associate with any profile of stage-game actions, the minimum payoff that we can
construct by adjusting player i’s behavior within the support of his action. Essentially,
we are identifying the least favorable outcome of i’s mixture. We then choose, over
the set of profiles in which short-lived players choose best responses, the action profile
that maximizes this payoff. We have:

Proposition

2.7.2
Every subgame-perfect equilibrium payoff for player i is less than or equal to v̄i .

Proof The proof is a reformulation of the argument for the product-choice game. Let
v′i > v̄i be the largest subgame-perfect equilibrium payoff available to player i
and consider an equilibrium σ ′ giving this payoff. Let α0 be the first period action
profile. Then,

v′i = (1− δ)ui(α0)+ δEσ ′ {U(σ ′|h1)}
≤ (1− δ)v̄i + δv′i ,

where the second inequality follows from the fact that α0 must lie in B, and player
i must be indifferent between all of the pure actions in the support of α0

i if the
latter is mixed. We can then rearrange this to give the contradiction, v′i ≤ v̄i .

■

As example 2.7.2 demonstrates, the action profile α∗ = arg maxα∈Bui(α) may
require player i to randomize to provide the appropriate incentives for the short-lived
players. The upper bound v̄i can then be strictly smaller than ui(α∗). In equilibrium,
i must be indifferent over all actions in the support of α∗i . The payoff from the least
lucrative action in this support, given by v̄i , is thus an upper bound on i’s equilibrium
payoffs in the repeated game.
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3 The Folk Theoremwith
Perfect Monitoring

A folk theorem asserts that every feasible and strictly individually rational payoff is
the payoff of some subgame-perfect equilibrium of the repeated game, when players
are sufficiently patient.1

The ideas underlying the folk theorem are best understood by first considering the
simpler pure-action folk theorem for infinitely repeated games of perfect monitoring:
For every pure-action profile whose payoff strictly dominates the pure-action minmax,
provided players are sufficiently patient, there is a subgame-perfect equilibrium of the
repeated game in which that action profile is played in every period.

Because every feasible payoff can be achieved in a single period using a correlated
action profile, identical arguments show that the payoff folk theorem holds in the
following form:2 Every feasible and strictly pure-action individually rational payoff
is the payoff of some equilibrium with public correlation when players are sufficiently
patient.

Although simplifying the argument (and strategy profiles) significantly, public
correlation is not needed for a payoff folk theorem. We have already seen an example
for the repeated prisoners’ dilemma in section 2.5.3. As demonstrated there and in
section 2.5.4, when players are sufficiently patient even payoffs that cannot be written
as a rational convex combination of pure-action payoffs are exactly the average payoff
of a pure-strategy subgame-perfect equilibrium without public correlation, giving a
payoff folk theorem without public correlation. Of course, this requires a complicated
nonstationary sequence of actions (and the required bound on the discount factor may
be higher). As in section 2.5.3, the techniques of self-generation provide an indirect
technique for constructing such sequences of actions. Those techniques are critical
in proving the folk theorem for finite games with imperfect public monitoring and
immediately yield (proposition 9.3.1) a perfect monitoring payoff folk theorem without
public correlation. An alternative more direct approach is described in section 3.7.

The notion of individual rationality implicitly used in the last paragraph was rel-
ative to the pure-action minmax. The difficulty in proving the folk theorem, when
individual rationality is defined relative to the mixed-action minmax, is that the impo-
sition of punishments requires the punishing players to randomize (and so be indifferent
over all the actions in the minmax profile). Early versions of the folk theorem provided

1. The term folk arose because its earliest versions were part of the informal tradition of the game
theory community for some time before appearing in a publication.

2. The first folk theorems proved for our setting (subgame-perfect equilibria in discounted repeated
games with perfect monitoring; Fudenberg and Maskin 1986) are of this form.

69
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appropriate incentives for randomization by making the unconventional assumption
that each player’s choice of probability distribution over his action space was observ-
able (this was referred to as the case of observable mixtures), so that indifference was
not required. We never make such an assumption. The techniques of self-generation
also allow a simple proof of the payoff folk theorem when individual rationality is
defined relative to the mixed-action minmax (again, proposition 9.3.1). An alternative
more direct approach is described in section 3.8.

3.1 Examples

We first illustrate the folk theorem for the examples presented in chapter 1.
Figure 3.1.1 shows the feasible payoff space for the prisoners’ dilemma. The

profile of pure and mixed minmax payoffs for this game is (0, 0)—because shirking
ensures a payoff of at least 0, no player who chooses best responses can ever receive
a payoff less than 0. The folk theorem then asserts (and we have already verified in
section 2.5.3) that for any strictly positive profile in the shaded area of figure 3.1.1,
there is a subgame-perfect equilibrium yielding that payoff profile for sufficiently high
discount factors. This includes the payoffs (2, 2) that arise from persistent mutual
effort, as well as the payoffs very close to (0, 0) (the payoff arising from relentless
shirking), and a host of other payoffs, including asymmetric outcomes in which one
player gets nearly 0 and the other nearly 8/3.

The quantifier on the discount factor in this statement is worth noting. The folk
theorem implies that for any candidate (feasible, strictly individually rational) payoff,
there exists a sufficiently high discount factor to support that payoff as a subgame-
perfect equilibrium. Equivalently, the set of subgame-perfect equilibrium payoffs
converges to the set of feasible, strictly individually rational payoffs as the discount
factor approaches unity. There may not be a single discount factor for which the entire

),( EEu

),( ESu

),( SSu

),( SEu

Figure 3.1.1 Feasible payoffs (the polygon and its interior) and folk
theorem outcomes (the shaded area, minus its lower boundary) for
the infinitely repeated prisoners’ dilemma.
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Figure 3.1.2 Feasible payoffs (the polygon and its interior)
and folk theorem outcomes (the shaded area, minus its lower
boundary) for the infinitely repeated product-choice game
with two long-run players.

set appears as equilibrium payoffs, though, as we saw in section 2.5.3, this is the case
for the prisoners’ dilemma (see remark 3.3.1).

Chapter 1 introduced the product-choice game with the interpretation that the role
of player 2 is filled by a sequence of short-lived players. However, let us consider the
case in which the game is played by two long-lived players. Figure 3.1.2 illustrates
the feasible payoffs. The pure and mixed minmax payoff is 1 for each player, with
player 1 or 2 able to ensure a payoff of 1 by choosing L or �, respectively. The folk
theorem ensures that any payoff profile in the shaded area, except the lower boundary
(to ensure strict individual rationality), can be achieved as a subgame-perfect payoff
profile for sufficiently high discount factors.

Once again, the minmax payoff profile (1, 1) corresponds to a stage-game Nash
equilibrium and hence is a subgame-perfect equilibrium payoff profile, though this is
not an implication of the folk theorem. The folk theorem implies that the highest payoff
available to player 1 in a subgame-perfect equilibrium of the repeated game is (nearly)
8/3, corresponding to an outcome in which player 2 always buys the high-priced choice
but player 1 chooses high effort with a probability only slightly exceeding 1/3. The
highest available payoff to player 2 in a subgame-perfect equilibrium is 3, produced
by an outcome in which player 2 buys the high-priced product and player 2 exerts high
effort.

For our final example, consider the oligopoly game of section 2.6.2. In contrast
to our earlier examples, the action spaces are uncountable; unlike the discussion in
section 2.6.2, we make the spaces compact (as we do throughout our general devel-
opment) by restricting actions to the set [0, q̄], where q̄ is large. The set of payoffs
implied by some pure action profile is illustrated in figure 3.1.3. The shaded region is
F , not its convex hull (in particular, note that all firms’profits must have the same sign,
which is determined by the sign of the price-cost margin). The stage game has a unique
Nash equilibrium, with payoffs ui(aN) = [(1− c)/(n+ 1)]2, and minmax payoffs are
v
p
i = vi = 0 (player i chooses ai = 0 in best response to the other players flooding

the market, i.e., choosing q̄). The folk theorem shows that in fact every feasible payoff
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Figure 3.1.3 Payoffs implied by some pure-action profile in the two-firm
oligopoly example of section 2.6.2. Stage-game Nash equilibrium payoffs
(given by ui(a

N ) = (1− c)2/9) and minmax payoffs (vp
i
= 0) are

indicated by two dots. The efficient frontier of the payoff set is given by
u1 + u2 = (1− c)2/4, where (1− c)2/4 is the level of monopoly profits.
The point u(am) is equal division of monopoly profits, obtained by each
firm producing half monopoly output.

in which all firms earn strictly positive profits can be achieved as a subgame perfect
equilibrium outcome.

3.2 Interpreting the Folk Theorem

3.2.1 Implications

The folk theorem asserts that “anything can be an equilibrium.” Once we allow repeated
play and sufficient patience, we can exclude as candidates for equilibrium payoffs only
those that are obviously uninteresting, being either infeasible or offering some player
less than his minmax payoff. This result is sometimes viewed as an indictment of
the repeated games literature, implying that game theory has no empirical content.
The common way of expressing this is that “a theory that predicts everything predicts
nothing.”

Multiple equilibria are common in settings that range far beyond repeated games.
Coordination games, bargaining problems, auctions, Arrow-Debreu economies, mech-
anism design problems, and signaling games (among many others) are notorious for
multiple equilibria. Moreover, a model with a unique equilibrium would be quite use-
less for many purposes. Behavioral conventions differ across societies and cities, firms,
and families. Only a theory with multiple equilibria can capture this richness. If there
is a problem with repeated games, it cannot be that there are multiple equilibria but
that there are “too many” multiple equilibria.

This indictment is unconvincing on three counts. First, a theory need not make pre-
cise predictions to be useful. Even when the folk theorem applies, the game-theoretic
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study of long-run relationships deepens our understanding of the incentives for oppor-
tunistic behavior and the institutional responses that might discourage such behavior.
Repeated games help us understand why we might see asymmetric and nonstation-
ary behavior in stationary symmetric settings, why some noisy signals may be more
valuable than other seemingly just as noisy ones, why efficiency might hinge on the
ability to punish some players while rewarding others, and why seemingly irrelevant
details of an interaction may have tremendous effects on behavior. Without such an
understanding, a useful model of behavior is beyond our grasp.

Second, we are often interested in cases in which the conditions for the folk
theorem fail. The players may be insufficiently patient, the monitoring technology
may be insufficiently informative, or some of the players may be short-lived (see
section 2.7). There is much to be learned from studying the set of equilibrium payoffs
in such cases. The techniques developed in chapters 7 and 8 allow us to characterize
equilibrium payoffs when the folk theorem holds and when it fails.

Third, the folk theorem places bounds on payoffs but says nothing about behavior.
The strategy profiles used in proving folk theorems are chosen for analytical ease, not
for any putative positive content, and make no claims to be descriptions of what players
are likely to do. Instead, the repeated game is a model of an underlying strategic inter-
action. Choosing an equilibrium is an integral part of the modeling process. Depending
on the nature of the interaction, one might be interested in equilibria that are efficient
or satisfy the stronger efficiency notion of renegotiation proofness (section 4.6), that
make use of only certain types of (perhaps “payoff relevant”) information (section 5.6),
that are in some sense simple (remark 2.3.1), or that have some other properties. One
of the great challenges facing repeated games is that the conceptual foundations of
such equilibrium selection criteria are not well understood. Whether the folk theorem
holds or fails, it is (only) the point of departure for the study of behavior.

3.2.2 Patient Players

There are two distinct approaches to capturing the idea that players are patient. Like
much of the work inspired by economic applications, we consider players who discount
payoff streams, with discount factors close to 1. Another approach is to consider
preferences over the infinite stream of payoffs that directly capture patience. Indeed,
the folk theorem imposing perfection was first proved for such preferences, byAumann
and Shapley (1976) for the limit-of-means preference �LM and by Rubinstein (1977,
1979a) for the limit-of-means and overtaking preferences �O , where3

{uti} �LM {ûti} ⇔ lim inf
T→∞

T∑
t=0

uti − ûti
T

> 0

and

{uti} �O {ûti} ⇔ lim inf
T→∞

T∑
t=0

uti − ûti > 0.

3. Because there is no guarantee that the infinite sum is well defined, the lim inf is used.
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See Osborne and Rubinstein (1994) for an insightful discussion of these preferences
and the associated folk theorems. Because a player who evaluates payoffs using limit-
of-means is indifferent between two payoff streams that only differ in a finite number of
periods, the perfection requirement is easy to satisfy in that case. Consider, for example,
the following profile in the repeated oligopoly of section 2.6.2: The candidate outcome
is (am, . . . , am) in every period; if a player deviates, then play (q̃, . . . , q̃) forL periods
(ignoring deviations during theseL periods), and return to (am, . . . , am) (until the next
deviation from (am, . . . , am)), where L satisfies4

µd(am)+ Lµ(q̃) < (L+ 1)µ(am).

This profile is a Nash equilibrium under limit-of-means and overtaking (as well as for
discounting, if δ is sufficiently close to 1). Moreover, under limit-of-means, because
the punishment is only imposed for a finite number of periods, it is costless to impose,
and so the profile is perfect.

Overtaking is a more discriminating preference order than limit-of-means. In par-
ticular, a player who evaluates payoffs using overtaking strictly prefers the stream
u0
i , u

1
i , u

2
i , . . . to the stream u0

i − 1, u1
i , u

2
i , . . . Consequently, though perfection is not

a significant constraint with limit-of-means, it is with overtaking. In particular, the
profile just described is not perfect with the overtaking criterion. A perfect equilib-
rium for overtaking requires sequences of increasingly severe punishments: Because
minmaxing player i for L periods may require player j to suffer significantly in those
L periods, the threatened punishment of j , if j does not punish i, may need to be
significantly longer than the original punishment. And providing for that punishment
may require even longer punishments.

Both overtaking and limit-of-means preferences suffer from two shortcomings:
They are incomplete (not all payoff streams are comparable) and they do not respect
mixtures, because lim inf is not a linear operator. Much of the more recent mathematical
literature in repeated games has instead used Banach limits, which do respect mixtures
and yield complete preferences.5

The tradition in economics has been to work with discounted payoffs, whereas
the more mathematical literature is inclined to work with limit payoffs that directly
capture patience. One motivation for the latter is the observation that many of the
most powerful results in game theory—most notably the various folk theorems—are
statements about patient players. If this is one’s interest, then one might as well replace
the technicalities involved in taking limits with the convenience of limit payoffs. If one

4. Recall that µ(q) is the stage-game payoff when all firms produce the same output q, and µd(q)
is the payoff to a firm from myopically optimizing when all the other firms produce q.

5. Let �∞ denote the set of bounded sequences of real numbers (the set of possible payoff streams).
A Banach limit is a linear function � : �∞ → R satisfying, for all u = {ut } ∈ �∞,

lim inf
t→∞ ut ≤ �(u) ≤ lim sup

t→∞
ut

and displaying patience, in the sense that, if u and v are elements of �∞ with vt = ut+1 for
t = 0, . . . , then

�(u) = �(v).
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knows what happens with limit payoffs, then it seems that one knows what happens
with arbitrarily patient players.

Many results in repeated games are indeed established for arbitrarily patient play-
ers, and patience often makes arguments easier. However, we are also often interested in
what can be accomplished for fixed discount factors, discounting that may not be arbi-
trarily close to 1. In addition, although it is generally accepted that limit payoff results
are a good guide to results for players with high discount factors, the details of this rela-
tionship are not completely known. We confine our attention to the case of discounting.

3.2.3 Patience and Incentives

The fundamental idea behind work in repeated games is the trade-off between current
and future incentives. This balance appears most starkly in the criterion for an action
to be enforceable (sections 2.5 and 7.3), which focuses attention on total payoffs as a
convex combination of current and future payoffs. The folk theorems are variations on
the theme that there is considerable latitude for the current behavior that might appear
in an equilibrium if the future is sufficiently important.

The common approach to enhancing the impact of future incentives concentrates
on making players more patient, increasing the weight on future payoffs. For example,
player 1 can potentially be induced to choose high effort in the product-choice game
if and only if the future consequences of this action are sufficiently important. This
increased patience can be interpreted as either a change in preferences or as a shortening
of the length of a period of play. This latter interpretation arises as follows: If players
discount time continuously at rate r and a period is of length� > 0, then the effective
discount factor is δ = e−r�. In this latter interpretation, � is a parameter describing
the environment in which the repeated game is embedded, and the effective discount
factor δ goes to 1 as the length of the period � goes to 0.6 For perfect-monitoring
repeated games, the preferred interpretation is one of taste, because the model does
not distinguish between patience and short period length. However, as we discuss in
section 9.8, this is not true with public monitoring.

An alternative approach to enhancing the importance of future incentives is to fix
the discount factor and reduce the impact on current payoffs from different current
actions. For example, we could reformulate the product-choice game as one in which
player 1’s payoff difference between high and low effort is given by a value c > 0
(taken to be 1 in our usual formulation) that reflects the cost of high effort. We could
then examine the consequences for repeated-game payoffs of allowing c to shrink,
for a fixed discount factor. As c gets small, so does the temptation to defect from an
equilibrium prescription of high effort, making it likely that the incentives created by
continuation payoffs will be powerful enough to induce high effort.

6. The latter interpretation is particularly popular in the bargaining literature (beginning with Rubin-
stein 1982). The fundamental insight in that literature is that the division of the surplus reflects
the relative impatience of the two bargainers. At the same time, the absolute impatience of a bar-
gainer arises from the delay imposed by the bargaining technology should a proposed agreement
be rejected. On the strength of the intuition that in practice there is virtually nothing preventing
parties from very rapidly making offers and counteroffers, interest has focused on the case in
which bargainers become arbitrarily patient (while preserving relative rates of impatience).
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These two approaches reflect different ways of organizing the collection of repea-
ted games. The common approach fixes a stage game and then constructs a collection
of repeated games corresponding to different discount factors. One then asks which of
the games in this collection allow certain equilibrium outcomes, such as high effort in
the product-choice game. The folk theorem tells us that patience is a virtue in this quest.

Alternatively, we could fix a discount factor and look at the collection of repeated
games induced by a collection of stage games, such as the collection of product-choice
games parameterized by the cost of high effort c. We could then again ask which of
the games in this collection allow high effort. In this case, being relatively amenable
to high effort (having a low value of c) will be a virtue.

Our development of repeated games in parts I–III follows the standard approach
of focusing on the discount factor. We return to this distinction in chapter 15, where
we find a first indication that focusing on families of stage games for a fixed discount
factor may be of interest, and then in chapter 18, where this approach will play an
important role.

3.2.4 Observable Mixtures

Many early treatments of the folk theorem assumed players’ mixed strategies are
observable and that public correlating devices are available. We are interested in cases
with public correlation, as well as those without. However, we follow the now standard
practice of assuming that mixed strategies are not observable.

The set of equilibrium payoffs for arbitrarily patient players is unaffected by the
presence of a public correlating device or an assumption that mixed strategies are
observable. However, public correlation may have implications for the strategies that
produce these payoffs, potentially allowing an equilibrium payoff to be supported by
the repeated play of a single correlated mixture rather than a possibly more complicated
sequence of pure action profiles. Similarly, if players’mixtures themselves (rather than
simply their realized actions) were observable, then we could design punishments using
mixed minmax action profiles without having to compensate players for their lack of
indifference over the actions in the support of these mixtures. In addition, we have seen
in sections 2.5.3 and 2.5.6 that public correlation may allow us to attain a particular
equilibrium payoff with a smaller discount factor. Observable mixtures can also have
this effect.

3.3 The Pure-Action Folk Theorem for Two Players

The simplest nontrivial subgame-perfect equilibria in repeated games use Nash rever-
sion as a threat. Any deviation from equilibrium play is met with permanent reversion
to a static Nash equilibrium (automatically ensuring that the punishments are credi-
ble, see remark 2.6.1).7 Because of their simplicity, such Nash-reversion equilibria
are commonly studied, especially in applications. In the prisoners’ dilemma or the
product-choice game, the study of Nash-reversion equilibria could be the end of the

7. The seminal work of Friedman (1971) followed this approach.
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story. In each game, there is a Nash equilibrium of the stage game whose payoffs
coincide with the minmax payoffs. Nash reversion is then the most severe punishment
available, in the sense that any outcome that can be supported by any subgame-perfect
equilibrium can be supported by Nash-reversion strategies. As the oligopoly game
makes clear, however, not all games have this property. Nash reversion is not the most
severe punishment in such games, and the set of Nash-reversion equilibria excludes
some equilibrium outcomes.

Recall from lemma 2.1.1 that the payoff in any pure-strategy Nash equilibrium can-
not be less than the pure-action minmax,vpi = mina−i maxai ui(ai, a−i ) ≡ ui(âii , âi−i ).
The folk theorem for two players uses the threat of mutual minmaxing to deter devia-
tions. Denote the mutual minmax profile (â2

1, â
1
2) by â. It is worth noting that player i’s

payoff from the mutual minmax profile may be strictly less than vpi , that is, carrying
out the punishment may be costly. Accordingly, the profile must provide sufficient
incentives to carry out any punishments necessary, and so is reminiscent of the profile
in example 2.7.1.

Proposition

3.3.1
Two-player folk theorem with perfect monitoring Suppose n = 2.

1. For all strictly pure-action individually rational action profiles ã, that is,
ui(ã) > v

p
i for all i, there is a δ ∈ (0, 1) such that for every δ ∈ (δ, 1), there

exists a subgame-perfect equilibrium of the infinitely repeated game with
discount factor δ in which ã is played in every period.

2. For all v ∈ F †p, there is a δ ∈ (0, 1) such that for every δ ∈ (δ, 1), there exists
a subgame-perfect equilibrium, with payoff v, of the infinitely repeated game
with public correlation and discount factor δ.

Remark

3.3.1
The order of quantifiers in the proposition is important, with the bound on the
discount factor depending on the action profile. Only when A is finite and there
is no public correlation is it necessarily true there is a single discount factor δ for
which every strictly pure-action individually rational action profile is played in
every period in some subgame-perfect equilibrium.

Similarly, there need be no single discount factor for which every payoff
v ∈ F †p can be achieved as an equilibrium payoff in the game with public cor-
relation. The folk theorem result in section 2.5.3 for the prisoners’ dilemma is the
stronger uniform result, because a single discount factor suffices for all payoffs
in F †p. The following two properties of the prisoners’ dilemma suffice for the
result: (1) The pure-action minmax strategy profile is a Nash equilibrium of the
stage game; and (2) for any action profile a and player i satisfying ui(a) < v

p
i , if

a′i is a best reply for i to a−i , then ui(a′i , a−i ) ≤ vpi . Because the set of equilib-
rium payoffs is compact, this uniformity also implies that all weakly individually
rational payoffs are equilibrium payoffs for large δ.

Figure 3.3.1 presents a game for which such a uniform result does not hold. Each
player has a minmax value of 0. Consider the payoff (1/2, 0), which maximizes
player 1’s payoff subject to the constraint that player 2 receive at least her minmax
payoff. Any outcome path generating this payoff must consist exclusively of the
action profiles TL and TR. There is no equilibrium, for any δ < 1, yielding such
an outcome path. If TR appears in the first period, then 2’s equilibrium payoff is



78 Chapter 3 ■ The Folk Theorem

L R

T 0,−1 1, 1

B −1,−1 −1, 0

Figure 3.3.1 A game in which some weakly individually
rational payoff profiles cannot be obtained as equilibrium
payoffs, for any δ < 1.

at least (1 − δ) + δ × 0 > 0, because 2 can be assured of at least her minmax
payoff in the future. If TL appears in the first period, a deviation by player 2 to R
again ensures a positive payoff.

◆

Proof Statement 1. Fix an action profile ã satisfying ui(ã) > v
p
i for all i, and (as usual)

let M = maxi,a∈A ui(a), so that M is the largest payoff available to any player i
in the stage game.

The desired profile is the simple strategy profile (definition 2.6.1) given by
σ(a(0), a(1), a(2)), where a(0) is the constant outcome path in which ã is played
in every period, and a(i), i = 1, 2, is the common punishment outcome path of
L periods of mutual minmax â followed by a return to ã in every period (where
L is to be determined).

The strategy profile is described by the automaton with states W = {w(�) :
� = 0, . . . , L}, initial state w0 = w(0), output function

f (w(�)) =
{
ã, if � = 0,

â, if � = 1, . . . , L,

and transition rule

τ(w(�), a) =



w(0), if � = 0 and a = ã, or � = L and a = â,

w(�+ 1), if 0 < � < L and a = â,

w(1), otherwise.

Because ui(â) ≤ vpi < ui(ã), there exists L > 0 such that

Lmini (ui(ã)− ui(â)) > M −miniui(ã). (3.3.1)

If L satisfies (3.3.1), then a sufficiently patient player i strictly prefers L + 1
periods of ui(ã) to deviating, receiving at most M in the current period and then
enduring L periods of ui(â).
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We now argue that for sufficiently large δ,

ui(ã) ≥ (1− δ)M + δv∗i , (3.3.2)

where

v∗i = (1− δL)ui(â)+ δLui(ã).
The left side of (3.3.2) is the repeated-game payoff from the equilibrium path of
ã in every period. The right side of (3.3.2) is an upper bound on player i’s payoff
from deviating from the equilibrium. The deviation entails an immediate bonus,
which is bounded above by M and then, beginning in the next period and hence
discounted by δ, a “punishment phase” whose payoff is given by v∗i . Note that
there is a δ∗ such that for all i and δ > δ∗, v∗i > v

p
i .

Substituting for v∗i in (3.3.2) and rearranging gives

(1− δL+1)ui(ã) ≥ (1− δ)M + δ(1− δL)ui(â),
and dividing by (1− δ) yields

L∑
t=0

δtui(ã) ≥ M + δ
L−1∑
t=0

δtui(â).

If (3.3.1) holds, there is a δ ≥ δ∗ such that the above inequality holds for all
δ ∈ (δ, 1) and all i.

It remains to be verified that no player has a profitable one-shot deviation from
the punishment phase when δ ∈ (δ, 1). This may be less apparent, as it may be
costly to minmax the opponent. However, if any deviation from the punishment
phase is profitable, it is profitable to do so in w(1), because the payoff of the
punishment phase is lowest in the first period and every deviation induces the
same path of subsequent play. Following the profile in w(1) gives a payoff of
v∗i , whereas a deviation yields a current payoff of at most vpi < v∗i (because
each player is being minmaxed) with a continuation of v∗i , and hence strictly
suboptimal.

Statement 2. Let α be the correlated profile achieving payoff v. The second state-
ment is proved in the same manner as the first, once we have described the
automaton. Recall (from remark 2.3.3) that the automaton representing a pure
strategy profile in the game with public correlation is given by (W , µ0, f, τ ),
where µ0 ∈ �(W ) is the distribution over initial states and τ : W ×A→ �(W ).
The required automaton is a modification of the automaton from part 1 of the
proof, where the statew(0) is replaced by {wa : a ∈ A} (a collection of states, one
for each pure-action profile) and the initial state is replaced byµ0, a randomization
according to α over {wa : a ∈ A}. Finally, f (wa) = a, and for states wa , the
transition rule is

τ(wa, a′) =
{
α, if a′ = a,

w(1), otherwise,
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where α is interpreted as the probability distribution over {wa : a ∈ A} assigning
probability α(a) to wa .

■

In some games, it is a stage-game Nash equilibrium for each player to choose the
action that minmaxes the other player. In this case, Nash-reversion punishments are
the most severe possible, and there is no need to consider more intricate punishments.
The prisoners’dilemma has this property, again making it a particularly easy game with
which to work, though also making it rather special. In other games, mutual minmaxing
behavior is not a stage-game Nash equilibrium, with it instead being quite costly to
minmax another player. Mutual minmaxing is then a valuable tool, because it provides
more severe punishments than Nash reversion, but now we must provide incentives
for the players to carry out such a punishment. This gives rise to the temporary period
of minmaxing used when constructing the equilibria needed to prove the folk theorem.
The minmaxing behavior is sufficiently costly to deter deviations from the original
equilibrium path, whereas the temporary nature of the punishment and the prospect
of a return to the equilibrium path creates the incentives to adhere to the punishment
should it ever begin.

3.4 The Folk TheoremwithMore than Two Players

3.4.1 A Counterexample

The proof of the two-player folk theorem involved strategies in which the punishment
phase called for the two players to simultaneously minmax one another. This allowed
the punishments needed to sustain equilibrium play to be simply constructed. When
there are more than two players, there may exist no combination of strategies that
simultaneously minmax all players, precluding an approach that generalizes the two-
player proof.

We illustrate with an example taken from Fudenberg and Maskin (1986, exam-
ple 3). The three-player stage game is given in figure 3.4.1. In this game, player 1
chooses rows, player 2 chooses columns, and player 3 chooses matrices. Each player’s
pure (and mixed) minmax payoff is 0. For example, if player 2 chooses the second
column and player 3 the first matrix, then player 1 receives a payoff of at most 0.
However, there is no combination of actions that simultaneously minmaxes all of the
players. For any pure profile a with u(a)= (0, 0, 0), there is a player with a deviation
that yields that player a payoff of 1.

This ensures that the proof given for the two-player folk theorem does not immedi-
ately carry over to the case of more players but leaves the possibility that the result itself
generalizes. However, this is not the case. To see this, let v∗ be the minimum payoff
attainable in any subgame-perfect equilibrium, for any player and any discount factor,
in this three-player game. Given the symmetry of the game, if one player achieves
a given payoff, then all do, obviating the need to consider player-specific minimum
payoffs. We seek a lower bound on v∗ and will show that this lower bound is at least
1/4, for every discount factor.
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� r � r

T 1, 1, 1 0, 0, 0 T 0, 0, 0 0, 0, 0

B 0, 0, 0 0, 0, 0 B 0, 0, 0 1, 1, 1

L R

Figure 3.4.1 A three-player game in which players cannot be simultaneously
minmaxed.

The first thing to note is that given any specification of stage-game actions, there
is at least one player who, conditional on the actions of the other two players, can
achieve a payoff of 1/4 in the stage game. In particular, let αi(1) be the probability
attached to the first action (i.e., first row, column, or matrix) for player i. Then for
any specification of stage game actions, there must be one player i for whom either
αj (1) ≥ 1/2 and αk(1) ≥ 1/2 or (1 − αj (1)) ≥ 1/2 and (1 − αk(1)) ≥ 1/2. In the
former case, playing the first action gives player i a payoff at least 1/4, whereas in the
second case playing the second action does so.

Now fix a discount factor δ and an equilibrium, and let player i be the one who,
given the first-period actions of his competitors, can choose an action giving a payoff
at least 1/4 in the first period. Then doing so ensures player i a repeated-game payoff
of at least

(1− δ) 1
4 + δv∗.

If the putative equilibrium is indeed an equilibrium, then it must give an equilibrium
payoff at least as high as the payoff (1− δ) 1

4 + δv∗ that player i can obtain. Because
this must be true of every equilibrium, the lower bound v∗ on equilibrium payoffs must
also satisfy this inequality, or

v∗ ≥ (1− δ) 1
4 + δv∗,

which we solve for

v∗ ≥ 1
4 .

The folk theorem fails in this case because there are feasible strictly individually rational
payoff vectors, namely, those giving some player a payoff in the interval (0, 1/4), that
cannot be obtained as the result of any subgame-perfect equilibrium of the repeated
game, for any discount factor.

It may appear as if not much is lost by the inability to achieve payoffs less than 1/4,
because we rarely think of a player striving to achieve low payoffs. However, we could
embed this game in a larger one, where it serves as a punishment designed to create
incentives not to deviate from an equilibrium path. The inability to secure payoffs lower
than 1/4 may then limit the ability to achieve relatively lucrative equilibrium payoffs.
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3.4.2 Player-Specific Punishments

The source of difficulty in the previous example is that the payoffs of the players are
perfectly aligned, so that it is impossible to increase or decrease one player’s payoff
without doing so to all other players. In this section, we show that a folk theorem holds
when we have the freedom to tailor rewards and punishments to players.

Definition

3.4.1
A payoff v ∈ F ∗ allows player-specific punishment if there exists a collection
{vi}ni=1 of payoff profiles, vi ∈ F ∗, such that for all i,

vi > vii ,

and, for all j �= i,
v
j
i > vii .

The collection {vi}ni=1 constitutes a player-specific punishment for v. If {vi}ni=1
constitutes a player-specific punishment for v and vi ∈ F , then {vi}ni=1 constitute
pure-action player-specific punishments for v.

Hence, we can definenpayoff profiles, one profile vi for each player i, with the property
that player i fares worst (and fares worse than the candidate equilibrium payoff ) under
profile vi . This is the type of construction that is impossible in the preceding example.

Recall that

Fp ≡ {v ∈ F : vi > vpi } = {u(a) : ui(a) > vpi , a ∈ A}
is the set of payoffs in F †p achievable in pure actions. The existence of pure-action
player-specific punishments for a payoff v ∈ Fp or F †p turns out to be sufficient for
v to be a subgame-perfect equilibrium payoff.

Proposition

3.4.1
1. Suppose v ∈ Fp allows pure-action player-specific punishments in Fp. There

exists δ < 1 such that for all δ ∈ (δ, 1), there exists a subgame-perfect equilib-
rium with payoffs v.

2. Suppose v ∈ F †p allows player-specific punishments in F †p. There exists
δ < 1 such that for all δ ∈ (δ, 1), there exists a subgame-perfect equilibrium
with payoffs v of the repeated game with public correlation.

Before proving this proposition, we discuss its implications. Given proposi-
tion 3.4.1, obtaining a folk theorem reduces to obtaining conditions under which all
feasible and strictly individually rational payoffs allow pure-action player-specific pun-
ishments. For continuum action spaces, Fp may well have a nonempty interior, as
it does in our oligopoly example. If a payoff vector v′ is in the interior of Fp, we
can vary one player’s payoff without moving others’ payoffs in lock-step. Beginning
with a payoff v, we can then use variations on a payoff v′ < v to construct player
specific punishments for v. This provides the sufficient condition that we combine
with proposition 3.4.1 to obtain a folk theorem.

For finite games, there is no hope for Fp being convex (except the trivial case
of a game with a single payoff profile) or having a nonempty interior. One can only
assume directly that Fp allows player-specific punishment. However, the set F †p is
necessarily convex. The full dimensionality of F †p then provides a sufficient condition
for a folk theorem with public correlation.
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Proposition

3.4.2
Pure-minmax perfect monitoring folk theorem

1. Suppose Fp is convex and has nonempty interior. Then, for every payoff v in
{ṽ ∈ Fp : ∃v′ ∈ Fp, v′i < ṽi∀i}, there existsδ < 1 such that for all δ ∈ (δ, 1),
there exists a subgame-perfect equilibrium with payoffs v.

2. Suppose F †p has nonempty interior. Then, for every payoff v in {ṽ ∈ F †p :
∃v′ ∈ F †p, v′i < ṽi ∀i}, there exists δ < 1 such that for all δ ∈ (δ, 1), there
exists a subgame perfect equilibrium, with payoffs v, of the repeated game with
public correlation.

The set {ṽ ∈ Fp : ∃v′ ∈ Fp, v′i < ṽi∀i} equalsFp except for its lower boundary.
When a set is convex, the condition that it have nonempty interior is equivalent to that
of the set having full dimension.8 The assumption that F †p have full dimension is
Fudenberg and Maskin’s (1986) full-dimensionality condition.9

Proof of Proposition 3.4.2 We only prove the first statement, because the second is proved
mutatis mutandis. Fix v ∈ {ṽ ∈ Fp : ∃v′ ∈ Fp, v′i < ṽi ∀i}. Because Fp is
convex and has nonempty interior, there exists v′ ∈ intFp satisfying v′i < vi for
all i.10 Fix ε > 0 sufficiently small that the

√
nε-ball centered at v′ is contained

in intFp. For each player i, let ai denote the profile of stage-game actions that
achieves the payoff profile

(v′1 + ε, . . . , v′i−1 + ε, v′i , v′i+1 + ε, . . . , v′n + ε).
By construction, the profiles a1, . . . , an generate player-specific punishments.
Now apply proposition 3.4.1.

■

Remark

3.4.1
Dispensability of public correlation The statement of this proposition and the

preceding discussion may give the impression that public correlation plays an
indispensable role in the folk theorem for finite games. Although it simplifies the
constructive proof, it is unnecessary. Section 3.7 shows that the perfect monitor-
ing folk theorem (proposition 3.4.2(2)) holds as stated without public correlation.
Section 3.8 continues by showing that the proposition also holds (without pub-
lic correlation) when F †p is replaced by F ∗, and hence pure minmax utilities
replaced by (potentially lower) mixed minmax utilities.

◆

We now turn to the proof of proposition 3.4.1. The argument begins as in the two-
player case, assuming that players choose a stage-game action profile a ∈ A giving
payoff v. A deviation by player i causes the other players to minmax i for a sufficiently
long period of time as to render the deviation suboptimal. Now, however, it is not obvi-
ous that the remaining players will find it in their interest to execute this punishment.
In the two-player case, the argument that punishments would be optimally executed
depended on the fact that the punishing players were themselves being minmaxed. This

8. The dimension of a convex set is the maximum number of linearly independent vectors in the set.

9. Though not usual, it is possible that F †p includes part of its lower boundary. For example, the
payoff vector (1/2, 1/2, 1) in the game of figure 3.4.2 is in F †p and lies on its lower boundary.

10. The interior of a set A is denoted intA .
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L R L R

T 1, 1, 1 2, 2, 0 T 0, 2, 2 1, 1, 0

B 2, 0, 2 1, 0, 1 B 0, 1, 1 2, 2, 2

� r

Figure 3.4.2 Impossibility of mutual minmax when
player-specific punishments are possible.

imposed a bound on how much a player could gain by deviating from a punishment that
allowed us to ensure that such deviations would be suboptimal. However, the assump-
tion that v allows player-specific punishments does not ensure that mutual minmaxing
is possible when there are more than two players. For example, consider the stage
game in figure 3.4.2, where player 1 chooses rows, player 2 chooses columns, and
player 3 matrices. The strictly individually rational payoff profile (1, 1, 1), though not
a Nash equilibrium payoff of the stage game, does allow player-specific punishments
(in which vi gives player i a payoff of 0 and a payoff of 2 to the other players). It is,
however, impossible to simultaneously minmax all of the players. Instead, minmaxing
player 1 requires strategies (·, L, r), minmaxing 2 requires (B, ·, �), and minmaxing
3 requires (T , R, ·).

As a result, we must find an alternative device to ensure that punishments will
be optimally executed. The incentives to do so are created by providing the punishing
players with a bonus on the completion of the punishment phase. The second condition
for player-specific punishments ensures that it is possible to do so.

Proof of Proposition 3.4.1 Statement 1. Let a0 be a profile of pure stage-game actions
that achieves payoff v and a1, . . . , an a collection of action profiles providing
player-specific punishments. The desired profile is the simple strategy profile
(definition 2.6.1), σ(a(0), a(1), . . . , a(n)), where a(0) is the constant outcome
path in which a0 is played in every period, and a(i), i = 1, . . . , n, is i’s punishment
outcome path of L periods of âi followed by ai in every period (where L is to be
determined and âi is the profile that minmaxes player i). Under this profile, the
stage-game action profile a0 is played in the first period and in every subsequent
period as long as it has always been played. If agent i deviates from this behavior,
then the profile calls for i to be minmaxed for L periods, followed by perpetual
play of ai . Should any player j (including i himself) deviate from either of these
latter two prescriptions, then the equilibrium calls for the play of âj forL periods,
followed by perpetual play of aj , and so on.11

An automaton for this profile has the set of states

W = {w(d) : 0 ≤ d ≤ n} ∪ {w(i, t) : 1 ≤ i ≤ n, 0 ≤ t ≤ L− 1},

11. In each case, simultaneous deviations by two or more players are ignored.
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initial state w0 = w(0), output function f (w(d)) = ad and f (w(i, t)) = âi , and
transition rule

τ(w(d), a) =
{
w(j, 0), if aj �= adj , a−j = ad−j ,

w(d), otherwise,

and

τ(w(i, t), a) =
{
w(j, 0), if aj �= âij , a−j = âi−j ,

w(i, t + 1), otherwise,

where w(i, L) ≡ w(i).
We apply proposition 2.4.1 to show that the profile is a subgame-perfect

equilibrium. The values in the different states are:

V (w(d)) = u(ad),

and

V (w(i, t)) = (1− δL−t )u(âi)+ δL−tV (w(i))
= (1− δL−t )u(âi)+ δL−t u(ai).

We begin by verifying optimality in states w = w(d). The one-shot game of
proposition 2.4.1 has payoff function

gw(a) =
{
(1− δ)u(a)+ δV (w(j, 0)), if aj �= adj , a−j = ad−j ,

(1− δ)u(a)+ δu(ad), otherwise.

Setting M ≡ maxi,a ui(a), the action profile ad is a Nash equilibrium of gw if,
for all j

uj (a
d) ≥ (1− δ)M + δVj (w(j, 0))

= (1− δ)M + δ[(1− δL)vpj + δLuj (aj )].

The left side of this inequality is the payoff from remaining in state wd , whereas
the right side is an upper bound on the value of a deviation followed by the
accompanying punishment. This constraint can be rewritten as

(1− δ)(M − uj (ad)) ≤ δ(1− δL)(uj (ad)− vpj )
+ δL+1(uj (a

d)− uj (aj )). (3.4.1)

As δ → 1, the left side converges to 0, and for d �= j , the right side is strictly
positive and bounded away from 0. Suppose d = j . Then the inequality can be
rewritten as
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M − uj (aj ) ≤ δ(1− δL)
(1− δ) (uj (a

j )− vpj ).

Because

lim
δ→1

δ(1− δL)
(1− δ) = lim

δ→1
δ

L−1∑
t=0

δt = L,

we can choose L sufficiently large that

M − uj (aj ) < L(uj (a
j )− vpj )

for all j . Consequently, for δ sufficiently close to 1, ad is a Nash equilibrium of
gw for w = w(d).

We now verify optimality in states w=w(i, t). The one-shot game of
proposition 2.4.1 in this case has payoff function

gw(a) =
{
(1− δ)u(a)+ δV (w(j, 0)), if aj �= âij , a−j = âi−j ,

(1− δ)u(a)+ δV (w(i, t + 1)), otherwise.

A sufficient condition for âi to be a Nash equilibrium of gw is that for all j ,

Vj (w(i, t)) ≥ (1− δ)M + δVj (w(j, 0)),

that is,

(1− δL−t )uj (âi)+ δL−t uj (ai) ≥ (1− δ)M+ δ[(1− δL)vpj + δLuj (aj )]. (3.4.2)

Rearranging,

(1− δ)uj (âi)+ δ(1− δL−t−1)uj (â
i)+ δL−t (1− δt+1)uj (a

i)+ δL+1uj (a
i)

≥ (1− δ)M + δ(1− δL−t−1)v
p
j + δL−t (1− δt+1)v

p
j + δL+1uj (a

j ),

or

δL+1{uj (ai)− uj (aj )} ≥ (1− δ)(M − uj (âi))+ δ(1− δL−t−1)(v
p
j − uj (âi))

+ δL−t (1− δt+1)(v
p
j − uj (ai)).

Because L is fixed, this last inequality is clearly satisfied for δ close to 1.

Statement 2. Letα0 be the correlated profile that achieves payoff v, andα1, . . . , αn

a collection of correlated action profiles providing player-specific punishments.
The second statement is proved in the same manner as the first, with the correlated
action profiles αd replacing the pure action profiles ad . We need only describe
the automaton. Recall (from remark 2.3.3) that the automaton representing a pure
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strategy profile in the game with public correlation is given by (W , µ0, f, τ ),
where µ0 ∈ �(W ) is the distribution over initial states and τ : W ×A→ �(W ).
The set of states is

W = (A× {0, 1, . . . , n}) ∪ {w(i, t) : 1 ≤ i ≤ n, 0 ≤ t ≤ L− 1},

the distribution over initial states is given by µ0((a, 0)) = α0(a), and the output
function is f ((a, d)) = a and f (w(i, t)) = âi . For states w(i, t), t < L− 1, the
transition is deterministic and given by the transition rule

τ(w(i, t), a) =
{
w(j, 0), if aj �= âij , a−j = âi−j ,

w(i, t + 1), otherwise.

For states w(i, L− 1) the transition is stochastic, reflecting the correlated player-
specific punishments αi :

τ(w(i, L− 1), a) =
{
w(j, 0), if aj �= âij , a−j = âi−j ,

(αi, i), otherwise,

where (αi, i) is interpreted as the probability distribution over A× {i} assigning
probabilityαi(a) to (a, i). Finally, for states (a, d), the transition is also stochastic,
reflecting the correlated actions αd :

τ((a, d), a′) =
{
w(j, 0), if a′j �= aj , a′−j = a−j ,

(αd, d), otherwise,

where (αd, d) is interpreted as the probability distribution overA×{d} assigning
probability αd(a) to (a, d).

■

3.5 Non-Equivalent Utilities

The game presented in section 3.4.1, in which the folk theorem does not hold, has
the property that the three players always receive identical utilities. As a result, one
can never reward or punish one player without similarly rewarding or punishing all
players. The sufficient condition in proposition 3.4.2 is that the set Fp be convex and
have a nonempty interior. In the interior of this set, adjusting one player’s payoff has
no implications for how the payoffs of the other players might vary.

How much stronger is the sufficient condition than the conditions necessary for the
folk theorem? Abreu, Dutta, and Smith (1994) show that it suffices for the existence
of player-specific punishments (and so the folk theorem) that no two players have
identical preferences over action profiles in the stage game. Recognizing that the
payoffs in a game are measured in terms of utilities and that affine transformations of
utility functions preserve preferences, they offer the following formulation.
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Definition

3.5.1
The stage game satisfies NEU (nonequivalent utilities) if there are no two players i
and j and constants c and d > 0 such that ui(a) = c+duj (a) for all pure action
profiles a ∈ A.

Notice that a nontrivial symmetric game, in which players have the same utility
function, need not violate the NEU condition. In a two-player symmetric game,
u1(x, y) = u2(y, x), whereas a violation of NEU requires u1(x, y) = u2(x, y) for all
x and y.

Proposition

3.5.1
If the stage game satisfies NEU, then every v ∈ F †p allows player-specific pun-
ishments in F †p. Moreover, every v ∈ F ∗ allows player-specific punishments
in F ∗.

Proof If F †p is nonempty, no player can be indifferent over all action profiles in A,
and we will proceed under that assumption. For j �= i, denote the projection of
F † onto the ij -coordinate plane by F

†
ij , and its dimension by dimF

†
ij . Clearly,

dimF
†
ij ≤ 2. Because F † is convex and no player is indifferent over all action

profiles, dimF
†
ij ≥ 1 for all i �= j .

Claim 3.5.1. For all players i, either dimF
†
ik = 2 for all k �= i, or dimF

†
ij = 1

for some j �= i and dimF
†
ik = 2 for all k �= i, j .

Proof. Suppose dimF
†
ij = dimF

†
ik = 1 for some j �= i and k �= i, j . NEU

implies that players i and j have payoffs that are perfectly negatively related,
as do players i and k. But this implies that j and k have equivalent payoffs,
violating NEU.

�

Claim 3.5.2. There exist n payoff profiles {ṽ1, . . . , ṽn} ⊂ F † with the property
that for every pair of distinct players i and j ,

ṽii < ṽ
j
i .

Note this is the second condition of player-specific punishments, and there
is no assertion that these payoff profiles are strictly or weakly individually
rational.

Proof. If dimF
†
ij = 1 for some i and j , then i and j ’s payoffs are perfectly neg-

atively related. Consequently, by the first claim, for each pair of players j and
k, there exist some feasible payoff vectors vjk and vkj such that vjkj > v

kj
j and

v
kj
k > v

jk
k . Let {θh : h = 1, . . . , n(n − 1)} be a collection of weights satisfying

θh > θh+1 > 0 and
∑
h θh = 1. For each player i, order the n(n − 1) payoff

vectors vjk in increasing size according to vjki (break ties arbitrarily), and let vh(i)
be the hth vector in the order. Define

ṽi =
∑
h

θhv
h(i).

From convexity, ṽi ∈ F †. The construction of the vectors vh(i) ensures that for
i �= j , we have

∑
h≤h′ vhi (i) ≤

∑
h≤h′ vhi (j) for all h′ and strict inequality for

at least one h′. Therefore,
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0 >
n(n−1)−1∑
h′=1

(θh′ − θh′+1)

h′∑
h=1

(
vhi (i)− vhi (j)

)+ θn(n−1)

n(n−1)∑
h=1

(
vhi (i)− vhi (j)

)

=
n(n−1)−1∑
h′=1

θh′
(
vh
′
i (i)− vh

′
i (j)

)+ n(n−1)−1∑
h′=2

θh′
h′−1∑
h=1

(
vhi (i)− vhi (j)

)

−
n(n−1)−1∑
h′=1

θh′+1

h′∑
h=1

(
vhi (i)− vhi (j)

)+ θn(n−1)

n(n−1)∑
h=1

(
vhi (i)− vhi (j)

)

=
n(n−1)−1∑
h′=1

θh′
(
vh
′
i (i)− vh

′
i (j)

)− θn(n−1)

n(n−1)−1∑
h=1

(
vhi (i)− vhi (j)

)

+ θn(n−1)

n(n−1)∑
h=1

(
vhi (i)− vhi (j)

)
=
∑
h

θh
(
vhi (i)− vhi (j)

) = ṽii − ṽji ,

and {ṽi}i is the desired collection of payoffs.
�

It only remains to use the payoff vectors from this claim to construct player-
specific punishments, for any v ∈ F †p. Let wi ∈ F † be a feasible payoff
vector minimizing i’s payoff (because F † is compact, the payoff wi solves
min{vi : v ∈ F †}). Fix v ∈ F †p and consider the collection of payoff vectors
{vi}i , where

vi = ε(1− η)wi + ηεṽi + (1− ε)v

(the constants η > 0 and ε > 0 are independent of i and to be determined). From
convexity, vi ∈ F †. For any η > 0 and ε > 0, vii − vji = ε(1− η)

(
wii − wji

)+
ηε
(
ṽii − ṽji

)
< 0.12 For sufficiently small ε, because vj > v

p
j , we have vij > v

p
j

and so vi ∈ F †p. Finally, for fixed ε, because wii < vi , for sufficiently small
η, vii < vi , and {vi}i is a player-specific punishment for v.

The second statement follows from the observation that for v ∈ F ∗, vj > vj
and so vi ∈ F ∗.

■

Using proposition 3.4.1, proposition 3.5.1 allows us to improve on proposi-
tion 3.4.2 in two ways. It weakens the full-dimensionality condition to NEU and
includes any part of the lower boundary of Fp in the set of payoffs covered (see note 9
on page 83).

12. NEU is important here, since there is no guarantee that wii <w
j
i . We could not use u(âi )

in place of wi , because as we have argued, minmaxing player i may be very costly
for j .
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L R

T 0,−1 1, 0

B 0,−1 2, 1

Figure 3.5.1 A game with minimal attainable payoffs that
are strictly individually rational.

Corollary

3.5.1
Pure-minmax perfect monitoring folk theorem NEU

1. Suppose Fp is convex and the stage game satisfies NEU. Then, for every
payoff v in Fp, there exists δ < 1 such that for all δ ∈ (δ, 1), there exists a
subgame-perfect equilibrium with payoffs v.

2. Suppose the stage game satisfies NEU. Then, for every payoff v in F †p, there
exists δ < 1 such that for all δ ∈ (δ, 1), there exists a subgame-perfect equilib-
rium, with payoffs v, of the repeated game with public correlation.

Could an even weaker condition suffice? Abreu, Dutta, and Smith (1994) note
that Benoit and Krishna (1985) offer a finite-horizon example that can be adapted to
infinite-horizon games in which two out of three players have identical payoffs and the
folk theorem fails. Hence, it appears unlikely that we can find a much weaker sufficient
condition than NEU. Indeed, Abreu, Dutta, and Smith show that the NEU condition is
very nearly necessary for the folk theorem. Define for each player i the payoff

fi = min{vi |v ∈ F , vj ≥ vj , j = 1, . . . , n}.

Hence, fi is i’s minimal attainable payoff, the worst payoff that can be achieved for
player i while restricting attention to payoff vectors that are (weakly) individually
rational. If there is a stage-game action profile that gives every player their minmax
payoff, as in the prisoners’ dilemma, then fi = vi for all i. Even in the absence of such
a profile, every player’s minimal attainable payoff may be the minmax value, as long as
for each player i there is some profile yielding the minmax payoff for i without forcing
other players below their minmax value. However, it is possible that fi is strictly higher
than the minmax payoff. For example, consider the game in figure 3.5.1. Then the
minmax value for each of players 1 and 2 is 0. However, f1 = 1 (while f2 = 0),
because the lowest payoff available to player 1 that is contained in a payoff vector with
only nonnegative elements is 1.13

Abreu, Dutta, and Smith (1994) then establish the following results. If for every
mixed action profile α there is at most one player i whose best response to α gives a
payoff no higher than fi , then the NEU condition is necessary (as well as sufficient) for
the folk theorem to hold. Notice that one circumstance in which there exists a strategy
profile α to which every player i’s best response to α gives a payoff no larger than fi is

13. Minmaxing player 1 requires player 2 to endure a negative payoff.
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that in which all players can be simultaneously minmaxed, as in two-player games. It is
then no surprise that the folk theorem holds for such games without requiring NEU.14

3.6 Long-Lived and Short-Lived Players

This section presents a direct characterization of the set of subgame-perfect equilibrium
payoffs of the game with one patient long-lived player and one or more short-lived
players. We defer the general perfect-monitoring characterization result for games with
long-lived and short-lived players to proposition 9.3.2.

From section 2.7.2, the presence of short-lived players imposes constraints on
long-lived players’payoffs. Accordingly, there is no folk theorem in this case. Because
there is only one long-lived player, the convexification we earlier obtained by public
correlation is easily replaced by nonstationary sequences of outcomes.15 As we will
see in section 3.7, this is true in general but significantly complicated by the presence
of multiple long-lived players. The argument in this section is also of interest because
it presages critical features of the argument in section 3.8 dealing with mixed-action
individual rationality.

For later reference, we first describe the set of feasible and strictly individually
rational payoffs for n long-lived players. The payoff of a long-lived player i must be
drawn from the interval [vi, v̄i], where (recalling (2.7.1) and (2.7.2)),

vi = min
α∈B

max
ai∈Ai

ui(ai, α−i ) (3.6.1)

and

v̄i = max
α∈B

min
ai∈supp(αi )

ui(ai, α−i ). (3.6.2)

Define

F ≡ {v ∈ Rn : ∃α ∈ B s.t. vi = ui(α), i = 1, . . . , n},
F † ≡ co(F ),

and

F ∗ ≡ {v ∈ F † : vi > vi, i = 1, . . . , n}.
We have thus defined the set of stage-game payoffs F , its convex hull F †, and
the subset of these payoffs that are strictly individually rational, all for n long-lived
players. These differ from their counterparts for a game with only long-lived players
in the restriction to best-response behavior for the short-lived players. As has been our
custom, we do not introduce new notation to denote these sets of payoffs, trusting the
context to keep things clear.

14. Wen (1994) characterizes the set of equilibrium payoffs for games that fail NEU.

15. Unsurprisingly, public correlation allows a simpler argument; see Fudenberg, Kreps, and Maskin
(1990). The argument presented here is also based on Fudenberg, Kreps, and Maskin (1990).
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L C R

T 1, 3 0, 0 6, 2

B 0, 0 2, 3 6, 2

Figure 3.6.1 The game for example 3.6.1.

We have defined F as the set of stage-game payoffs produced by profiles of mixed
actions. When working with long-lived players, our first step was to define F as the
set of pure-action stage-game payoffs. Why the difference? When working only with
long-lived players, all of the extreme points of the set of stage-game payoffs produced
by pure or mixed actions correspond to pure action profiles. It then makes no difference
whether we begin by examining pure or mixed stage-game profiles, as the two sets
yield the same convex hull F †. When some players are short-lived, this equivalence
no longer holds. The restriction to stage-game payoffs produced by profiles in the set B
raises the possibility that some of the extreme points of the set of stage-game payoffs
may be produced by mixtures. It is thus important to define F in terms of mixed action
profiles. Example 3.6.1 illustrates.

Example

3.6.1
Consider the stage game in figure 3.6.1. The pure action profiles in the set B are
(T , L) and (B,C). Denote a mixed action for player 1 by αT1 , the probability
attached to T . Then the set B includes

{
(αT1 , L) : αT1 ≥ 2

3

} ∪ {(αT1 , R) : 1
3 ≤ αT1 ≤ 2

3

} ∪ {(αT1 , C) : αT1 ≤ 1
3

}
.

Hence, v1 = 1 and v̄1 = 6. If we had defined F as the set of payoffs pro-
duced by pure action profiles in B, we would have F = {1, 2} and F † =
F ∗ = [1, 2], concluding that the set of equilibrium payoffs for player 1 in
the repeated game is [1, 2]. Allowing F to include mixed action profiles gives
F ⊃ [2/3, 1] ∪ [4/3, 2] ∪ {6}. For any v1 ∈ [1, 6], there is then an equilibrium of
the repeated game, for sufficiently patient player 1, with a player 1 payoff of v1.16

●

Proposition

3.6.1
Suppose there is one long-lived player, andv1 < v̄1. For every v1 ∈ (v1, v̄1], there
exists δ such that for all δ ∈ (δ, 1), there exists a subgame-perfect equilibrium of
the repeated game with value v1.

Proof Let α′ be a stage-game Nash equilibrium with payoff v′1 for player 1 (this equi-
librium is pure if the stage game has continuum action spaces for all players).
Note that v′1 ∈ [v1, v̄1]. Repeating the stage-game Nash equilibrium immediately
gives a repeated-game payoff of v′1. We separately consider payoffs below and

16. Proposition 3.6.1 ensures only that we can obtain payoffs in the interval (1, 6]. In this case, the
lower endpoint corresponds to a stage-game Nash equilibrium and hence is easily obtained as
an equilibrium payoff in the repeated game.
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above v′1. Because we always require α ∈ B, the short-lived players’ incentive
constraints are always satisfied.

Case 1. v1 ∈ (v′1, v̄1].
Let ᾱ ∈ B be a stage-game action profile that solves the maximization problem

in (3.6.2) (and hence u1(a1, ᾱ−1) ≥ v̄1 for all a1 ∈ supp ᾱ1).17 Suppose the
discount factor is sufficiently large that the following inequality holds:

(1− δ)(M − v′1) ≤ δ(v1 − v′1), (3.6.3)

where M is the largest stage-game payoff.
The idea behind the equilibrium strategies is to reward player 1 with the rel-

atively large payoff from ᾱ when a discounted average of the payoffs he has so
far received are “behind schedule,” and to punish player 1 with the low payoff v′1
when it is “ahead of schedule.” To do this, we recursively define a set of histories
˜H t , a measure of the running total of player 1 expected payoffs ζ t (ht ), and the

equilibrium strategy profile σ . We begin with ˜H 0 = {∅} and ζ 0 = 0. Given ˜H t

and ζ t (ht ), the strategy profile in period t is given by

σ(ht ) =
{
α′, if ζ t (ht ) ≥ (1− δt+1)(v1 − v′1) and ht ∈ ˜H t , or if ht �∈ ˜H t ,

ᾱ, if ζ t (ht ) < (1− δt+1)(v1 − v′1) and ht ∈ ˜H t .

The next period set of histories is

˜H t+1 = {ht+1 ∈H t+1 : ht ∈ ˜H t and at ∈ supp σ(ht )
}
,

and the updated running total is

ζ t+1(ht+1) = ζ t (ht )+ (1− δ)δt(u1
(
at1, σ−1(h

t )
)− v′1).

Note that on ˜H t , σ and ζ t only depend on the history of player 1 actions. Hence,
other than the specification of Nash reversion after an observable deviation by the
short-lived players, the actions of the short-lived players do not affect ζ t .

Because

ζ t (ht ) = (1− δ)
t−1∑
τ=0

δτ u1(a
τ
1 , σ−1(h

τ ))− (1− δt )v′1,

ζ t (ht ) would equal (1− δt )(v1 − v′1) if player 1 expected to received a payoff of
precisely v1 in each of periods 0, . . . , t − 1 under σ−1 and his realized behavior.
As a result, ζ t (ht ) > (1− δt )(v1 − v′1) implies that player 1 is ahead of schedule
on ht in terms of accumulating a “notional” repeated game payoff of v1, whereas
ζ t (ht ) < (1 − δt )(v1 − v′1) indicates that player 1 is behind schedule.18 It is

17. Note that whenA−1 is finite, ᾱ−1 may be mixed. The short-lived players play a Nash equilibrium
of the stage game induced by 1’s behavior. This stage game need not have a pure strategy Nash
equilibrium (unless there is only one short-lived player).

18. The term (1 − δt+1) cannot be replaced by (1 − δt ) in the specification of σ . Under that
specification, the first action profile is α′ for all v1 ∈ (v′1, v̄1]. It may then be impossible to
achieve v1 for v1 close to v̄1.
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important to remember in the following argument that for histories ht in which
the short-lived players do not follow σ−1, player 1’s actual accumulated payoff
does not equal (1− δt )v′1 + ζ(ht ). On the other hand, for any strategy for player
1, σ̃1, player 1’s payoffs from the profile (σ̃1, σ−1) is

U1(σ̃1, σ−1) = v′1 + E limt→∞ ζ t (ht ) ≡ v′1 + Eζ∞(h), (3.6.4)

where expectations are taken over the outcomes h ∈ A∞.
We first argue that ζ t (ht ) < v1−v′1 for all ht ∈H t . The proof is by induction.

We have ζ 0 = 0 < v1 − v′1. For the induction step, assume ζ t < v1 − v′1 and
consider ζ t+1. We break this into two cases. If ζ t ≥ (1 − δt+1)(v1 − v′1) or
ht �∈ ˜H t , then ζ t+1 = ζ t + (1 − δ)δt (u1(a

t
1, α

′−1) − v′1) ≤ ζ t < v1 − v′1. If

ζ t < (1− δt+1)(v1 − v′1) and ht ∈ ˜H t , then ζ t+1 ≤ ζ t + (1− δ)δt (M − v′1) <
(1−δt+1)(v1−v′1)+δt+1(v1−v′1) = v1−v′1, where the final inequality uses (3.6.3).

We now argue that if player 1 does not observably deviate from σ1 (i.e., for
all at

′
1 ∈ supp σ1

(
ht
′)

, t ′ = 0, . . . , t − 1) then ζ t ≥ (1 − δt )(v1 − v′1). We
again proceed via an induction argument, beginning with the observation that
ζ 0 = 0 = (1−δ0)(v1−v′1), as required. Now suppose ζ t ≥ (1−δt )(v1−v′1) and
consider ζ t+1. If ζ t ≥ (1−δt+1)(v1−v′1), then ζ t+1 = ζ t ≥ (1−δt+1)(v1−v′1),
the desired result. If ζ t < (1− δt+1)(v1 − v′1), then

ζ t+1 = ζ t + (1− δ)δt (u1(a
t
1, ᾱ2)− v′1)

≥ ζ t + (1− δ)δt (v̄1 − v′1)
≥ (1− δt )(v1 − v′1)+ (1− δ)δt (v1 − v′1)
= (1− δt+1)(v1 − v′1),

as required, where the first inequality notes that ᾱ is played when ζ t < (1−δt+1)×
(v1 − v′1) and applies (3.6.2), the next inequality uses the induction hypothesis
that ζ t ≥ (1− δt )(v1 − v′1), and the final equality collects terms.

Hence, if in every period t , player 1 plays any action in the support of σ1(h
t ),

then limt→∞ ζ t (ht ) = v1− v′1, and so from (3.6.4) player 1 is indifferent over all
such strategies, and the payoff is v1. Because play reverts to the stage-game Nash
equilibrium α′ after an observable deviation, to complete the argument that the
profile is a subgame-perfect equilibrium, it suffices to argue that after a history
ht ∈ ˜H t , player 1 does not have an incentive to choose an actiona1 �∈ suppσ1(h

t ).
That is, it suffices to argue that the profile is Nash. But the expected value of
v′1 + limt→∞ ζ(ht ) gives the period 0 value for any strategy of player 1 against
σ−1, and we have already argued that lim supt→∞ ζ t (ht ) ≤ v1 − v′1.

Case 2. v1 ∈ (v1, v
′
1).

This case is similar to case 1, though permanent Nash reversion can no longer
be easily used to punish observable deviations because the payoff from the stage-
game Nash equilibrium is more attractive than the target, v1. Let α̂ solve (3.6.1)
(and hence u1(a1, α̂−1) ≤ v1 for all a1). Choose δ sufficiently large that

δ(v1 − v′1) < (1− δ)(m− v′1), (3.6.5)

where m is the smallest stage-game payoff.
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The strategies we define will only depend on the history of player 1 actions,
and so the measure of the running total of player 1 expected payoffs ζ t will also
depend only on the history of player 1 actions. For any history ht ∈H t , ht1 ∈ At1
denotes the history of player 1 actions. We begin with ˜H 0 = {∅} and ζ 0 = 0.
The equilibrium strategy profile σ is defined as follows. Set ζ 0 = 0, and given
ζ t (ht1), the strategy profile in period t is given by

σ(ht ) =
{
α′, if ζ t (ht1) < (1− δt+1)(v1 − v′1),
α̂, if ζ t (ht1) ≥ (1− δt+1)(v1 − v′1).

Because period t behavior under σ depends only on the history of player 1 actions,
we write σ(ht1) rather than σ(ht ). The updated running total is given by

ζ t+1(ht+1
1 ) = ζ t (ht1)+ (1− δ)δt

(
u1(a

t
1, σ−1(h

t
1))− v′1

)
.

Again, only the actions of the long-lived player affect ζ t .
We first argue that ζ t (ht1) ≤ (1− δt )(v1 − v′1) < 0 for t ≥ 1 for all ht1 ∈ At1.

To do this, we first note that ζ 0 = 0 and hence α0−1 = α̂−1, ensuring ζ 1 ≤
(1−δ)(v1−v′1) < (1−δ)(v1−v′1). We then proceed via induction. Suppose ζ t ≤
(1−δt )(v1−v′1). If ζ t < (1−δt+1)(v1−v′1), then ζ t+1 ≤ ζ t < (1−δt+1)(v1−v′1).
Suppose instead that ζ t ≥ (1− δt+1)(v1 − v′1). Then αt−1 = α̂−1, and hence

ζ t+1 ≤ ζ t + (1− δ)δt (v1 − v′1)
≤ (1− δt )(v1 − v′1)+ (1− δ)δt (v1 − v′1)
= (1− δt+1)(v1 − v′1),

where the second inequality uses the induction hypothesis.
We now argue that for any history ht , if ζ t (ht1) ≥ (1 − δt+1)(v1 − v′1), then

for all a1 ∈ A1,

ζ t+1(ht1a1) ≥ ζ t + (1− δ)δt (m− v′1)
> (1− δt+1)(v1 − v′1)+ δt+1(v1 − v′1)
= v1 − v′1,

where the strict inequality uses (3.6.5).
Finally, for any history ht , if v1 − v′1 < ζ t (ht1) < (1 − δt+1)(v1 − v′1) and

player 1 chooses an action at1 ∈ supp σ1(h
t ), then ζ t+1(ht1a

t
1) = ζ t (ht1) >

(v1 − v′1).
Consider now a history ht1 satisfying ζ t (ht1) > v1 − v′1 (note that ζ 0 is one

such history). If player 1 chooses at
′

1 ∈ supp σ1(h
t ′), for all t ′ ≥ t , then ζ t

′
(ht

′
1 ) >

v1−v′1 for all t ′ ≥ t . Because ζ t
′
(ht

′
1 ) ≤ (1−δt

′
)(v1−v′1) for all ht

′
1 , we then have

that on any outcome h ∈ A∞ in which ζ t (ht1) > v1 − v′1 for some t and for all
t ′ ≥ t , player 1 does not observably deviate, ζ∞(h1) ≡ limt→∞ ζ t (ht1) = v1−v′1.

We now apply the one-shot deviation principle (proposition 2.7.1) to complete
the argument that the profile is an equilibrium. Fix an arbitrary history ht and
associated ζ t (ht1). We first eliminate a straightforward case. If ζ t (ht1) ≤ v1 − v′1,
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then σ(ht ) = α′ and so ζ t+1(ht1a1) ≤ ζ t (ht1) ≤ v1 − v′1 for all a1. Consequently,
at such a history, α′ is specified in every subsequent period independent of history,
and sequential rationality is trivially satisfied.

Suppose then ζ t (ht1) > v1 − v′1. Consider an action a1 for which

ζ t+1(ht1a1) > v1 − v′1. (3.6.6)

Then,

[ζ t (ht1)+ (1− δt )v′1] + δt [(1− δ)u1(a1, α̂−1)+ δÛ1(h
t
1a1)] = v1, (3.6.7)

where Û1(h
t
1a1) is the expected continuation from following σ after the history

hta1 (this follows from v1 − v′1 < ζ t
′
(ht

′
) ≤ (1 − δt ′)(v1 − v′1), where ht

′
is

a continuation of hta1 and 1 follows σ1 after htat1). This implies that the payoff
from a one-shot deviation at ht ,

(1− δ)u1(a1, α̂−1)+ δÛ1(h
t
1a1),

is independent of a1 satisfying (3.6.6), and player 1 is indifferent over all such a1.
If ζ t (ht1) ≥ (1− δt+1)(v1− v′1), then σ(ht ) = α̂, and all a1 satisfy (3.6.6). On

the other hand, if ζ t (ht1) < (1 − δt+1)(v1 − v′1), then σ(ht ) = α′, and there is a
possibility that for some action a1, (3.6.6) fails. That is,

ζ t (ht1)+ (1− δ)δt (u1(a1, α
′−1)− v′1) ≤ v1 − v′1. (3.6.8)

The history (ht1a1) is the straightforward case above, so that Û1(h
t
1a1) = v′1 and

the continuation payoff from a1 is (1 − δ)u1(a1, α
′−1) + δv′1. Equation (3.6.7)

holds for at1 ∈ supp σ1(h
t ), and so

ζ t (ht1)+ (1− δt )v′1 + δt (1− δ)v′1 + δt+1Û ′1 = v1. (3.6.9)

Using (3.6.9) to eliminate ζ t (ht1) in (3.6.8) and rearranging yields

(1− δ)δtu1(a1, α
′−1)+ δt+1v′1 ≤ (1− δ)δtv′1 + δt+1Û ′1,

and so the deviation to a1 is unprofitable.
■

3.7 Convexifying the Equilibrium Payoff Set Without
Public Correlation

Section 3.4 established a folk theorem using public correlation for payoffs in the set
F †p rather than Fp. This expansion of the payoff set is important because the former is
more likely to satisfy the sufficient condition for player-specific punishments embedded
in proposition 3.4.2, namely, that the set of payoffs has a nonempty interior. This is
most obviously the case for finite games, where Fp necessarily has an empty interior.
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In this section, we establish a folk theorem for payoffs in F †p as in proposition 3.4.2,
but without public correlation.

We have already seen two examples. Section 3.6 illustrates how nonstationary
sequences of outcomes can precisely duplicate the convexification of public correla-
tion for the case of one long-lived player. Example 2.5.3 shows that when players
are sufficiently patient, even payoffs that cannot be written as a rational convex com-
bination of pure-action payoffs can be exactly the average payoff of a pure-strategy
subgame perfect equilibrium, without public correlation. This ability to achieve exact
payoffs will be important in the next section, when we consider mixed minmax payoffs.

It is an implication of the analysis in chapter 9 (in particular, proposition 9.3.1)
that this is true in general (for finite games), and so the payoff folk theorem holds
without public correlation. This section and the next (on punishing using mixed-action
minmax) gives an independent treatment of this result. The results achieved using these
techniques are slightly stronger than that of proposition 9.3.1 because they include the
efficient frontier of F ∗ and cover continuum action spaces.

We first follow Sorin (1986) in arguing that for any payoff vector v in F †, there
is a sequence of pure actions whose average payoffs is precisely v. For ease of future
reference, we state the result in terms of payoffs.

Lemma

3.7.1
Suppose v ∈ Rn is a convex combination of {v(1), v(2), . . . , v(θ)}. Then, for all
δ ∈ (1 − 1/θ, 1), there exists a sequence {vt }∞t=0, vt ∈ {v(1), v(2), . . . , v(θ)},
such that

v = (1− δ)
∞∑
t=0

δtvt .

Proof By hypothesis, there exist θ nonnegative numbers λ1, . . . , λθ with
∑θ
k=1 λ

k = 1
such that

v =
θ∑
k=1

λkv(k).

Now we recursively construct a payoff path {vt }∞t=0 whose average payoff is v as
follows. The first payoff profile is v0 = v(k), where k is an index for which λk is
maximized. Now, suppose we have determined (v0, . . . , vt−1), the first t periods
of the payoff path. Let I τ (k) be the indicator function for the τ th element in the
sequence:

I τ (k) =
{

1 if vτ = v(k),
0 otherwise,

and letNt(k) count the discounted occurrences of profile v(k) in the first t periods,

Nt(k) =
t−1∑
τ=0

(1− δ)δτ I τ (k),

with N0(k) ≡ 0. Set vt = v(k′), where

k′ = arg max
k=1,...,θ

{λk −Nt(k)}, (3.7.1)
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breaking ties arbitrarily. Intuitively, maxk=1,...,θ {λk−Nt(k)} identifies the profile
that is currently “most underrepresented” in the sequence, and the trick is to choose
that profile to be the next element.

We now argue that as long as δ > 1 − 1/θ , the resulting sequence generates
precisely the payoffs v. Because

∞∑
t=0

(1− δ)δtvt =
θ∑
k=1

∞∑
t=0

(1− δ)δt I t (k)v(k) =
θ∑
k=1

lim
t→∞N

t(k)v(k),

we need only show that limt→∞Nt(k) = λk for each k. A sufficient condition for
this equality is that for all k and all t ,Nt(k) ≤ λk (because limt→∞

∑θ
k=1N

t(k) =
1 =∑θ

k=1 λ
k
)
.

We proveNt(k) ≤ λk by induction. Let k(t) denote the k for which vt = v(k).
Consider t = 0. There must be at least one profile k for which λk ≥ 1/θ and hence
λk > 1 − δ (from the lower bound on δ), ensuring N1(k(0))(= 1 − δ) ≤ λk(0).
For all values k �= k(0), we trivially have N1(k) = 0 ≤ λk .

Suppose now t > 0 and Nτ (k) ≤ λk for all τ < t and all k. We have
Nt(k(t − 1)) = Nt−1(k(t − 1)) + (1 − δ)δt−1 and Nt(k) = Nt−1(k) for k �=
k(t − 1). From the definitions, we have

∑
k

λk −
∑
k

Nt−1(k) = 1−
∑
k

Nt−1(k) = 1− (1− δ)
t−2∑
τ=0

δτ = δt−1.

Thus δt−1/θ ≤ maxk{λk −Nt−1(k)}. Hence (from (3.7.1))

Nt(k(t − 1)) = Nt−1(k(t − 1))+ (1− δ)δt−1

≤ Nt−1(k(t − 1))+ (1− δ)θ [λk(t−1) −Nt−1(k(t − 1))],

or

Nt(k(t − 1)) ≤ [1− θ(1− δ)]Nt−1(k(t − 1))+ θ(1− δ)λk(t−1).

Because 0 < θ(1− δ) < 1 and Nt−1(k(t − 1)) ≤ λk(t−1), we have Nt(k(t − 1))
≤ λk(t−1). Hence Nt(k) ≤ λk for all k (because, for k �= k(t − 1), the values
Nt(k) remain unchanged at Nt−1(k) ≤ λk [by the induction hypothesis]).

■

We can thus construct deterministic sequences of action profiles that hit any tar-
get payoffs in F † exactly. However, dispensing with public correlation by inserting
these sequences as continuation outcome paths wherever needed in the folk theo-
rem strategies does not yet give us an equilibrium. The difficulty is that some of the
continuation values generated by these sequences may fail to be even weakly indi-
vidually rational. Hence, although the sequences may generate the required initial
average payoffs, they may also generate irresistible temptations to deviate as they are
played.
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The key to resolving this difficulty is provided by the following, due to Fudenberg
and Maskin (1991).

Lemma

3.7.2
For all ε > 0, there exists δ < 1 such that for all δ ∈ (δ, 1) and all v ∈ F †, there
exists a sequence of pure action profiles whose discounted average payoffs are v
and whose continuation payoffs at any time t are within ε of v.

Proof Fix ε > 0 and v ∈ F †. Set ε′ = ε/5, and let Bε(v) be the open ball of radius ε
centered at v, relative to F †.19 Finally, let v1, . . . , vθ be payoff profiles with the
properties that

1. Bε′(v) is a subset of the interior of the convex hull of {v1, . . . , vθ };
2. v� ∈ B2ε′(v), � = 1, . . . , θ ; and
3. each v� is a rational convex combination of the same K pure-action pay-

off profiles u(a(1)), . . . , u(a(K)), with some profiles possibly receiving zero
weight.

The profile v� is a rational convex combination of u(a(1)), . . . , u(a(K)) if
there are nonnegative rationals, summing to unity, λ�(1), . . . , λ�(K) with v� =∑K
k=1 λ

�(k)u(a(k)). Because these are rationals, we can express each λ�(k) as
the ratio of integers r�(k)/d , where d does not depend on �. Associate with each
v� the cycle of d action profiles

(a(1), . . . , a(1)︸ ︷︷ ︸
r�(1) times

, a(2), . . . , a(2)︸ ︷︷ ︸
r�(2) times

, . . . , a(K), . . . , a(K)︸ ︷︷ ︸
r�(K) times

). (3.7.2)

Let v�(δ) be the average payoff of this sequence, that is,

v�(δ) = 1− δ
1− δd

[
1− δr�(1)

1− δ u(a(1))+ δr�(1) 1− δr�(2)
1− δ u(a(2))

+ · · · + δd−r�(K) 1− δr�(K)
1− δ u(a(K))

]
.

Because limδ→1(1− δr�(k))/(1− δd) = r�(k)/d , limδ→1 v
�(δ) = v�. Hence,

becauseBε′(v) is in the interior of the convex hull of the v�, for sufficiently large δ,
Bε′(v) is a subset of the convex hull of {v1(δ), . . . , vθ (δ)}. Moreover, again for
sufficiently large δ, v�(δ) ∈ B3ε′(v). Let δ′ be the implied lower bound on δ.

Let δ′′ > δ′ satisfy (δ′′)d > 1 − 1/θ . From lemma 3.7.1, if δ > δ′′, for
each v′ ∈ Bε′(v), there is a sequence {vτ }∞τ=0, with vτ ∈ {v1(δ), . . . , vθ (δ)},
whose average discounted value using the discount factor δd is exactly v′.
We now construct another sequence by replacing each vτ = v�(δ) in the
original sequence with its corresponding cycle, given in (3.7.2). The average

19. Note that we are not assuming F † has nonempty interior (the full-dimension assumption).
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discounted value of the resulting outcome path {a(kt )}using the discount factor δ is
precisely v′:

(1− δ)
∞∑
t=0

δtu(a(kt )) = (1− δd)
∞∑
τ=0

(1− δ)δdτ
1− δd

{
1− δr�(τ)(1)

1− δ u(a(1))

+ δr�(τ)(1) 1− δr�(τ)(2)
1− δ u(a(2))

+ · · · + δd−r�(τ)(K) 1− δr�(τ)(K)
1− δ u(a(K))

}

= (1− δd)
∞∑
τ=0

δdτ vτ = v′.

At the beginning of each period 0, d, 2d, 3d, . . . , the continuation payoff must
lie in B3ε′(v), because the continuation is a convex combination of v�(δ)’s, each
of which lies in B3ε′(v). An upper bound on the distance that the continuation can
be from v is then

(1− δd) max
a,a′∈A

|u(a)− u(a′)| + δd3ε′.

There exists δ > δ′′ such that for all δ ∈ (δ, 1), (1− δd)max |u(a)− u(a′)| < ε′,
and so the continuations are always within 4ε′ of v, and so within 5ε′ = ε of v′.

We have thus shown that for fixed ε, for every v ∈ F † there is a δ such that
for all δ ∈ (δ, 1), for every v′ ∈ Bε′(v), we can find a sequence of pure actions
whose payoff is v′ and whose continuation payoffs lie within ε of v′. Now cover
F † with the collection of sets {Bε′(v) : v ∈ F †}. Taking a finite subcover and
then taking the maximum of the δ over this finite collection of sets yields the
result.

■

This allows us to establish:

Proposition

3.7.1
Suppose F †p has nonempty interior. Then, for every payoff v in {ṽ ∈ F †p : ∃v′ ∈
F †p, v′i < ṽi ∀i}, there exists δ < 1 such that for all δ ∈ (δ, 1), there exists a
subgame-perfect equilibrium with payoffs v.

The idea of the proof is to proceed as in the proof of proposition 3.4.1, applied
to F †, choosing a discount factor large enough that each of the optimality conditions
holds as a strict inequality by at least some ε > 0. For each payoff vd , d = 0, . . . , n,
we then construct an infinite sequence of pure action profiles giving the same payoff
and with continuation values within some ε′ of this payoff. The strategies of proposi-
tion 3.4.1 can now be modified so that each statewd is replaced by the infinite sequence
of states implementing the payoff u(ad), with play continuing along the sequence in
the absence of a deviation and otherwise triggering a punishment as prescribed in
the original strategies. We must then argue that the slack in the optimality conditions
(3.4.1)–(3.4.2) ensures that they continue to hold once the potential ε′ error in contin-
uation payoffs is introduced. Though conceptually straightforward, the details of this
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argument are tedious and so omitted. For finite games, this result is a special case of
proposition 3.8.1 (which is proved in detail).

3.8 Mixed-Action Individual Rationality

Proposition 3.4.2 is a folk theorem for payoff profiles that strictly dominate players’
pure-action minmax utilities. In this section, we extend this result for finite stage
games to payoff profiles that strictly dominate players’ mixed-action minmax utilities
(recall that in many games, a player’s mixed-action minmax utility is strictly less than
his pure-action minmax utility). At the same time, using the results of the previous
section, we dispense with public correlation.

The difficulty in using mixed minmax actions as punishments is that the punish-
ment phase may produce quite low payoffs for the punishers. If the minmax actions
are pure, the incentive problems produced by these small payoffs are straightforward.
Deviations from the prescribed minmax profile can themselves be punished. The sit-
uation is more complicated when the minmax actions are mixed. There is no reason
to expect player j to be myopically indifferent over the various actions in the support
of the mixture required to minmax player i. Consequently, the continuations after the
various actions in the support must be such that j is indifferent over these actions.
In other words, strategies will need to adjust postpunishment payoffs to ensure that
players are indifferent over any pure actions involved in a mixed-action minmax. This
link between realized play during the punishment period and postpunishment play will
make an automaton description of the strategies rather cumbersome.

We use the techniques outlined in the previous section to avoid the use of public
correlation.20 A more complicated argument shows that any payoff in F ∗ is an equi-
librium payoff for patient players under NEU (see Abreu, Dutta, and Smith 1994). The
following version of the full folk theorem suffices for most contexts.

Proposition

3.8.1
Mixed-minmax perfect monitoring folk theorem Suppose Ai is finite for all i
and F ∗ has nonempty interior. For any v ∈ {ṽ ∈ F ∗ : ∃v′ ∈ F ∗, v′i < ṽi ∀i},
there exists δ ∈ (0, 1) such that for every δ ∈ (δ, 1), there exists a subgame-
perfect equilibrium of the infinitely repeated game (without public correlation)
with discount factor δ giving payoffs v.

Proof Fix v ∈ {ṽ ∈ F ∗ : ∃v′ ∈ F ∗, v′i < ṽi ∀i}. Because F ∗ is convex and has a
nonempty interior, there exists v′ ∈ F ∗ and ε > 0 such that B2nε(v

′) ⊂ F ∗ and
for every player i,

20. The presence of a public correlation device has no effect on player i’s minmax utility. Given a
minmax action profile with public correlation, select an outcome of the randomization for which
player i’s payoff is minimized, and then note that the accompanying action profile is a minmax
profile giving player i the same payoff.

In some games with more than two players, player i’s minmax payoff can be pushed lower
than vi if the other players have access to a device that allows them to play a correlated action
profile, where this device is not available to player i. This is an immediate consequence of
the observation that not all correlated distributions over action profiles can be obtained through
independent randomization.
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vi − v′i ≥ 2ε. (3.8.1)

Let κ ≡ mini v′i − vi , and for each � ∈ N ≡ {1, 2, . . .}, let L�(δ) be the integer
satisfying

2

�(1− δ)κ − 1 < L�(δ) ≤ 2

�(1− δ)κ . (3.8.2)

For each �, there is δ†(�) such that L�(δ) ≥ 1 for all δ ∈ (δ†(�), 1). Moreover, an
application of l’Hôpital’s rule shows that

lim
δ→1

δL�(δ) = e− 2
�κ ,

and hence

lim
�→∞ lim

δ→1
δL�(δ) = 1.

Consequently, for all η > 0, there exists �′ and δ′ : N → (0, 1), δ′(�) ≥ δ†(�)

such that for all � > �′ and δ > δ′(�), 1− η < δL�(δ) < 1. We typically suppress
the dependence of L on � and δ in our notation.

Denote the profile minmaxing player j by α̂j−j , and suppose player j is to be
minmaxed for L periods. Denote player i’s realized average payoff over these L
periods by

p
j
i ≡

1− δ
1− δL

L∑
τ=1

δτ−1ui(a(τ )),

where a(τ) is the realized action profile in period τ . If the minmax actions are
mixed, this average payoff is a random variable, depending on the particular
sequence of actions realized in the course of minmaxing player j . Define

z
j
i ≡

1− δL
δL

p
j
i .

Like pji , zji depends on the realized history of play. Because pji is bounded by the
smallest and largest stage-game payoff for player i, we can now choose �1 and
δ1 : N → (0, 1), δ1(�) ≥ δ†(�) for all �, such that for all � > �1 and δ > δ1(�),
δL�(δ) is sufficiently close to one that |zji | < ε/2, for all i and j and all realizations
of the sequence of minmaxing actions.

Deviations from minmax behavior outside the support of the minmax actions
present no new difficulties because such deviations are detected. Deviations that
only involve actions in the support, on the other hand, are not detected. Player
i is only willing to randomize according to the mixture α̂ji if he is indifferent
over the pure actions in the support of the mixture. The technique is to specify
continuation play as a function of zji , following the L periods of punishment, to
create the required indifference.
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Define the payoff

v′(zj ) = (v′1+ε−zj1, . . . , v′j−1+ε−zjj−1, v
′
j , v
′
j+1+ε−zjj+1, . . . , v

′
n+ε−zjn).

GivenB2nε(v
′) ⊂ F ∗ and our restriction that |zji | < ε/2, we know thatBε(v′(zj ))

⊂ F ∗ and v′i (zj )− vi > 2nε.
From lemma 3.7.2, there exists δ2 : N→ (0, 1), δ2(�) ≥ δ1(�) for all �, such

that for any payoff v′′ ∈ F †, there is a sequence of pure action profiles, a(v′′),
whose average discounted payoff is v′′ and whose continuation payoff at any point
is within 1/� of v′′.

We now describe the strategies in terms of phases:

Phase 0: Play a(v),
Phase i, i = 1, . . . , n: Play L periods of α̂i , followed by a(v′(zi)).

The equilibrium is specified by the following recursive rules for combining these
phases. Play begins in phase 0 and remains there along the equilibrium path. Any
unilateral deviation by player i causes play to switch to the beginning of phase i.
Any unilateral deviation by player j �= k while in phase k causes play to switch
to the beginning of phase j . A deviation from a mixed strategy is interpreted
throughout as a choice of an action outside the support of the mixture. Mixtures
appear only in the first L periods of phases 1, . . . , n, when one player is being
minmaxed. Simultaneous deviations are ignored throughout.

We now verify that for some sufficiently large � and δ, for all δ ∈ (δ, 1), these
strategies (which depend on δ through L�(δ)) are an equilibrium.

Consider first phase 0. A sufficient equilibrium condition for player i to not
find a deviation profitable is that for i = 1, . . . , n

(1− δ)M + δ(1− δL)vi + δL+1v′i ≤ vi −
1

�
,

where the left side is an upper bound on the value of a deviation and the right side
a lower bound on the equilibrium continuation value, with (from lemma 3.7.2) the
−1/� term reflecting the maximum shortfall from the payoff vi of any continuation
payoff in a(v). This inequality can be rearranged to give

(1− δ)(M − vi) ≤ δ(1− δL)(vi − vi)+ δL+1(vi − v′i )−
1

�
. (3.8.3)

From (3.8.1), if � > 1/ε, (vi − v′i ) − 1/� > 2ε − 1/� > ε > 0. Hence, there
exists δ3 : N → (0, 1), δ3(�) ≥ δ2(�) for all �, such that, for all � > 1/ε and all
δ ≥ δ3(�), δL�(δ) is sufficiently close to 1 that (3.8.3) is satisfied.

Now consider phase j ≥ 1, and suppose at least L periods of this phase have
already passed, so that play falls somewhere in the sequence a(v′(zj )). If � > �1

and δ > δ2(�), a sufficient condition for player i to not find a deviation profitable is

(1− δ)M + δ(1− δL)vi + δL+1v′i ≤ v′i −
1

�
,

with the −1/� term appearing on the right side because i’s continuation value
under a(v′(zj )) must be within 1/� of v′i (if i = j ) or within 1/� of v′i + ε − zji
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(otherwise), and hence must be at least v′i − 1/�. Using (3.8.2), a sufficient
condition for this inequality is

(1− δ)(M − v′i ) ≤ δ
(

1− δ
(

2
�(1−δ)κ−1

))
(v′i − vi)−

1

�
. (3.8.4)

We now note that as δ approaches 1, the right side converges to

(
1− e− 2

�κ

)
(v′i − vi)−

1

�
. (3.8.5)

Now, an application of l’Hôpital’s rule, and using κ ≤ v′i − vi , shows that

lim
�→∞ �

[(
1− e− 2

�κ

)
(v′i − vi)−

1

�

]
≥ 1.

Fix η > 0 small. There exists �4 ≥ max{�1, 1/ε} such that for all � > �4, the
expression in (3.8.5) is no smaller than (1 − η)/�. Consequently, there exists
δ4 : N→ (0, 1), δ4(�) ≥ δ3(�) for all �, such that (3.8.4) holds for all � > �4 and
δ > δ4(�).

Now consider phase j ≥ 1, and suppose we are in the first L periods, when
player j is to be minmaxed. Player j has no incentive to deviate from the prescribed
behavior and prompt the phase to start again, because j is earning j ’s minmax
payoff and can do no better during each of theL periods, whereas subsequent play
gives j a higher continuation payoff that does not depend on j ’s actions. Player
i’s realized payoff while minmaxing player j is given by

(1− δL)pji + δL
[
v′i + ε −

1− δL
δL

p
j
i

]
= δL(v′i + ε),

which is independent of the actions i takes while minmaxing j . A similar charac-
terization applies to any subset of theL periods during which j is to be minmaxed.
Player i thus has no profitable deviation that remains within the support of âji .
Suppose player i deviates outside this support. If � > �1 and δ > δ1(�), a deviation
in period τ ∈ {1, . . . , L} is unprofitable if

(1− δ)M + δ(1− δL)vi + δL+1v′i ≤ (1− δL−τ+1)ui(α̂
j )+ δL−τ+1(v′i + ε/2)

because v′i (zj ) = v′i + ε − zji > v′i + ε/2. As δL (and so δL−τ+1 for all τ )
approaches 1, this inequality becomes v′i ≤ v′i + ε/2. Consequently, there exists
�5 ≥ �4 and δ5 : N→ (0, 1), δ5(�) ≥ δ4(�) for all �, such that for all � > �5 and
δ > δ5(�), the above displayed inequality is satisfied.

We now fix a value � > �5 and take δ = δ5(�). For any δ ∈ (δ, 1), letting
L = L�(δ) as defined by (3.8.2) then gives a subgame-perfect equilibrium strategy
profile with the desired payoffs.

■



4 How Long Is Forever?

4.1 Is the Horizon Ever Infinite?

A common complaint about infinitely repeated games is that very few relationships
have truly infinite horizons. Moreover, modeling a relationship as a seemingly more
realistic finitely repeated game can make quite a difference. For example, in the finitely
repeated prisoners’ dilemma, the only Nash equilibrium outcome plays SS in every
period.1 Should we worry that important aspects of the results rest on unrealistic
features of the model?

In response, we can do no better than the following from Osborne and Rubinstein
(1994, p. 135, emphasis in original):

In our view a model should attempt to capture the features of reality that the
players perceive . . . the fact that a situation has a horizon that is in some
physical sense finite (or infinite) does not necessarily imply that the best
model of the situation has a finite (or infinite) horizon. . . . If they play a
game so frequently that the horizon approaches only very slowly then they
may ignore the existence of the horizon entirely until its arrival is imminent,
and until this point their strategic thinking may be better captured by a game
with an infinite horizon.

The key consideration in evaluating a model is not whether it is a literal description of
the strategic interaction of interest, nor whether it captures the behavior of perfectly
rational players in the actual strategic interaction. Rather, the question is whether the
model captures the behavior we observe in the situation of interest. For example, finite-
horizon models predict that fiat money should be worthless. Because its value stems
only from its ability to purchase consumption goods in the future, it will be worthless in
the final period of the economy. A standard backward-induction argument then allows
us to conclude that it will be worthless in the penultimate period, and the one before
that, and so on. Nonetheless, most people are willing to accept money, even those who
argue that there is no such thing as an interaction with an infinite horizon. The point

1. A standard backward induction argument shows that SS in every period is the only subgame-
perfect outcome, because the stage game has a unique Nash equilibrium. The stronger conclusion
that this is the only Nash equilibrium outcome follows from the observation that the stage-
game Nash equilibrium yields each player his minmax utility. This latter property ensures that
“incredible threats” (i.e., a non-Nash continuations) cannot yield payoffs below those of the
stage-game Nash equilibrium, precluding the use of future play to create incentives for choosing
any current actions other than the stage-game Nash equilibrium.

105
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is that whether finite or infinite, the end of the horizon is sufficiently distant that it
does not enter people’s strategic calculations. Infinite-horizon models may then be an
unrealistic literal description of the world but a useful model of how people behave in
that world.

4.2 Uncertain Horizons

An alternative interpretation of infinitely repeated games begins by interpreting players’
preferences for early payoffs as arising out of the possibility that the game may end
before later payoffs can be collected. Suppose that in each period t , the game ends
with probability 1− δ > 0, and continues with probability δ > 0. Players maximize
the sum of realized payoffs (normalized by 1− δ). Player i’s expected payoff is then

(1− δ)
∞∑
t=0

δtui(a
t ).

Because the probability that the game reaches period t is δt , and δt → 0 as t →∞, the
game has a finite horizon with probability 1. However, once the players have reached
any period t , they assign probability δ to play continuing, allowing intertemporal
incentives to be maintained despite the certainty of a finite termination.

Viewing the horizon as uncertain in this way allows the model to capture some
seemingly realistic features. One readily imagines knowing that a relationship will not
last forever, while at the same time never being certain of when it will end. Observe,
however, that under this interpretation the distribution over possible lengths of the
game has unbounded support. One does not have to believe that the game will last
forever but must believe that it could last an arbitrarily long time. Moreover, the
hazard rate is constant. No matter how old the relationship is, the expected number
of additional periods before the relationship ends is unchanged. The potential for the
relationship’s lasting forever has thus been disguised but not eliminated.

If the stage game has more than one Nash equilibrium, then intertemporal incen-
tives can be constructed even without the infinite-repetition possibility embedded in a
constant continuation probability. Indeed, as we saw in the discussion of the game in
figure 1.1.1 and return to in section 4.4, the prospect of future play can have an effect
even if the continuation probability falls to 0 after the second period, that is, even if the
game is played only twice. However, if the stage game has a unique Nash equilibrium,
such as the prisoners’ dilemma, then the possibility of an infinite horizon is crucial
for constructing intertemporal incentives. To see this, suppose that the horizon may
be uncertain, but it is commonly known that the game will certainly end no later than
after T + 1 periods (where T is some possibly very large but finite number). Then we
again face a backward-induction argument. The game may not last so long, but should
period T ever be reached, the players will know it is the final period, and there is only
one possible equilibrium action profile. Hence, if the game reaches period T − 1, the
players will know that their current behavior has no effect on the future, either because
the game ends and there is no future play or because the game continues for (only)
one more round of play, in which case the unique stage-game Nash equilibrium again
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appears. The argument continues, allowing us to conclude that only the stage-game
Nash equilibrium can appear in any period.

The assumption in the last paragraph that it is commonly known that the game
will end by some T is critical. Suppose for example, that although both players know
the game must end by period T , player 1 does not know that player 2 knows this.
In that case, if period T − 1 were to be reached, player 1 may now place significant
probability on player 2 not knowing that the next period is the last possible period,
and so 1 may exert effort rather than shirk. This argument can be extended, so that
even if both players know the game will end by T , and both players know that both
know, if it is not commonly known (i.e., at some level of iteration, statements of the
form “i knows that j knows that i knows . . . that the game will end by T ” fails), then
it may be possible to support effort in the repeated prisoners’ dilemma (see Neyman
1999). To do so, however, requires that, for any arbitrarily large T , player i believes
that j believes that i believes . . . that the game could last longer than T periods.

In the presence of a unique stage-game Nash equilibrium, nontrivial outcomes in
the repeated game thus hinge on at least the possibility of an infinite horizon. However,
one might then seek to soften the role of the infinite horizon by allowing the continuation
probability to decline as the game is played. We may never be certain that a particular
period will be the last but may think it more likely to be the last if the game has already
continued for a long time. In the next section, we construct nontrivial intertemporal
incentives for stage games with a unique Nash equilibrium, when the continuation
probability (discount factor) converges to 0, as long as the rate at which this occurs is
not too fast.

4.3 Declining Discount Factors

Suppose players share a sequence of one-period discount factors {δt }∞t=0, where δt is
the rate applied to period t + 1 payoffs in period t . Hence, payoffs in period t are
discounted to the beginning of the game at rate

t−1∏
τ=0

δτ .

We can interpret these discount factors as representing either time preferences or uncer-
tainty as to the length of the game. In the latter case, δτ is the probability that play
continues to period τ + 1, conditional on play having reached period τ . We are inter-
ested in the case where limτ→∞ δτ = 0. In terms of continuation probabilities, this
implies that as τ gets large, the game ends after the current period with probability
approaching 1.

One natural measure for evaluating payoffs is the average discounted value of the
payoff stream {uti}∞t=0,

∞∑
t=0

(∏t−1

τ=0
δτ

)
(1− δt )uti ,

where
∏−1
τ=0 δτ ≡ 1. When the discount factor is constant, this coincides with the

average discounted value. However, unlike with a constant discount factor, the
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implied intertemporal preferences are different from the preferences without averaging,
given by

∞∑
t=0

(∏t−1

τ=0
δτ

)
uti .

We view the unnormalized payoffs uti as the true payoffs and, because the factor
(1− δt ) is here not simply a normalization, we work without it.

We assume the players do discount, in the sense that

∞∑
t=0

∏t−1

τ=0
δτ ≡ � <∞. (4.3.1)

When (4.3.1) is satisfied, a constant payoff stream uti = ui for all t has a well-defined
value in the repeated game, �ui . Condition (4.3.1) is trivially satisfied if δt → 0.

Our interest in the case limτ→0 δτ = 0 imposes some limitations. Intuitively,
intertemporal incentives work whenever the myopic incentive to deviate is less than the
size of the discounted future cost incurred by the deviation. For small δ, the intertem-
poral incentives are necessarily weak, and so can only work if the myopic incentive
to deviate is also small, such as would arise for action profiles close to a stage-game
Nash equilibrium.

The most natural setting for considering weak myopic incentives to deviate is
found in infinite games, such as the oligopoly example of section 2.6.2.

Assumption

4.3.1
Each player’s action space Ai is an interval [ai, āi] ⊂ R. The stage game has
a Nash equilibrium profile aN contained in the interior of the set of action pro-
filesA. Each payoff functionui is twice continuously differentiable in a and strictly
quasi-concave in ai , and each player’s best reply function φi : ∏−iAj → Ai is
continuously differentiable in a neighborhood of aN .2 The Jacobian matrix of
partial derivatives Du(aN) has full rank.

This assumption is satisfied, for example, in the oligopoly model of section 2.6.2, with
an upper bound on quantities of output so as to make the strategy sets compact.

We now describe, following Bernheim and Dasgupta (1995), how to construct
nontrivial intertemporal incentives. Though the discount factors can converge to 0,
intertemporal incentives require that this not occur too quickly. We assume that there
exist constants c,� > 0 such that,

τ−1∏
k=0

δ2τ−1−k
k ≥ c�2τ ,∀τ ≥ 1. (4.3.2)

This condition holds for a constant discount factor δ (take c = 1/δ and � = δ). By
taking logs and rearranging, (4.3.2) can be seen to be equivalent to

lim
τ→∞

τ−1∑
k=0

1

2k+1
ln δk > −∞, (4.3.3)

implying that 2k must grow faster than | ln δk| (if δk → 0, then ln δk →−∞).

2. Because ui is assumed strictly quasi-concave in ai, φi(a−i ) ≡ arg maxai ui(ai , a−i ) is unique,
for all a−i .
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Proposition

4.3.1
Suppose {δk}∞k=0 is a sequence of discount factors satisfying (4.3.1) and (4.3.2),
but possibly converging to 0. There exists a subgame-perfect equilibrium of the
repeated game in which in every period, every player receives a higher payoff than
that produced by playing the (possibly unique) stage-game Nash equilibrium, aN .

Proof Because Du(aN) has full rank, and aN is interior, there exists a constant η > 0, a
vector z ∈ RN and an ε′ > 0 such that, for all ε < ε′ and all i,

ui(a
N + εz)− ui(aN) ≥ ηε. (4.3.4)

Letting udi (a) denote player i’s maximal deviation payoff,

udi (a) = max
ai∈Ai

ui(ai, a−i ),

we have udi (a
N) = ui(φi(aN−i ), aN−i ). Because ∂ui(aNi )/∂ai = 0,

∂udi (a
N)

∂aj
= ∂ui(φi(a

N
−i ), a

N
−i )

∂ai

∂φi(a
N
−i )

∂aj
+ ∂ui(φi(a

N
−i ), a

N
−i )

∂aj

= ∂ui(φi(a
N
−i ), a

N
−i )

∂aj
= ∂ui(a

N)

∂aj
.

(This is an instance of the envelope theorem.) By Taylor’s formula, there exists a
β > 0 and ε′′ such that, for all i and ε < ε′′,

udi (a
N + εz)−ui(aN + εz)

≤ udi (aN)− ui(aN)+ ε
n∑
j=1

zj

(
∂udi (a

N)

∂aj
− ∂ui(a

N)

∂aj

)
+ ε2β

= βε2. (4.3.5)

In the oligopoly example of section 2.6.2, this is the observation that the payoff
increment from the optimal deviation from proposed output levels, as a function of
those levels, has a zero slope at the stage-game Nash equilibrium (in figure 2.6.1,
µd is tangential to µ at q = aN ). As we have noted, this is an envelope theo-
rem result. The most one can gain by deviating from the stage-game equilibrium
strategies is 0, and the most one can gain by deviating from nearby strategies is
nearly 0.

Summarizing, moving actions away from the stage-game Nash equilibrium in
the direction z yields first-order payoff gains (4.3.4) while prompting only second-
order increases in the temptation to defect (4.3.5). This suggests that the threat of
Nash reversion should support the non-Nash candidate actions as an equilibrium,
if these actions are sufficiently close to the Nash profile. The discount factor will
determine the effectiveness of the threat, and so how close the candidate actions
must be to the Nash point. As the discount factor gets lower, the punishment
becomes relatively less severe. As a result, the proposed actions may have to move
closer to the stage-game equilibrium to reinforce the weight of the punishment
compared to the temptation of a deviation.
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Consider, then, the following strategies. We construct a sequence εt for t =
0, . . . , and let the period t equilibrium outputs be

aN + εt z,
with any deviation prompting Nash reversion (i.e., subsequent, permanent play
of aN ). These strategies will be an equilibrium if every εt is less than min{ε′, ε′′}
and if, for all t ,

βε2
t ≤ δtηεt+1. (4.3.6)

The left side of this inequality is an upper bound on the immediate payoff gain
produced by deviating from the proposed equilibrium sequence, and the right side
is a lower bound on the discounted value of next period’s payoff loss from reverting
to Nash equilibrium play. To establish the existence of an equilibrium, we then
need only verify that we can construct a sequence {εt }∞t=0 satisfying (4.3.6) while
remaining below the bounds ε′ and ε′′ for which (4.3.4) and (4.3.5) hold.

To do this, fix ε0 and recursively define a sequence {εt }∞t=0 by setting

εt+1 = βε2
t

ηδt
.

This leads to the sequence, for t ≥ 1,

εt =
(
β

η

)2t−1

(ε0)
2t
(
t−1∏
k=0

δ2t−1−k
k

)−1

.

By construction, this sequence satisfies (4.3.6). We need only verify that the
sequence can be constructed so that no term exceeds min{ε′, ε′′}. To do this,
notice that, from (4.3.2), we have, for all t ≥ 1,

εt ≤ η

βc

(
β

η

ε0

�

)2t

.

It now remains only to choose ε0 sufficiently small that ε0 < min{ε′, ε′′}, that
βε2

0/[ηc�2] < min{ε′, ε′′} (ensuring ε1 < min{ε′, ε′′}), and that βε0/η� ≤ 1 (so
that εt+1 ≤ εt for t ≥ 1).

■

It is important to note that the above result covers the case where the stage game has
a unique equilibrium. Multiple stage game equilibria only make it easier to construct
nontrivial intertemporal incentives.

Bernheim and Dasgupta (1995) provide conditions under which (4.3.3) is neces-
sary as well as sufficient for there to exist any subgame-perfect equilibrium other than
the continuous play of a unique stage-game Nash equilibrium. This necessity result is
not intuitively obvious. The optimality condition given by (4.3.6) assumes that devi-
ations are punished by Nash reversion and makes use only of the first period of such
a punishment when verifying the optimality of equilibrium behavior. Observe, how-
ever, that as the discount factors tend to 0, eventually all punishments are effectively
single-period punishments. From the viewpoint of period t , period t + 1 is discounted



4.3 ■ Declining Discount Factors 111

at rate δt , and period t + 2 is discounted at rate δt δt+1. Because

lim
t→∞

δt δt+1

δt
= lim
t→∞ δt+1 = 0,

it is eventually the case that any payoffs occurring two periods in the future are dis-
counted arbitrarily heavily compared to next period’s payoffs, ensuring that effectively
only the next period matters in any punishment.

There may well be more severe punishments than Nash reversion, and much of the
proof of the necessity of (4.3.3) is concerned with such punishments. The intuition is
straightforward. Equation (4.3.6) is the optimality condition for punishments by Nash
reversion. The prospect of a more serious punishment allows us to replace (4.3.6)
with a counterpart that has a larger penalty on the right side. But if (4.3.6) holds for
some η and this large penalty, then it must also hold for some larger value η′ and the
penalty of Nash reversion (then proportionately reducing both η′ and β, if needed, so
that (4.3.4) and (4.3.5) hold). In a sense, the Nash reversion and optimal punishment
cases differ only by a constant. Translating (4.3.3) into the equivalent (4.3.2), the
existence of nontrivial subgame-perfect equilibria based on either Nash reversion or
optimal punishments both imply the existence of a (possibly different) constant for
which (4.3.2) holds.

This result shows that nontrivial subgame-perfect equilibria can be supported with
discount factors that decline to 0. However, it only establishes that we can support some
equilibrium path of outcomes that does not always coincide with the stage-game Nash
equilibrium, leaving open the possibility that the equilibrium path is very close to
continual play of the stage-game Nash equilibrium. We can apply the insights from
finitely repeated games (discussed in the next section) to construct additional equilibria
that are “far” from the Nash equilibrium, as long as there is an initial sequence of
sufficiently large discount factors.

Proposition

4.3.2
Suppose the set of feasible payoffs F has full dimension and {δ̃t }∞t=0 is a sequence
of discount factors satisfying (4.3.1) and (4.3.2). Suppose the action profile a is
strictly individually rational with u(a) in the interior of F . Then there exist a
δ̄ ∈ (0, 1) and an integer T ∗ such that for all T ≥ T ∗, if δt ≥ δ̄ for all t ≤ T
and δt ≥ δ̃t−T−1 for all t > T , then there exists a subgame-perfect equilibrium
of the game with discount factors {δt }∞t=0 in which a is played in the first T − T ∗
periods.

Proof Consider a repeated game characterized by (T , δ̄), where δt ≥ δ̄ > δ̃0 for all t ≤ T
and δt ≥ δ̃t−T−1 for all t ≥ T + 1. The subgame beginning in period T + 1 of the
repeated game has (at least) two subgame-perfect equilibria, the infinite repetition
of aN and an equilibrium σ from proposition 4.3.1 with payoffs v̄ satisfying
v̄i > �ui(a

N) for all i (recall (4.3.1)).
Let ā be the action profile in the first period of σ , and note that mini ui(ā)−

ui(a
N) > 0. Suppose u(a) strictly dominates u(aN), and define ε ≡ min{ui(a)−

ui(a
N), ui(ā)− ui(aN)} > 0. For T ∗ < T , let σT

∗
be the profile that specifies

a in every period t < T − T ∗, ā in periods T − T ∗ ≤ t ≤ T , and then σ as the
continuation profile in period T + 1. A deviation in any period results in Nash
reversion. Because δt ≥ δ̃0 for t ≤ T , and σ is a subgame-perfect equilibrium of
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the subgame beginning in period T + 1, no player wishes to deviate in any period
t ≥ T − T ∗. If player i deviates in a period t < T − T ∗, there is a one-period
gain of udi (a)− ui(a), which must be compared to the flow losses of ui(a)−
ui(a

N) ≥ ε in periods t + 1, . . . , T − T ∗ − 1, andui(ā)− ui(aN) ≥ ε in periods
T − T ∗, . . . , T , as well as the continuation value loss of v̄i −�ui(aN) > 0 in
periodT + 1. By choosingT ∗ large enough and δ̄ close enough to 1, the discounted
value of a loss of at least ε for at least T ∗ periods dominates the one-period gain.

Constructing equilibria for a with payoffs that do not strictly dominate u(aN) is
more complicated and is accomplished using the techniques of Benoit and Krishna
(1985), discussed in section 4.4.

■

These results depend on the assumption that the stage-game strategy sets are com-
pact intervals of the reals, rather than finite, so that actions can eventually become arbi-
trarily close to stage-game Nash equilibrium actions. They do not hold for finite stage
games. In particular, if the stage game is finite, then there is a lower bound on the amount
that can be gained by at least some player by deviating from any pure-strategy outcome
that is not a Nash equilibrium. As a result, if the stage-game has a unique strict Nash
equilibrium, then when discount factors decline to 0, the only subgame-perfect equilib-
ria of the repeated game will feature perpetual play of the stage-game Nash equilibrium.

4.4 Finitely Repeated Games

This section shows that the unique equilibrium of the finitely repeated prisoners’
dilemma is not typical of finitely repeated games in general. The discussion of fig-
ure 1.1.1 provides a preview of the results presented here. If the stage game has
multiple Nash equilibrium payoffs, then it is possible to construct effective intertem-
poral incentives. Consequently, sufficiently long but finitely repeated games feature
sets of equilibrium payoffs very much like those of infinitely repeated games. In
contrast, a straightforward backward-induction argument shows that the only subgame-
perfect equilibrium of a finitely repeated stage game with a unique stage-game Nash
equilibrium has this equilibrium action profile played in every period.

We assume that players in the finitely repeated game maximize average payoffs
over the finite horizon, that is, if the stage game characterized by payoff function
u :∏iAi → Rn is played T times, then the payoff to player i from the outcome
(a0, a1, . . . , aT−1) is

1

T

T−1∑
t=0

ui(a
t ). (4.4.1)

It is perhaps more natural to retain the discount factor δ, and use the discounted
finite sum

1− δ
1− δT

T−1∑
t=0

δtui(a
t ) (4.4.2)
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A B C

A 4, 4 0, 0 0, 0

B 0, 0 3, 1 0, 0

C 2, 2 0, 0 1, 3

Figure 4.4.1 The game for example 4.4.1. The game has three strict Nash
equilibria, AA, BB, and CC.

as the T period payoff. However, this payoff converges to the average given by (4.4.1)
as δ→ 1, and it is simpler to work with (4.4.1) and concentrate on the limit as T gets
large than to work with (4.4.2) and the limits as both T gets large and δ gets sufficiently
close to 1.

One difficulty in working with finitely repeated games is that they obviously do
not have the same recursive structure as infinitely repeated games. The horizons of the
continuation subgame become shorter after longer histories.

We begin with an example to illustrate that even in some short games, it can be
easy to construct player-specific punishments.

Example

4.4.1
The stage game is given in figure 4.4.1. The two action profiles BB and CC are
player specific punishments, in the sense that BB minimizes player 2’s payoffs
over the Nash equilibria of the stage game, and CC does for player 1. If the game
is played twice, then it is possible to support the profile CA in the first period in
a subgame-perfect equilibrium: If CA is played in the first period, play AA in the
second period; if AA is played in the first period (i.e., 1 deviated to A), play CC
in the second; if CC is played in the first period (i.e., 2 deviated to C), play BB in
the second; and after all other first-period action profiles, play AA in the second
period. The second-period Nash equilibrium specified by this profile depends on
the identity of the first period deviator.

If the game is played T times, then the profile can be extended, maintaining
subgame perfection, so that CA is played in the first T − 1 periods, with any
unilateral deviation by player i being immediately followed by CC if i = 1 and
BB if i = 2 till the end of the game. It is important for this profile that CA yields
higher payoffs to both players than their respective punishing Nash equilibria of
the stage game. If the payoff profile from CA were (0, 0) rather than (2, 2), then
player 1, for example, prefers to trigger the punishment (which gives him 1 in
each period) than to play CA (which gives him 0).3

Finally, note that the “rewarding” Nash profile of AA is not needed. Suppose
the payoff profile from AA were (3,−2) rather than (4, 4). Player 1 still has a

3. When the payoff to CA is (0, 0), player 1 prefers the outcome CA, CA, AA, AA to the outcome
AA, CC, CC, CC. For T = 3, 4, it is easily seen that there is then a subgame-perfect equilibrium
with AA played in the last two periods and CA played in the first one or two periods.
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myopic incentive to play A rather than C, when 2 is playing A. Because AA is
not a Nash equilibrium of the stage game, it cannot be used in the last periods
to reward players for playing CA in earlier periods. However, observe that each
player prefers an outcome that alternates between BB and CC to perpetual play of
their punishment profile. Hence, for T = 3, the following profile is a subgame-
perfect equilibrium: Play CA in the first period; if CA is played in the first period,
play BB in the second period and CC in the third period; if AA is played in the
first period, play CC in the second and third periods; if CC is played in the first
period, play BB in the second and third periods; and after all other first-period
action profiles, play BB in the second period and CC in the third period.

●

Let N be set of Nash equilibria of the stage game. For each player i, define

wi ≡ min
α∈N
{ui(α)},

player i’s worst Nash equilibrium payoff in the stage game. We first state and prove a
Nash-reversion folk theorem, due to Friedman (1985).

Proposition

4.4.1
Suppose there exists a payoff v ∈ co(N ) with wi < vi for all i. For all a∗ ∈ A
satisfying ui(a∗) > wi for all i, for any ε > 0, there exists Tε such that for every
T > Tε, the T period repeated game has a subgame-perfect equilibrium with
payoffs within ε of u(a∗).

Proof Because the inequalitywi < vi is strict, there exists a rational convex combination
of Nash equilibria, ṽ ∈ co(N ), with ṽi > wi . That is, there are m equilibria
{αk ∈ N : k = 1, . . . , m} and m positive integers, {λk}, such that, for all i,

wi < ṽi = 1

L

m∑
k=1

λkui(α
k),

where L =∑ λk . Set η ≡ mini ṽi − wi > 0, and � ≡ maxi,ai |ui(ai, a∗−i )−
ui(a

∗)| ≥ 0. Let t∗ be the smallest multiple of L larger than�/η, so that t∗ = �L
for some positive integer �, and consider games of length T at least t∗.

The strategy profile specifies a∗ in the first T − t∗ periods, provided that there
has been no deviation from such behavior. In periods T − t∗, . . . , T , the equilib-
rium αk is played �λk times (the order is irrelevant because payoffs are averaged).
After the first unilateral deviation by player i, the stage-game equilibrium yielding
payoffs wi is played in every subsequent period.

It is straightforward to verify that this is a subgame-perfect equilibrium. Finally,
by choosing T sufficiently large, the payoffs from the first T − t∗ periods will
dominate. There is then a length Tε such that for any T > Tε, the payoffs from
the constructed equilibrium strategy profile are within ε of u(a∗).

■

This construction uses the ability to switch between stage-game Nash equilibria
near the end of the game to create incentives supporting a target action profile a∗ in
earlier periods that is not a Nash equilibrium of the stage game. As we discussed in
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A B C D

A 4, 4 0, 0 18, 0 1, 1

B 0, 0 6, 6 0, 0 1, 1

C 0, 18 0, 0 13, 13 1, 1

D 1, 1 1, 1 1, 1 0, 0

Figure 4.4.2 A game with repeated-game payoffs below 4.

example 4.4.1, it is essential for this construction that for each player i, there exists
a Nash equilibrium of the stage game giving i a lower payoff than does the target
action a∗. If this were not the case, players would be eager to trigger the punishments
supposedly providing the incentives to play a∗.

With somewhat more complicated strategies, we can construct equilibria of a
repeated game with payoffs lower than the payoffs in any stage-game Nash equilibrium.

Example

4.4.2
In the stage game of figure 4.4.2, there are two stage-game Nash equilibria, AA
and BB. The lowest payoff in any stage-game pure-strategy Nash equilibrium is
4. Suppose this game is played twice. There is an equilibrium with an average
payoff of 3 for each player: Play DD in the first period, followed by BB in the
second, and after any deviation play AA in the second period.

We can now use this two-period equilibrium to support outcomes in the three-
period game. Observe first that in the three-period game, CC cannot be supported
in the first period using the threat of two periods of AA rather than two periods
of BB, because the myopic incentive to deviate is 5, and the total size of the
punishment is 4 (to get the repeated-game payoffs, divide everything by 3). On
the other hand, we can support CC in the three-period game as follows: The
equilibrium outcome is (CC, BB, BB); after any first period profile a0 �= CC, play
the two-period equilibrium outcome (DD, BB).

●

If â is a subgame-perfect outcome path of the T̂ period game, and ã is a subgame-
perfect outcome path of the T̃ period game, then by “restarting” the game after the first
T̂ periods, it is clear that âã is a subgame-perfect outcome path of the T̂ + T̃ period
game. Hence, i’s worst punishment (equilibrium) payoff in the T̂ + T̃ period game is
at least as low as the average of his punishment payoffs in the T̂ period game and the
T̃ period game. Typically, it will be strictly lower. In example 4.4.2, the worst two-
period punishment (with outcome path (DD, BB)) is strictly worse than the repetition
of the worst one-period punishment (of AA). This subadditivity allows us to construct
equilibria with increasingly severe punishments as the length of the game increases,
in turn allowing us to achieve larger sets of equilibrium payoffs. Benoit and Krishna
(1985) prove the following proposition.
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Proposition

4.4.2
Suppose for every player i, there is a stage-game Nash equilibrium αi such that
ui(α

i) > wi , and that F ∗ has full dimension. Then for any payoff vector v ∈ F †p

and any ε > 0, there exists T ∗ such that, for all T ≥ T ∗, there exists a perfect
equilibrium path (a0, a1, . . . , aT−1) with∣∣∣∣∣ 1

T

T−1∑
t=0

u(at )− v
∣∣∣∣∣ < ε.

We omit the involved proof, confining ourselves to some comments and an exam-
ple. The full-dimensionality assumption appears for the same reason as it does in the
case of infinitely repeated games. It allows us the freedom to construct punishments
that treat players differently. The key insight is Benoit and Krishna’s (1985) lemma 3.5.
This lemma essentially demonstrates that given punishments in a T period game, for
sufficiently larger T ′, it is possible to construct for each player a punishment with a
lower average payoff. The punishment shares some similarities to those used in the
proof of proposition 3.4.1 and uses three phases. In the first phase of player i’s pun-
ishment, player i is pure-action minmaxed.4 In the second phase, players j �= i are
rewarded (relative to the T period punishments that could be imposed) for minmaxing
i during the first phase, whereas i is held to his T period punishment level. Finally,
in the last phase, stage-game Nash equilibria are played, so that the average payoff in
this phase exceedswi for all i. This last phase is chosen sufficiently long that no player
has an incentive to deviate in the second phase. The lengths of the first two phases are
simultaneously determined to maintain the remaining incentives, and to ensure that i’s
average payoff over the three phases is less than his T -period punishment.

Example

4.4.3
As in the infinitely repeated game (see section 3.3), the ability to mutually min-
max in the two-player case can allow a more transparent approach. We illustrate
taking advantage of the particular structure of the game in figure 4.4.2. The pure
(and mixed) minmax payoff for this game is 1 for each player, with profile DD
minmaxing each player.

We define a player 1 punishment lasting T periods, for any T ≥ 0. This pun-
ishment gives player 1 a payoff very close to his minmax level (for large T ) while
using mutual minmaxing behavior to sustain the optimality of the behavior pro-
ducing this punishment payoff. First, we define the outcome for the punishment.
Fix Q and S, satisfying conditions to be determined. First, for any T > Q+ S,
define the outcome path

a(T ) ≡ (DD,DD, . . . ,DD︸ ︷︷ ︸
Q times

,AD,AD, . . . ,AD︸ ︷︷ ︸
T−Q−S times

,BB,BB, . . . ,BB︸ ︷︷ ︸
S times

).

For T satisfying S < T ≤ Q+ S, define

a(T ) ≡ (DD,DD, . . . ,DD︸ ︷︷ ︸
T−S times

,BB,BB, . . . ,BB︸ ︷︷ ︸
S times

),

4. It seems difficult (if not impossible) to replicate the arguments from section 3.8, extending the
analysis to mixed minmax payoffs, for the finite horizon case. However, there is a mixed minmax
folk theorem (proved using different techniques), see Gossner (1995).
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and for T ≤ S,
a(T ) ≡ (BB,BB, . . . ,BB︸ ︷︷ ︸

T times

).

Observe that for large T , most of the periods involve action profile AD and hence
player 1’s minmax payoff of 1. This will play a key role in allowing us to push the
average player 1 payoff over the course of the punishment close to the minmax
payoff of 1. We must specify a punishment for all values of T , not simply large
values of T , because the shorter punishments will play a role in ensuring that we
can obtain the longer punishment outcomes as outcomes of equilibrium strategies.

We now describe a strategy profile σT with outcome path a(T ), and then
provide conditions on Q and S that guarantee that σT is subgame perfect. We
proceed recursively, as a function of T .

Suppose first that T ≤ S. Because the punishment outcome a(T ) specifies a
stage-game Nash equilibrium in each of the lastT periods for anyT ≤ S, no player
has a myopic incentive to deviate. The strategy σT then ignores all deviations,
specifying BB after every history.

For T satisfying S < T ≤ 2Q+ S, σT specifies that after the first unilateral
deviation from a(T ) in a period t ≤ T − S − 1, AA is played in every subsequent
period (with further deviations ignored). Deviations from the stage-game action
profile in the final S periods are ignored.

For T > 2Q+ S, any unilateral deviation from a(T ) in any period t results in
the continuation profile σT−t−1.

The critical feature of this profile is that for short horizons, a switch from BB
to AA provides incentives. For longer horizons, however, the incentive to carry
on with the punishment is provided by the fact that a deviation triggers Q new
periods of mutual minmax. In an infinite horizon game, this would be the only
punishment needed. In a finite horizon, we cannot continue with the threat of Q
new periods of minmaxing forever, and so the use of this threat early in the game
must be coupled with a transition to other threats in later periods.

In establishing conditions under which these strategies constitute an equi-
librium, it is important that both players’ payoffs under the outcome a(T ) are
identical, and that under the candidate profile, player 2’s incentives to deviate are
always at least as large as those of player 1. These properties appear because the
stage game features the action profile AD, under which both players earn their
minmax payoffs (though this is not a mutual-minmax action profile).

For S < T ≤ Q+ S, the most profitable deviation is in the first period, and this
is not profitable if 1+ (T − 1)4 ≤ 6S, that is, if 4T − 3 ≤ 6S. The constraint is
most severe if T = Q+ S, and so the deviation is not profitable if 4Q− 3 ≤ 2S.

Suppose Q+ S < T ≤ 2Q+ S. There are two classes of deviations we need
to worry about, deviations in the first Q periods, and those after the first Q
periods but before the last S periods. The most profitable deviation in the first
class occurs in the first period, and is not profitable if (where R = T −Q− S),
1+ (Q− 1+ R + S)4 ≤ R + 6S. This constraint is most severe when R = Q,
and so is satisfied if 7Q− 3 ≤ 2S. Because the payoff from AD is less than
that of AA, the most profitable deviation in the second class is in period Q+ 1,
and is not profitable if (because player 2 has the greater incentive to deviate)
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4+ (R − 1+ S)4 ≤ R + 6S, which is most severe when R = Q. For Q ≥ 1,
this constraint is implied by 7Q− 3 ≤ 2S.

Suppose now T > 2Q+ S. Observe first that deviating in a period t ≤ Q
results in the deviator being minmaxed, and so at best reorders payoffs, but brings
no increase. The only remaining deviations are from AD by player 2, and the
most profitable is in period Q+ 1. Such a deviation yields a total payoff of
4+Q× 0+ (R − 1−Q)× 1+ 6S, whereas the total payoff from not deviating
is R × 1+ 6S. The deviation is not profitable if

4+ (R − 1−Q)+ 6S ≤ R + 6S,

that is,
3 ≤ Q.

Hence, if Q ≥ 3 and S ≥ (7Q− 3)/2, the strategy profile σT is a subgame-
perfect equilibrium for any T . We can then fix Q and S and, by choosing T
sufficiently large, make player 1’s punishment payoff arbitrarily close to 1. The
same can be done for player 2. These punishments can then be used to construct
equilibria sustaining any strictly individually rational outcome path, in a finitely
repeated game of sufficient length.

●

4.5 Approximate Equilibria

We have noted that the sole Nash equilibrium of the finitely repeated prisoners’dilemma
features mutual shirking in every period. For example, there is no Nash-equilibrium
outcome in which both players exert effort in every period, because it is a superior
response to exert effort until the last period and then shirk. However, this opportunity
to shirk may have a tiny impact on payoffs compared to the total stakes of the game.
What if we weakened our equilibrium concept by asking only for approximate best
responses?

Let h be a history and let σh be the strategy profile σ modified at (only) histories
preceding h to ensure that σh generates history h. Notice that σ |h is the continuation
strategy induced by σ and history h, which may or may not appear under strategy σ ,
while σh is a potentially different strategy, in the original game, under which history
h certainly occurs. The strategies σ |h and σh|h are identical.

Definition

4.5.1
A strategy profile σ̂ is an ε-Nash equilibrium if, for each player i and strategy σi ,
we have

Ui(σ̂ ) ≥ Ui(σi, σ̂−i )− ε.
A strategy profile σ̂ is an ex ante perfect ε-equilibrium if, for each player i, history
h and strategy σi , we have

Ui(σ̂
h) ≥ Ui(σhi , σ̂ h−i )− ε.

If we set ε = 0 in the first definition, we have the definition of a Nash equilibrium
of the repeated game. Setting ε equal to 0 in the second gives the definition of subgame
perfection. Any ex ante perfect ε-equilibrium must be an ε-Nash equilibrium.
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Example

4.5.1
Consider the finitely repeated prisoners’ dilemma of figure 1.2.1, with horizon T
and payoffs evaluated according to the average-payoff criterion 1

T

∑T−1
t=0 u(a

t ).
For every ε > 0, there is a finite Tε such that for every T ≥ Tε, there is an ex ante
perfect ε-equilibrium in which the players exert effort in every period (Radner
1980).5

The verification of this statement is a simple calculation. Let the equilibrium
strategies be given by grim trigger, prescribing effort after every history featuring
no shirking and prescribing shirking otherwise. The best response to such a strategy
is to exert effort until the final period and then shirk. The equilibrium strategy is
then an ex ante perfect ε-equilibrium if 2 ≥ 1

T
[2(T − 1)+ 3] − ε, or 1

T
≤ ε. For

any ε, the proposed strategies are thus an ε-equilibrium in any game of length at
least Tε = 1/ε.

●

Consistent mutual effort is an ex ante perfect ε-equilibrium because the final-period
deviation to shirking generates a payoff increment that averaged over Tε periods is less
than ε. If ε = 0, of course, then the finitely repeated prisoners’ dilemma admits only
shirking as a Nash-equilibrium outcome. These statements are reconciled by noting the
order of the quantifiers in example 4.5.1. If we fix the length of the game T , then, for
sufficiently small values of ε, the only ε-Nash equilibrium calls for universal shirking.
However, for any fixed value of ε, we can find a value of T sufficiently large as to
support effort as an ε-equilibrium.

Remark

4.5.1
The payoff increment to final-period shirking may be small in the context of a T
period average, but may also loom large in the final period. A strategy profile σ ∗
is a contemporaneous perfect ε-equilibrium if, for each player i, history h and
strategy σi , we haveUi(σ ∗|h) ≥ Ui(σi |h, σ ∗−i |h)− ε.A contemporaneous perfect
ε-equilibrium thus evaluates the strategy σ ∗h not in the original game but in the
continuation game induced by h.6

Radner (1980) shows that for every ε > 0, there is a finite Tε such that there is a
contemporaneous perfect ε-equilibrium of the T -period prisoners’ dilemma with
the average-payoff criterion 1

T

∑T−1
t=0 u(a

t ), for any T ≥ Tε, in which players
exert effort in all but the final Tε periods. As T increases, we can thus sustain
effort for an arbitrarily large proportion of the periods. The strategies prescribe
effort in the initial period and effort in every subsequent period that is preceded
by no shirking and that occurs no later than period T − Tε − 1 (for some Tε to be
determined), with shirking otherwise. The best response to such a strategy exerts
effort through periodT − Tε − 2 and then shirks. The profile is a contemporaneous
perfect ε-equilibrium if 2/(Tε + 1) ≥ 3/(Tε + 1)− ε, or Tε ≥ 1/ε − 1. The key
to this result is that the average payoff criterion can cause payoff differences in
distant periods to appear small in the current period, and can also cause payoff

5. While Radner (1980) examines finitely repeated oligopoly games, the issues can be more
parsimoniously presented in the context of the prisoners’ dilemma. Radner (1981) explores
analogous equilibria in the context of a repeated principal-agent game, where the construction
is complicated by the inability of the principal to perfectly monitor the agent’s actions.

6. Lehrer and Sorin (1998) and Watson (1994) consider concepts that require contemporaneous
ε-optimality conditional only on those histories that are reached along the equilibrium path.
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differences in the current period to appear small, as long as there are enough
periods left in the continuation game. Mailath, Postlewaite, and Samuelson (2005)
note that if payoffs are discounted instead of simply averaged, then for sufficiently
small ε, the only contemporaneous perfect equilibrium outcome is to always shirk,
no matter how long the game. In this respect, the average and discounted payoff
criteria of (4.4.1) and (4.4.2) have different implications.

◆

Proposition 4.4.2 shows that the set of equilibrium payoffs, for very long finitely
repeated games with multiple stage-game Nash equilibria, is close to its counterpart in
infinitely repeated games. Considering ε-equilibria allows us to establish a continuity
result that also applies to stage games with a unique Nash equilibrium.

Fix a finite stage game G and let GT be its T -fold repetition, with G∞ being the
corresponding infinitely repeated game. Let payoffs be discounted, and hence given
by (4.4.2). Let σ∞ and σT denote strategy profiles for G∞ and GT . We would like
to speak of a sequence of strategy profiles {σT }∞T=0 as converging to σ∞. To do so,
first convert each strategy σT to a strategy σ̂ T in game G∞ by concatenating σT

with an arbitrary strategy for G∞. We then say that {σT }∞T=0 converges to σ∞ if the
sequence {σ̂ T }∞T=0 converges to σ∞ in the product topology (i.e., for any history ht ,
σ̂ T (ht ) converges to σ∞(ht ) as T →∞). Fudenberg and Levine’s (1983) theorem 3.3
implies:

Proposition

4.5.1
The strategy profile σ∞ is a subgame-perfect equilibrium of G∞ if and only if
there exist sequences ε(n), T (n), and σT (n), n = 1, 2, . . . , with σT (n) an ex ante
perfect ε-equilibrium of GT (n) and with limn→∞ ε(n) = 0, limn→∞ T (n) = ∞,
and limn→∞ σT (n) = σ∞.

Fudenberg and Levine (1983) establish this result for games that are continuous
at infinity, a class of games that includes repeated games with discounted payoffs
as a common example. Intuitively, a game is continuous at infinity if two strategy
profiles yield nearly the same payoff profile whenever they generate identical behavior
on a sufficiently long initial string of periods. Hence, behavior differences that occur
sufficiently far in the future must have a sufficiently small impact on payoffs. At
the cost of a more complicated topology on strategies (simplified by Harris 1985),
Fudenberg and Levine (1983) extend the result beyond finite games (see also Fudenberg
and Levine 1986 and Börgers 1989). Mailath, Postlewaite, and Samuelson’s (2005)
observation that the finitely repeated prisoners’dilemma with discounting has a unique
contemporaneous perfect ε-equilibrium for sufficiently small ε and for any length,
shows that a counterpart of proposition 4.5.1 does not hold for contemporaneous perfect
ε-equilibrium.

4.6 Renegotiation

For sufficiently high discount factors, it is an equilibrium outcome for the players in
a repeated prisoners’ dilemma to exert effort in every period with the temptation to
shirk deterred by a subsequent switch to perpetual, mutual shirking. This equilibrium
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L R

T 9, 9 0, 8

B 8, 0 7, 7

Figure 4.6.1 Coordination game in which efficiency
and risk dominance conflict.

is subgame perfect, so that carrying out the punishment is itself an equilibrium of the
continuation game facing the players after someone has shirked.

Suppose the punishment phase has been triggered. Why doesn’t one player
approach the other and say, “Let’s just forget about carrying on with this punishment
and start over with a new equilibrium, in which we exert effort. It’s an equilibrium to
do so, just as it’s an equilibrium to continue with the punishment, but starting over
gives us a better equilibrium.” If the other player is convinced, the punishment path is
not implemented.

Renegotiation-proof equilibria limit attention to equilibria that survive this type of
renegotiation credibility test. However, if the punishment path indeed fails this renego-
tiation test, then it is no longer obvious that we can support the original equilibrium in
which effort was exerted, in which case the renegotiation challenge to the punishment
may not be convincing, in which case the punishment is again available, and so on.
Any notion of renegotiation proofness must resolve such self-references.

Renegotiation is a compelling consideration for credibility to the extent that the
restriction to efficiency is persuasive. There is a large body of research centered on the
premise that economic systems do not always yield efficient outcomes, to the extent
that events such as bank failures (Diamond and Dybvig 1983), discrimination (Coate
and Loury 1993), or economic depressions (Cooper and John 1988) are explained as
events in which players have coordinated on an inefficient equilibrium.

At the same time, it is frequently argued that we should restrict attention to efficient
equilibria of games. The study of equilibrium is commonly justified by a belief that
there is some process resulting in equilibrium behavior. The argument then continues
that this same process should be expected to produce not only an equilibrium but an
efficient one. Suppose, for example, the process is thought to involve (nonbinding)
communication among the players in which they agree on a plan of play before the game
is actually played. If this communcation leads the players to agree on an equilibrium,
why not an efficient one?

This case for efficiency is not always obvious. Consider the game shown in fig-
ure 4.6.1, taken fromAumann (1990). The efficient outcome is TL, for payoffs of (9, 9).
However, equilibrium BR is less risky, in the sense that B and R are best responses
unless one is virtually certain that L and T will be played.7 Even staunch believers in
efficiency might entertain sufficient doubt about their opponents as to give rise to BR.
Suppose now that we put some preliminary communication into the mix in an attempt

7. Formally, (B, R) is the risk-dominant equilibrium (Harsanyi and Selten 1988).
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to banish these doubts. One can then view player 2 as urging 1 to play T , as part of
equilibrium TL, with player 1 all the while thinking, “Player 2 is better off if I choose
T no matter what she plays, so there is nothing to be learned from her advocacy of T .
In addition, if she entertains doubts as to whether she has convinced me to play T ,
she will optimally play R, suggesting that I should protect myself by playing B.” The
same holds in reverse, suggesting that the players may still choose BR, despite their
protests to the contrary.

The concept of a renegotiation-proof equilibrium pushes the belief in efficiency
further. We are asked to think of the players being able to coordinate on an efficient
equilibrium not only at the beginning of the game but also at any time during the game.
Hence, should they ever find themselves facing an inefficient continuation equilibrium,
whether on or off the equilibrium path, they can renegotiate to achieve an efficient
equilibrium.

4.6.1 Finitely Repeated Games

The logic of renegotiation proofness seems straightforward: Agents should not settle
for a continuation equilibrium if it is strictly dominated by some other equilibrium.
However, we should presumably exclude an equilibrium only if it gives rise to a
continuation equilibrium that is strictly dominated by some other renegotiation-proof
equilibrium. This self-reference in the definition makes an obvious formulation of
renegotiation proofness elusive.

Many of the attendant difficulties are eliminated in finitely repeated games, where
backward induction allows us to avoid the ambiguity. We accordingly start with a
discussion of finitely repeated games (based on Benoit and Krishna 1993).

We consider a normal-form two-player game G that is played T times, to yield
the gameGT .8 Normalized payoffs are given by (4.4.1). As in section 4.4, it simplifies
the analysis to work with the limiting case of no discounting. We work throughout
without public correlation.

Fixing a stage gameG, let E t be the set of unnormalized subgame-perfect equilib-
rium payoff profiles for gameGt .9 Given any setWt of unnormalized payoff profiles,
let G (W t ) be the subset consisting of those profiles inWt that are not strictly dominated
by any other payoff profile in Wt . We refer to such payoffs throughout as efficient in
Wt , or often simply as efficient, with the context providing the reference set. Finally,
given a set of (unnormalized) payoff profilesWt for gameGt , letQ(Wt) be the set of
unnormalized payoff profiles for game Gt+1 that can be decomposed on Wt . Hence,
the payoff profile v lies in Q(Wt) if there exists an action profile α and a function
γ : A→ Wt such that, for all i and ai ∈ Ai ,

vi = ui(α)+
∑
a∈A

γi(a)α(a)

≥ u(ai, α−i )+
∑

a−i∈A−i
γ (ai, a−i )α−i (a−i ),

8. Wen (1996) extends the analysis to more than two players.

9. Hence, E t consists of payoffs of the form
∑t−1
τ=0 u

τ .
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A B C

A 0, 0 4, 1 0, 0

B 1, 4 0, 0 5, 3

C 0, 0 3, 5 0, 0

Figure 4.6.2 Stage game with two inefficient pure-strategy Nash equilibria.

with a corresponding definition restricted to pure strategies for infinite games. We will
be especially interested in this function in the case in which Wt is a subset of E t . The
set Q(Wt) will then identify subgame-perfect equilibrium payoffs in Gt+1.

Definition

4.6.1
Let

Q1 = E 1 and W 1 = G (Q1),

and define, for t = 2, . . . , T ,

Qt = Q(W t−1) and W t = G (Qt ).

Then RT ≡ 1
T

W T is the set of renegotiation-proof subgame-perfect equilibrium
payoffs in the repeated game of length T .

This construction begins at the end of the game by choosing the set of effi-
cient stage-game Nash equilibria as candidates for play in the final period. These
are the renegotiation-proof equilibria in the final period. In the penultimate period, the
renegotiation-proof equilibria are those subgame-perfect equilibria that are efficient in
the set of equilibria whose final-period continuation paths are renegotiation-proof. Con-
tinuing, in any period t , the renegotiation-proof equilibria are those subgame-perfect
equilibria that are efficient in the set of equilibria whose next-period continuation paths
are renegotiation-proof. Working our way back to the beginning of the T period game,
we obtain the set RT of normalized renegotiation-proof equilibrium payoffs.

We are interested in the limit (under the Hausdorff metric) of RT as T →∞, if it
exists.10 Denote the limit by R∞; this set is closed and nonempty by definition.

Example

4.6.1
Consider the stage game shown in figure 4.6.2. We restrict attention in this example
to pure strategies.

Pure-strategy minmax payoffs are 1, imposed by playing A. Proposition 4.4.1
then tells us that the set of subgame-perfect equilibrium payoffs approaches

F †p = co{(0, 0), (1, 4), (3, 5), (5, 3), (4, 1)} ∩ {v ∈ R2 : vi > 1, i = 1, 2}

10. The Hausdorff distance between two nonempty compact sets, A and A ′ is given by

d(A ,A ′) = max
{

max
a∈A min

a′∈A ′ |a − a′|, max
a′∈A ′ min

a∈A |a − a
′|
}
.
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1u

2u

∞R

),( BAu

),( CBu

),( ABu

),( BCu

Figure 4.6.3 The set F†p (shaded) for the game in figure 4.6.2,
along with the limiting set limT→∞ 1

T
W T = R∞ of

renegotiation-proof equilibrium payoff profiles.

for sufficiently long finitely repeated games. Figure 4.6.3 shows the sets F †p

and R∞.
We now examine renegotiation-proof equilibria. We have

Q1 = {(1, 4), (4, 1)} and W 1 = {(1, 4), (4, 1)}.
The set Q2 includes equilibria constructed by preceding either of the elements of
W 1 with first-period action profiles that yield either (1, 4) or (4, 1). In addition,
we can play BC in the first period followed by BA in the second, with first-period
deviations followed by AB, or can reverse the roles in this construction. We thus
have

Q2 = {(2, 8), (6, 7), (5, 5), (7, 6), (8, 2)}
and W 2 = {(2, 8), (6, 7), (7, 6), (8, 2)}.

The sets Qt+1 quickly grow large, and it is helpful to note the following
shortcuts in calculating W t+1. First, W t+1 will never include an element whose
first-period payoff is (0, 0) (even thoughQt+1 may), because this is strictly dom-
inated by an equilibrium whose first-period action profile gives payoff (1, 4) or
(4, 1), with play then continuing as in the candidate equilibrium. We can thus
restrict attention to elements of Qt+1 whose first-period payoffs are drawn from
the set {(1, 4), (3, 5), (5, 3), (4, 1)}. Second, there is an equilibrium inQt+1 whose
first period payoff is (5, 3) and whose continuation payoff is any element of W t

other than the one that minimizes player 2’s payoff, because the latter leaves no
opportunity to create the incentives for player 2 to choose C in period 1. Simi-
larly, there is an equilibrium inQt+1 whose first period payoff is (3, 5) and whose
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continuation payoff is any element of W t other than the one that minimizes player
1’s payoff. Third, this in turn indicates that any element of Qt+1 that begins with
payoff (4, 1) and continues with a payoff in W t that does not maximize player
1’s payoff will not appear in Wt+1, being strictly dominated by an element of
Qt+1 with initial payoff (5, 3) and identical continuation. A similar observation
holds for payoffs beginning with (1, 4). Hence, we can simplify the presentation
by restricting attention to elements of Qt+1 that begin with payoff (4, 1) only if
they continue with the element W t that maximizes player 1’s payoff and similarly
to equilibria beginning with (1, 4) only if the continuations maximize player 2’s
payoff. Letting Q̂t+1 be the subset these three rules identify, we have

Q̂3 = {(3, 12), (9, 12), (10, 11), (11, 7), (7, 11), (11, 10), (12, 9), (12, 3)},
and so

W 3 = {(3, 12), (9, 12), (10, 11), (11, 10), (12, 9), (12, 3)}.
The next iteration gives

W 4 = {(12, 17), (13, 16), (14, 15), (15, 14), (16, 13), (17, 12)}.
None of these equilibrium payoffs have been achieved by preceding an element of
W 3 with either payoff (1, 4) or (4, 1). Instead, the equilibrium payoffs constructed
by beginning with these payoffs are inefficient, and are excluded from W 4. We
next calculate

W 5 = {(13, 21), (16, 21), (17, 20), (18, 19), (19, 18),

(20, 17), (21, 16), (21, 13)}.
In this case, the equilibrium payoffs (13, 21) and (21, 13) are obtained by preced-
ing continuation payoffs (12, 17) and (17, 12) with (1, 4) and (4, 1). At our next
iteration, we have

W 6 = {(19, 26), (20, 25), (21, 24), (22, 23), (23, 22),

(24, 21), (25, 20), (26, 19)}.

Here again, all of the equilibria in Q̂6 constructed by beginning with payoffs (1, 4)
or (4, 1) are strictly dominated. Continuing in this fashion, we find that for even
values of t ≥ 4,

W t = {(vt , v̄t ), (vt + 1, v̄t − 1), (vt + 2, v̄t − 2), . . . , (v̄t − 1,vt + 1), (v̄t ,vt )},
where

vt = 12+ 7 t−4
2 and v̄t = 17+ 9 t−4

2 ,

whereas for odd values of t ≥ 4 we have

W t = {(vt−1 + 1, v̄t ), (vt , v̄t ), (vt + 1, v̄t − 1), (vt + 2, v̄t − 2),

. . . , (v̄t − 1,vt + 1), (v̄t ,vt ), (v̄t ,vt−1 + 1)},
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where

vt = vt−1 + 4 and v̄t = v̄t−1 + 4.

In particular, it is straightforward to verify that for each t ≥ 4, W t+1 is obtained
from W t by constructing equilibria that precede the continuation payoff profile
from W t that minimizes player 1’s payoff with payoff (1, 4), that precede every
other continuation profile with (3, 5), that precede the profile that minimizes
player 2’s payoff with (4, 1), and that precede every other with (5, 3), and then
eliminating inefficient profiles.

It is then apparent that we have

lim
T→∞R

T = co
{( 7

2 ,
9
2

)
,
( 9

2 ,
7
2

)}
.

Hence, the set of renegotiation-proof equilibrium payoffs converges to a subset
of the set of efficient payoffs.

●

Example

4.6.2
Consider the game shown in figure 4.6.4. We again consider pure-strategy equi-
libria. The first step in the construction of renegotiation-proof equilibria is
straightforward:

Q1 = {(2, 4), (3, 3), (4, 2)}
and W 1 = {(2, 4), (3, 3), (4, 2)}.

We now note that no element of Q2 can begin with a first-period payoff of
(0, 0). Every such outcome either presents at least one player with a deviation
that increases his first-period payoff by at least 3 or presents both players with
deviations that increase their first-period payoffs by at least 2. The continuation
payoffs presented by W 1 cannot be arranged to deter all such deviations (nor, as
will be apparent from (4.6.1)–(4.6.2), will the continuation payoffs contained in
any W t be able to do so). However, Q2 does contain an equilibrium in which
the payoffs (7, 7) are attained in the first period, followed by (3, 3) in the second,

A B C D

A 0, 0 2, 4 0, 0 8, 0

B 4, 2 0, 0 0, 0 0, 0

C 0, 0 0, 0 3, 3 0, 0

D 0, 8 0, 0 0, 0 7, 7

Figure 4.6.4 Game whose renegotiation-proof payoffs exhibit an oscillating
pattern, converging to a single inefficient payoff as the horizon gets large.
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with any first-period deviation deterred by a switch to a second-period payoff of
(2, 4) or (4, 2), allocating the lower payoff to the first-period miscreant. This just
suffices to deter such deviations. We then have

Q2 = {(4, 8), (5, 7), (6, 6), (7, 5), (8, 4), (10, 10)}
and W 2 = {(10, 10)}.

The finding that W 2 is a singleton ensures that in the three-period game, first-
period play must constitute a stage-game Nash equilibrium, because there is no
opportunity to arrange continuation payoffs to punish deviations. Hence,

Q3 = {(12, 14), (13, 13), (14, 12)}
and W 3 = {(12, 14), (13, 13), (14, 12)}.

This again opens the possibility for a first-period payoff of (7, 7) in the four-period
game, giving

Q4 = {(14, 18), (15, 17), (16, 16), (17, 15), (18, 14), (20, 20)}
and W 4 = {(20, 20)}.

It should now be apparent that we have an oscillating structure, with

W 2t = {(10t, 10t)} (4.6.1)

and

W 2t+1 = {(10t + 2, 10t + 4), (10t + 3, 10t + 3), (10t + 4, 10t + 2)}. (4.6.2)

It is then immediate that
lim
T→∞R

T = {(5, 5)}.
●

This last example shows that the set of renegotiation-proof payoffs can be quite
sensitive to precisely how many periods remain until the end of the game. Hence,
although the backward-induction argument renders the concept of renegotiation proof-
ness unambiguous, it raises just the sort of end-game effects that often motivate a
preference for infinite horizon games.

When will renegotiation-proof equilibria be efficient? Let b1
i be the largest stage-

game equilibrium payoff for player i.

Proposition

4.6.1
If (b1

1, b
1
2) �∈ F † and R∞ exists, then each element of R∞ is efficient.

Remark

4.6.1
Proposition 4.6.1 provides sufficient but not necessary conditions for the set of
renegotiation-proof equilibrium payoffs RT to be nearly efficient for large T . We
have not offered conditions ensuring that R∞ exists, which remains in general
an open question. The condition (b1

1, b
1
2) �∈ F † is not necessary: The coordina-

tion game shown in figure 4.6.5 satisfies (b1
1, b

1
2) = (2, 2) ∈ F †, thus failing the



128 Chapter 4 ■ How Long Is Forever?

L R

T 2, 2 0, 0

B 0, 0 1, 1

Figure 4.6.5 A coordination game.

conditions of proposition 4.6.1, but R∞ nonetheless uniquely contains the effi-
cient payoff (2, 2).

◆

The proof requires several lemmas, maintaining the hypotheses of proposi-
tion 4.6.1 throughout. Let bTi be the best payoff for player i in the set RT .

Lemma

4.6.1
For player i ∈ {1, 2} and length T ≥ 1,

bTi ≥ b1
i .

Hence, as the game gets longer, each player’s best renegotiation-proof outcome
can never dip below the payoff produced by repeating his best equilibrium payoff
in the one-shot game.

Proof Let wTi be the worst payoff for player i in the set RT . We proceed by induction.

When T = 1, we have the tautological b1
i ≥ b1

i . Hence, suppose that bT−1
i ≥ b1

i ,
and consider a game of length T . For convenience, consider player 1. We first
note that

(b1
1, w

1
2)+ (T − 1)(bT−1

1 , wT−1
2 ) ∈ QT .

This statement follows from two observations. First, because no two elements of
Rt can be strictly ranked (i.e., neither strictly dominates the other), there is an
equilibrium payoff in Rt giving player 1 his best payoff and player 2 her worst
payoff, or (bt1, w

t
2), for any t . Second, we can construct an equilibrium of the T

period game by playing the stage-game equilibrium featuring payoffs
(
b1

1, w
1
2

)
in the first period, followed by the continuation equilibrium of the T − 1 period
remaining game that gives payoffs

(
bT−1

1 , wT−1
2

)
. Then, because RT consists of

the normalized undominated elements of QT , we have

T bT1 ≥ b1
1 + (T − 1)bT−1

1

≥ b1
1 + (T − 1)b1

1

= T b1
1,

where the second inequality follows from the induction hypothesis.
■

Let bi and wi be the best and worst payoff for player i in R∞. The fact that R∞
is closed ensures existence. Then the primary intuition behind proposition 4.6.1 is
contained in the following.
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Lemma

4.6.2
If b1 > w1 and b2 > w2, then each payoff v ∈ R∞ with vi > wi , i = 1, 2, is
efficient.

The idea behind this proof is that if there is a feasible payoff profile v′′ that strictly
dominates one of the payoffs v′ inR∞, then we can append this payoff to the beginning
of an “equilibrium” inR∞ with payoff v′, using the worst equilibria inR∞ for the two
players to deter deviations. But this yields a new equilibrium that strictly dominates
v′, a contradiction. The conclusion is then that there must be no such v′ and v′′, that is,
that the payoffs in R∞ must be efficient. To turn this intuition into a proof, we must
recognize thatR∞ is the limit of sets of equilibria in finitely repeated games, and make
the translation from “an equilibrium in R∞” to equilibria along this sequence.

Proof Observe first that the payoff profiles (w1, b2) ≡ v2 and (b1, w2) ≡ v1 are both
contained in R∞.

Suppose there is a payoff profile v′ ∈ R∞, with v′i > wi , and with another pay-
off profile v′′ ∈ F † with v′′ strictly dominating v′. We now seek a contradiction.

Because v′′ ∈ F † strictly dominates v′, v′ must also be strictly dominated by
some payoff profile in F † close to v′′ (for which we retain the notation v′′) for
which there exists a finite K and (not necessarily distinct) pure-action profiles
a1, . . . , aK such that 1

K

∑K
k=1 u(a

k) = v′′. Fix ε > 0 so that

v
j
i + ε < v′i , i, j = 1, 2, j �= i, (4.6.3)

and, for any such ε, fix a lengthTε for the finitely repeated game and an equilibrium
σv
′
(Tε) such that for i = 1, 2,∣∣Ui(σ v′(Tε))− v′i∣∣ < ε

3
, and (4.6.4)

ε

3
Tε > K(M −m) (4.6.5)

(where, as usual, Ui(σ ) is the average payoff in Gt of the Gt -profile σ and M
(m, respectively) is the maximum (minimum, respectively) stage game payoff),
and there is a pair of sequences of equilibria {σ j (T )}T≥Tε , j = 1, 2, such that,
for any T ≥ Tε, i �= j ,

Ui(σ
j (T )) < v

j
i +

ε

3
. (4.6.6)

We now recursively define a sequence of equilibria. The idea is to build
a sequence of equilibria for ever longer games, appending in turn each of
the actions a1, . . . , aK to the beginning of the equilibrium, starting the cycle
anew every K periods. Deviations by player i are punished by switching to the
equilibrium σ j (T ).

We begin with the equilibrium forGTε+1, which plays a1 in period 1, followed
by σv

′
(Tε), with a first-period deviation by player i followed by play of σ j (Tε).

Checking that this is a subgame-perfect equilibrium requires showing that first-
period deviations are not optimal, for which it suffices that

m+ Tε
(
v′i −

ε

3

)
≥ M + Tε

(
v
j
i +

ε

3

)
,



130 Chapter 4 ■ How Long Is Forever?

or
Tε
(
v′i − vji − 2

3ε
) ≥ M −m,

which is implied by (4.6.3) and (4.6.5). We thus have an equilibrium payoff
in QTε+1, which is either itself contained in RTε+1 or is strictly dominated by
some equilibrium payoff profile in RTε+1. Denote by σ(Tε + 1) the equilib-
rium with payoff profile in RTε+1. Note that (Tε + 1)Ui(σ (Tε + 1)) ≥ ui(a1)+
TεUi(σ

v′(Tε)).
Given an equilibrium σ(Tε + k) with payoffs in RTε+k for k = 1, . . . , K − 1,

consider the profile that plays ak+1 in the first period, with deviations by player
i punished by continuing with σ j (Tε + k), and with σ(Tε + k) played in the
absence of a deviation. To verify that the profile is a subgame-perfect equilibrium,
it is enough to show that there are no first-period profitable deviations. In doing
so, however, we are faced with the difficulty that we have little information about
the payoff ui(ak+1) or the potential benefit from a deviation. We do know that
each complete cycle a1, . . . , aK has average payoff v′′ (which will prove useful
for periods T > Tε +K). Accordingly, we proceed by first noting that a lower
bound on i’s equilibrium payoff is

(k + 1)m+ Tε
(
v′i −

ε

3

)
, (4.6.7)

obtained by placing no control on payoffs during the first k + 1 periods and
then using (4.6.4). Conditions (4.6.3) and (4.6.5) give the first inequality in the
following, the second follows from the definition ofM , and the third from (4.6.6),

(k + 1)m+ Tε
(
v′i −

ε

3

)
≥ (k + 1)M + Tε

(
v
j
i +

ε

3

)
≥ M + (Tε + k)

(
v
j
i +

ε

3

)
> M + (Tε + k)Ui(σ j (Tε + k)).

Because the first term is a lower bound on i’s equilibrium payoff, first-period devi-
ations are suboptimal. We thus have an equilibrium payoff profile in QT (ε)+k+1,
which is again either contained in or strictly dominated by some profile inRTε+k+1.
Denote by σ(Tε + k + 1) the equilibrium with payoff profile in RTε+k+1. Note
that (Tε + k + 1)Ui(σ (Tε + k + 1)) ≥ ui(ak+1)+ (Tε + k)Ui(σ v′(Tε + k)).

This argument yields an equilibrium for T = Tε +K , σ(Tε +K)with payoffs
in RTε+K , and satisfying

(Tε +K)Ui(σ (Tε +K)) ≥ TεUi(σ v′(Tε))+
∑
k

u(ak)

≥ Tε
(
v′i − ε

3

)+Kv′′i .
Suppose T = Tε + �K + k for some � ∈ {1, 2, . . . } and k ∈ {1, . . . , K − 1},

and σ(T − 1) is an equilibrium with payoffs in RT−1, and satisfying

(T − 1)Ui(σ (T − 1)) ≥ Tε
(
v′i − ε

3

)+ �Kv′′i + k−1∑
h=1

ui(a
h). (4.6.8)
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Consider the profile that plays ak in the first period, with deviations by player i
punished by continuing with σ j (T − 1), and with σ(T − 1) played in the absence
of a deviation. As before, deviations in the first period are unprofitable:

T Ui(σ (T )) ≥ km+ �Kv′′i + Tε
(
v′i − ε

3

)
≥ M + (T − 1)

(
v
j
i + ε

3

)
> M + (T − 1)Ui(σ

j (T − 1)).

We thus have an equilibrium payoff profile inQT , which is again either contained
in or strictly dominated by some profile in RT . Denote by σ(T ) the equilibrium
with payoff profile in RT . Note also that σ(T ) satisfies (4.6.8).

We thus have two sequences of equilibria, σv
′
(T ) and σ(T ), each yielding pay-

offs contained in RT . The average payoff of each element of the former sequence
lies within ε/3 of v′, whereas the average payoff of the latter eventually strictly
dominates v′′ − ε/3. For sufficiently small ε, the latter eventually strictly domi-
nates the former, a contradiction.

■

Proving proposition 4.6.1 requires extending lemma 4.6.2 to the boundary cases in
which vi = wi . We begin with an intermediate result. LetMi be the largest stage-game
payoff for player i.

Lemma

4.6.3
Suppose v1 and v2 are two profiles in R∞ with v2

i < v1
i and with no v′′ ∈ R∞

satisfying v2
i < v′′i < v1

i . Then max{vj : (v�i , vj ) ∈ R∞} = Mj for � = 1, 2.

Proof Without loss of generality, we take i = 1. Under the hypothesis of the lemma, the
set R∞ has a gap between two equilibria. Because v1

1 > v2
1, max{v2 : (v1

1, v2) ∈
R∞} ≤ max{v2 : (v2

1, v2) ∈ R∞}. We let a be an action profile with u2(a) = M2

and derive a contradiction from the assumption that max{v2 : (v1
1, v2) ∈ R∞} <

M2. Without loss of generality, we assume v1
2 = max{v2 : (v1

1, v2) ∈ R∞}.
Let ε = 1

4 (v
1
1 − v2

1) and choose Tε so that for all T ≥ Tε,

M + T (v2
1 + ε) < m+ T (v1

1 − 2ε). (4.6.9)

We consider two cases. First, suppose u1(a) < v1
1 − ε, and let λ ∈ (0, 1) and the

payoff profile ṽ solve

ṽ1 = v1
1 − ε,

and ṽ = λu(a)+ (1− λ)v1.

Let η < min{ε, (ṽ2 − v1
2)/2}. Because v1

2 = max{v2 : (v1, v2) ∈ R∞, v1 ≥ v1
1},

R∞ ∩ V = ∅, where V ≡ {v : v1 ≥ v1
1 − 2ε, v2 ≥ v1

2 + η}. Note that ṽ ∈ V .
The proof proceeds by showing that, for large T , RT ∩ V �= ∅, which suffices
for the contradiction in the first case.

For every v with ‖v1 − v‖ < η/2,11 ‖λu(a)+ (1− λ)v − ṽ‖ < η/2. Choose
a game length Tη > Tε such that for all T > Tη, the Hausdorff distance between

11. We use ‖ · ‖ to denote the max or sup norm, reserving | · | for Euclidean distance.
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RT and R∞ is less than η/2. Hence, for each T > Tη, there are equilibria
σ 1(T ) and σ 2(T ) with payoffs in RT , such that ‖U(σ i(T ))− vi‖ < η/2. More-
over, there are sequences of game lengths T (n) and integers K(n) < T (n)− Tη,
such that ∥∥∥∥ 1

T (n)

{
K(n)u(a)+ (T (n)−K(n))v1

}
− ṽ

∥∥∥∥ < η.

For each T (n) in the sequence, we construct an equilibrium with payoffs in
RT (n) ∩ V (which is the desired contradiction), using a payoff obtained from play-
ing u(a) for K(n) periods and (approximately) v1 for the remaining T −K(n)
periods. Notice that K(n)/T (n) will be approximately λ, so there is no difficulty
in requiring T (n)−K(n) > Tη.

For each T (n), we recursively construct a sequence of equilibria, beginning
with the game of length T (n)−K(n)+ 1. In the first period, profile a is played,
followed by the continuation equilibrium σ 1(T (n)−K(n)). Player 1 deviations
in the first period are punished by continuation equilibrium σ 2(T (n)−K(n)).
Player 2 has no incentive to deviate in the first period, because a gives her the
maximum stage-game payoff M2, and so can be ignored. This strategy profile
is subgame perfect if 1 has no incentive to deviate, which is ensured by (4.6.9).
We denote by σ(T (n)−K(n)+ 1) an equilibrium whose payoff profile is in
RT (n)−K(n)+1 and which either equals or strictly dominates the equilibrium payoff
we have just constructed.

Given such an equilibrium σ(T (n)−K(n)+m) for some m = 1, . . . ,
K(n)− 1, construct a profile for GT (n)−K(n)+m+1 by prescribing play of a in
the first period, followed by σ(T (n)−K(n)+m), with player 1 deviations pun-
ished by σ 2(T (n)−K(n)+m). Condition (4.6.9) again provides the necessary
condition for this to be an equilibrium with payoffs in QT (n)−K(n)+m+1. Denote
by σ(T (n)−K(n)+m+ 1) an equilibrium with payoffs inRT (n)−K(n)+m+1 that
equal or strictly dominate those of the equilibrium we have constructed. Proceed-
ing in this fashion until reaching length T (n) provides an equilibrium with payoffs
in RT (n); it is straightforward to verify that the payoffs also lie in V .

The remaining case, u1(a) > v1
1 − ε, is easier to handle, because adding payoff

u(a) to an equilibrium increases rather than decreases 1’s payoff and hence makes
it less likely to raise incentive problems for player 1. In this case, we can take ṽ
to be an arbitrary nontrivial convex combination of M and v1 and then proceed
as before.

■

We now extend lemma 4.6.2 to the boundary cases in which vi = wi .
Lemma

4.6.4
Let b1 > w1 and b2 > w2. Then each payoff in v ∈ R∞ is efficient.

Proof Lemma 4.6.2 establishes the result for any profile that does not give one player
the worst payoff in R∞. By hypothesis, R∞ contains at least two points.

Suppose (w1, w2) �∈ R∞, and let vj > wj be the smallest player j playoff for
which (wi, vj ) ∈ R∞. If vj = Mj , then (wi, vj ) is efficient. Suppose vj < Mj .
Then, by lemma 4.6.3, there is path in R∞ between (wi, vj ) and (bi, v′j ), for
some v′j ≥ wj . Hence, there is a sequence of payoff profiles {vn}∞n=0 in R∞ that
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converges to (wi, vj ) and, by the definition of vj , vni > wi and vnj > wj for all
sufficiently large n. By lemma 4.6.2, each vn is efficient, and hence so is (wi, vj ),
as are all points (wi, v′′j ) ∈ R∞ with v′′j > vj .

It remains to rule out the possibility that (w1, w2) ∈ R∞. We suppose
(w1, w2) ∈ R∞ and argue to a contradiction. Lemma 4.6.3, coupled with the
observation thatR∞ can contain no profile that strictly dominates another, ensures
that R∞ consists of two line segments, one joining (w1, b2) with (w1, w2), and
one joining (w1, w2) with (b1, w2). Let a be an action profile with u2(a) = M2,
and fix λ ∈ (0, 1) so that

w1 < ṽ1 ≡ λu1(a)+ (1− λ)b1,

and w2 < ṽ2 ≡ λM2 + (1− λ)w2.

Let ε = min{ṽ1 − w1, ṽ2 − w2}/4 > 0 and choose Tε so that for all T ≥ Tε,
M + T (w1 + ε) < m+ T (b1 − 2ε).

The proof proceeds by showing that for large T , there are payoffs in RT within
ε of ṽ, contradicting the assumption that (w1, w2) ∈ R∞. Because the details of
the rest of the argument are almost identical to the proof of lemma 4.6.3, they are
omitted.

■

Proof of Proposition 4.6.1 Suppose that (b1
1, b

1
2) �∈ F †. Lemma 4.6.1 ensures that R∞

contains one profile whose payoff to player 1 is at least b1
1 and one whose payoff

to player 2 is at least b2
2. Because it is impossible to do both simultaneously, it must

be that b1 > w1 and b2 > w2. But then lemma 4.6.4 implies that R∞ consists of
efficient equilibria.

■

The payoffs b1
1 and b1

2 are the best stage-game Nash equilibrium payoffs for
players 1 and 2. The criterion provided by proposition 4.6.1 is then to ask whether
it is feasible (though not necessarily an equilibrium) to simultaneously obtain these
payoffs in the stage game. If not, then renegotiation-proof equilibria must be nearly
efficient. The payoff profile (b1

1, b
1
2) is infeasible in example 4.6.1, and hence the lim-

iting renegotiation-proof equilibria are efficient. Example 4.6.2 accommodates such
payoffs, thus failing the sufficient condition for efficiency, and featuring inefficient
limiting payoffs.

Remark

4.6.2
Benoit and Krishna (1993) extend lemma 4.6.4 to allow one of the inequalities
b1 > w1 and b2 > w2 to be weak. By doing so, they obtain the result that either
the set R∞ is a singleton or it is efficient. The only case that is not covered by
our proof is that in which R∞ is either a vertical or horizontal line segment, to
which analogous arguments apply. Example 4.6.2 illustrates the case in whichR∞
is inefficient and is hence a singleton. Example 4.6.1 illustrates a case in which
R∞ contains only efficient profiles and contains an interval of such payoffs. There
remains the possibility thatR∞may contain only a single payoff which is efficient.
This is the case for the coordination game of figure 4.6.5.

◆
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E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 4.6.6 The prisoners’ dilemma.

4.6.2 Infinitely Repeated Games

We now consider infinite horizon games.12 The point of departure is that a continuation
equilibrium is not “credible” if it is strictly dominated by an alternative continua-
tion equilibrium. In making this determination, however, one is not interested in all
alternative equilibria, but only in those that themselves survive the credibility test.

Definition

4.6.2
A subgame-perfect equilibrium (W , w0, f, τ ) of the infinitely repeated game is
weakly renegotiation proof if the payoffs at any pair of states are not strictly ranked
(i.e., if for allw′, w′′ ∈ W , if Vi(w′) > Vi(w

′′) for some i, then Vj (w′) ≤ Vj (w′′)
for some j ).

Intuitively, if the payoffs beginning with the initial state w′ strictly dominate the
payoffs beginning with the initial state w′′, then the latter are vulnerable to renegotia-
tion, because the strategy profile (W , w′, f, τ ) is both unanimously preferred and part
of equilibrium behavior.

Weakly renegotiation proof equilibria always exist, because for any stage-game
Nash equilibrium, the repeated-game profile that plays this equilibrium after every
history is weakly renegotiation proof.

Example

4.6.3
Consider the prisoners’ dilemma of figure 1.2.1, reproduced in figure 4.6.6. Grim
trigger is not a weakly renegotiation-proof equilibrium. The strategies following
the null history feature effort throughout the remainder of the equilibrium path.
The resulting payoffs strictly dominate those produced by the strategies following
a history featuring an instance of shirking, which call for perpetual shirking.

This may suggest that perpetual defection is the only renegotiation-proof equi-
librium of the repeated prisoners’ dilemma, because any other equilibrium must
involve a punishment that will be strictly dominated by the original equilibrium.
This is the case for strongly symmetric strategy profiles, that is, profiles in which
the two players always choose the same actions, because any punishment must then

12. We illustrate the issues by first presenting some results taken from Evans and Maskin (1989)
and Farrell and Maskin (1989), followed by an alternative perspective due to Abreu, Pearce,
and Stacchetti (1993). Bernheim and Ray (1989) comtemporaneously presented closely related
work. Similar issues appear in the idea of a coalition-proof equilibrium (Bernheim, Peleg, and
Whinston 1987; Bernheim and Whinston 1987), where one seeks equilibria that are robust to
alternative choices that are jointly coordinated by the members of a coalition. Here again, one
seeks robustness to deviations that are themselves robust, introducing the self-reference that
makes an obvious definition elusive.
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EEw

SEw

ES

SE0w

ESw

EESE,

EEES ,

Figure 4.6.7 Weakly renegotiation-proof strategy profile supporting mutual
effort in every period, in the prisoners’ dilemma. Unspecified transitions
leave the state unchanged.

push both players below their original equilibrium payoff. However, asymmetric
punishments open other possibilities.

Consider the strategy profile in figure 4.6.7 (and taken from van Damme 1989).
Intuitively, these strategies begin with both players choosing effort. If player i
shirks, then he must pay a penance of exerting effort while player j shirks. Once
i has done so, all is forgiven and the players return to mutual effort. This is a
renegotiation-proof subgame-perfect equilibrium, for sufficiently high discount
factors. Beginning with subgame perfection, we require that neither player prefer
to shirk in the first period of the game, or the first period of a punishment phase.
The accompanying incentive constraints are

2 ≥ (1− δ)[3+ δ(−1)] + δ22,

and (1− δ)(−1)+ δ2 ≥ δ[(1− δ)(−1)+ δ2].
Both are satisfied for δ ≥ 1/3. Our next task is to check renegotiation proofness.
Continuation payoff profiles are (2, 2), (3δ − 1, 3− δ), and (3− δ, 3δ − 1). For
δ ∈ [1/3, 1), no pair of these profiles is strictly ranked.

●

This result extends. The key to constructing nontrivial renegotiation-proof equi-
libria is to select punishments that reward the player doing the punishing, ensuring
that the punisher is not tempted by the prospect of renegotiating. We consider repeated
games with two players.13

Proposition

4.6.2
Suppose the game has two players and ã ∈ A is a strictly individually rational
pure action profile, with v = u(ã). If there exist pure-action profiles a1 and a2

such that, for i = 1, 2,

max
ai∈Ai

ui(ai, a
i
j ) < vi, (4.6.10)

and uj (a
i) ≥ vj , (4.6.11)

then, for sufficiently large δ, there exists a pure-strategy weakly renegotiation-
proof equilibrium with payoffs v. If v is the payoff of a pure-strategy weakly

13. An extension to more than two players remains to be done.
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renegotiation-proof equilibrium, then there exist pure actions a1 and a2 satisfying
the weak inequality version of (4.6.10) and satisfying (4.6.11).

The action profiles a1 and a2 allow us to punish one player while rewarding the
other. In the case of the prisoners’dilemma of figure 4.6.6, letting a1 = ES and a2 = SE
ensures that for any payoff vector v ∈ F ∗, we have, for i = 1 in (4.6.10)–(4.6.11)

max
a1∈{E,S}

u1(a1, S) = 0 < v1

and u2(E, S) = 3 ≥ v2.

Hence, any feasible, strictly individually rational payoff vector can be supported by
a weakly renegotiation-proof equilibrium in the prisoners’ dilemma. Notice that in
the case of the prisoners’ dilemma, a single pair of action profiles a1 and a2 provide
the punishments needed to support any payoff v ∈ F ∗. In general, this need not be the
case, with different equilibrium payoffs requiring different punishments.

Proof of Proposition 4.6.2 We prove the sufficiency of (4.6.10)–(4.6.11). For necessity,
see Farrell and Maskin (1989), whose proof of necessity in their theorem 1 holds
for our class of equilibria and games (i.e., pure-strategy equilibria in games with
unobservable mixtures).

The equilibrium strategy profile is a simple strategy profile (definition 2.6.1),
σ(a(0), a(1), a(2)), where a(0) is the constant outcome path in which ã is played
in every period, and a(i), i = 1, 2, is i’s punishment outcome path of L periods
of ai followed by a return to ã in every period (where L is to be determined). An
automaton for this profile has a set of states

{w(0)} ∪ {w(i, k), i = 1, 2, k = 1, . . . , L},
initial state w(0), output function

f (w) =
{
ã, if w = w(0),
ai, if w = w(i, k), k = 1, . . . , L,

and transitions

τ(w(0), a) =
{
w(i, 1), if ai �= ãi , a−i = ã−i ,
w(0), otherwise,

and

τ(w(i, k), a) =
{
w(j, 1), if aj �= aij , a−j = ai−j ,
w(i, k + 1), otherwise,

where we take w(i, L+ 1) to be w(0).
Choose L so that

Lmini (vi − ui(ai)) ≥ M −mini vi ,

where M is, as usual, the largest stage game payoff.
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h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 4.6.8 The product-choice game.

Standard arguments show that for sufficiently high δ, no one-shot deviations
are profitable from w(0) nor by player i in any state w(i, k) (see the proof of
proposition 3.3.1). It is immediate that player i has no incentive to deviate from
punishing player j , because i is rewarded for punishing j .

It is also straightforward to verify Vi(w(i, k)) < Vi(w(i, k + 1)) < vi ≤
Vi(w(j, k + 1)) ≤ Vi(w(j, k)), and so the profile is weakly renegotiation proof.

■

Example

4.6.4
Consider the product-choice game of figure 1.5.1, reproduced in figure 4.6.8.
Suppose both players are long-lived. For sufficiently large discount factors, we
have seen that equilibria exist in which Hh is played in every period. However,
it is clear that no such equilibrium can be renegotiation proof. In particular, this
equilibrium gives player 2 the largest feasible payoff in the stage game. There
is then no way to punish player 1, who faces the equilibrium incentive problem,
without also punishing player 2. If there exists an equilibrium in which Hh is
always played, then this equilibrium path must yield payoffs strictly dominating
some of its own punishments, precluding renegotiation proofness.

●

Remark

4.6.3
Public correlation In the presence of a public correlating device, there is an ex ante
and an ex post notion of weak renegotiation proofness. In the latter, renegotiation
is possible after the realization of the correlating device, whereas in the former,
renegotiation is only possible before the realization. The analysis easily extends to
ex ante (but not to ex post) weak renegotiation proofness with public correlation
and allows a weakening of the sufficient conditions (4.6.10)–(4.6.11) by replacing
ã, a1 and a2 with correlated action profiles. In doing so, we require (4.6.10) to
hold for every realization of the public correlating device, whereas (4.6.11) is
required only in expectation.

Farrell and Maskin (1989) allow a1 and a2 to be (independent) mixtures and
allow v to be the payoff of any publicly correlated action profile. They then show
that payoff v can be obtained from a deterministic sequence of (possibly mixed
but uncorrelated) profiles, using an argument similar to that of section 3.7 but
assuming observable mixed strategies and complicated by the need to show weak
renegotiation proofness.

◆

Every feasible, strictly individually rational payoff in the prisoners’ dilemma can
be supported as the outcome of a weakly renegotiation-proof equilibrium, including
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A B C D

A 4, 2 z, z z, 0 z, z

B z, z 0, 3 z, 0 z, z

C 5, z 0, z 3, 0 0, z

D z, z z, z z, 5 2, 4

Figure 4.6.9 Stage game for repeated game in which a strongly
renegotiation proof equilibrium does not exist, where z is negative
and large in absolute value.

the payoffs provided by persistent shirking and the payoff provided by persistent effort.
Why isn’t the former equilibrium disrupted by the opportunity to renegotiate to the
latter?

The difficulty is that weak renegotiation proofness ensures that no two continu-
tation paths, that potentially arise as part of a single equilibrium, are strictly ranked.
However, our intuition is that renegotiation-proofness should also restrict attention to
a set of equilibria with the property that no two equilibria in the set are strictly ranked.
Toward this end, Farrell and Maskin (1989) offer:

Definition

4.6.3
A strategy profile σ is strongly renegotiation proof if it is weakly renegotiation
proof and no continuation payoff is strictly dominated by the payoff in another
weakly renegotiation-proof equilibrium.

The strategy profile shown in figure 4.6.7 is strongly renegotiation proof. The
following example, adapted from Bernheim and Ray (1989), shows that strongly
renegotiation-proof equilibria need not exist.

Example

4.6.5
We consider the game shown in figure 4.6.9. We let δ = 1/5 and consider only
pure-strategy equilibria. When doing so, it suffices for nonexistence that z <
−5/4.14 The minmax values for each agent are 0.

The first observation is that no pure-strategy equilibrium can ever play an
action profile that does not lie on the diagonal of the stage game. Equivalently,
any pure equilibrium must be strongly symmetric. Off the diagonal, at least one
player receives a stage-game payoff of z and hence a repeated game payoff at
most (1− δ)z+ δ5. Given δ = 1/5 and z < −5/4, this is less than the minmax
value of 0, a contradiction.

The strategy profile that specifies BB after every history is weakly renegotiation
proof, as is the profile that specifies CC after each history, with payoffs (0, 3) and

14. Bernheim and Ray (1989) note that the argument extends to mixed equilibria if z is sufficiently
large and negative. The key is that in that case, any equilibrium mixtures must place only
very small probability on outcomes off the diagonal, allowing reasoning similar to that of the
pure-strategy case to apply.
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(3, 0) respectively. Similarly, paths that vary between BB and CC can generate
convex combinations of (0, 3) and (3, 0) as outcomes of weakly renegotiation-
proof equilibria.

We now consider an equilibrium in which AA is played. Such an equilibrium
exists only if we can find continuation payoffs γ (AA) and γ (CA) from the interval
[0, 4] such that

(1− δ)4+ δγ1(AA) ≥ (1− δ)5+ δγ1(CA).

Given δ = 1/5, this inequality can be satisfied only ifγ1(AA) = 4 andγ1(CA) = 0.
Hence, there exists a unique equilibrium outcome in which AA is played, which
features AA in every period and with deviations followed by a continuation value
(0, 3). Similarly, there exists an equilibrium in which DD is played in every period,
with deviations followed by continuation values (3, 0). Both equilibria are weakly
renegotiation proof.

It is now immediate that there are no strongly renegotiation-proof equilibria.
Any equilibrium that features only actions BB and CC is strictly dominated either
by the equilibrium that always plays AA or the one that always plays DD. However,
each of the latter includes a punishment phase that always plays either BB or CC,
ensuring that the latter equilibria are also not strongly renegotiation proof.

●

Strongly renegotiation-proof equilibria fail to exist because of a lack of efficient
punishments. Sufficient conditions for existence are straightforward when F = F †,
as is often (but not always, see figure 3.1.3) the case when actions sets are continua.15

First, note that taking ã in proposition 4.6.2 to be efficient gives sufficient conditions
for the existence of an efficient weakly renegotiation-proof equilibrium.16

Proposition

4.6.3
Suppose F = F † and an efficient (in F †) pure-strategy weakly renegotiation-
proof equilibrium exists. Let vi be the payoff of the efficient weakly renegotiation-
proof equilibrium that minimizes player i’s payoff over the set of such equilibria.
If there are multiple such equilibria, choose the one maximizing j ’s payoff. For
each i, assume there is an action profile ai satisfying

max
ai
ui(ai, a

i
j ) < vii

and uj (a
i) ≥ vij .

Then for every efficient action profile a∗ with ui(a∗) ≥ vii for each i, there is a
δ such that for all δ ∈ (δ, 1) there is a pure-strategy strongly renegotiation-proof
equilibrium yielding payoffs u(a∗).

15. In the presence of public correlation and ex ante weak renegotiation proofness (remark 4.6.3),
we can drop the assumption that F = F †. Farrell and Maskin (1989) do not assume F = F †

or the existence of public correlation (but see remark 4.6.3).

16. Evans and Maskin (1989) show that efficient weakly renegotiation-proof equlibria generically
exist, though again assuming observable mixtures.
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Proof Let ǎi be a pure-action profile with u(ǎi) = vi (recall F = F †). The equi-
librium strategy profile is, again, a simple strategy profile (definition 2.6.1),
σ(a(0), a(1), a(2)), where a(0) is the constant outcome path in which a∗ is played
in every period, and a(i), i = 1, 2, is i’s punishment outcome path of L periods
of ai followed by the perpetual play of ǎi , where L satisfies

Lmini (ui(a
∗)− ui(ai)) ≥ M −mini ui(a

∗),

and M is the largest stage game payoff.
As in the proof of proposition 4.6.2, standard arguments show that for suffi-

ciently high δ, no one-shot deviations are profitable (see the proof of proposition
3.3.1).

It thus remains to show that none of the continuation equilibria induced by
this strategy profile are strictly dominated by other weakly renegotiation-proof
equilibria. There are five types of continuation path to consider. Three of these
are immediate. The continuation paths consisting of repeated stage-game action
profiles with payoffs u(a∗) and vi cannot be strictly dominated, because each
of these payoff profiles is by construction efficient. The remaining two cases
are symmetric, and we present the argument for only one of them. Consider a
continuation path in which player 1 is being punished, consisting of between
1 and L initial periods in which a1 is played, followed by the perpetual play of
ǎ1. Let ṽ be the payoff from this path. Given the properties of a1, we know that

ṽ1 < v1
1 and ṽ2 ≥ v1

2 .

Suppose v̂ is a weakly renegotiation-proof payoff profile dominating ṽ. Then, of
course, we must have

v̂2 > ṽ2 ≥ v1
2 .

Now suppose v̂1 > v1
1. Then v̂ strictly dominates v1, contradicting the assump-

tion that v1 is an efficient weakly renegotiation-proof equilibrium. Suppose next
v̂1 = v1

1. Then v̂ must be efficient and, because v̂2 > v1
2, this contradicts the

definition of v1. Suppose finally that v̂1 < v1
1 (and hence is inefficient, because

we otherwise have a contradiction to the choice of v1 as the efficient weakly
renegotiation-proof equilibrium that minimizes player 1’s payoff). Let (v′1, v̂2)

be efficient. Then applying the necessity portion of proposition 4.6.2 to v̂, using
F = F † to obtain â1, and recalling the properties of a2, we have

max
a1∈A1

u1(a1, â
1
2) ≤ v̂1 < v′1,

u2(â
1) ≥ v̂2,

max
a2∈A2

u2(a
2
1, a2) ≤ v2

2 < v̂2,

and u1(a
2) ≥ v2

1 ≥ v′1.
Then â1, a2 and (v′1, v̂2) satisfy the sufficient conditions from proposition 4.6.2 for
there to exist a pure-strategy weakly renegotiation-proof equilibrium with payoff
(v′1, v̂2). By construction, this payoff is efficient. This contradicts the efficiency
of v1 (if v′1 > v1

1) or the other elements of the definition of v1 (if v′1 ≤ v1
1).

■
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Renegotiation-proof equilibria are so named because they purportedly survive
any attempt by the players to switch to another equilibrium. In general, the players
will have different preferences over the possible alternative equilibria, giving rise to
a bargaining problem. The emphasis on efficiency in renegotiation proofness reflects
a presumption that the players could agree on replacing an equilibrium with another
that gives everyone a higher payoff. However, given the potential conflicts of interest,
this belief in agreement may be optimistic. Might not a deal on a superior equilibrium
be scuttled by player i’s attempt to secure an equilibrium that is yet better for him? It
is not clear we can answer without knowing more about how bargaining proceeds.

Abreu, Pearce, and Stacchetti (1993) take an alternative approach to renegotiation
proofness that focuses on the implied bargaining. Their view is that if player i can
point to an alternative equilibrium in which every player (including i) earns a higher
payoff after every history than i currently earns, then i can make a compelling case
for switching to the alternative equilibrium. For an equilibrium σ define vi(σ ) =
inf {Ui(σ |ht ) : ht ∈H }.

Definition

4.6.4
An equilibrium σ ∗ is a consistent bargaining equilibrium if there is no alternative
subgame-perfect equilibrium σ with mini{vi(σ )} > mini{vi(σ ∗)}.
Hence, the consistent bargaining criterion rejects an equilibrium if it could reach

a continuation game with one player whose continuation payoff is lower than every
continuation payoff in some alternative equilibrium. Notice the comparisons embedded
in this notion are no longer based on dominance. It suffices to reject an equilibrium that
it fails the test for one player, though this player must make comparisons with every
other player’s payoffs in the proposed alternative equilibrium. A player for whom there
is such an alternative equilibrium promising a higher payoff in every circumstance
is viewed as having a winning case for abandoning the current one. Abreu, Pearce,
and Stacchetti (1993) apply this concept only to symmetric games. Symmetry is not
required for this concept to be well defined or to exist, but helps in interpreting the
payoff comparisons across players as natural comparisons the players might make.

Example

4.6.6
Consider the battle of the sexes game of figure 4.6.10. With the help of a public
correlating device, we can construct an equilibrium in which TL and BR are each
played with equal probability in each period, for expected payoffs of (2, 2). It is
also clear that there is no equilibrium with a higher total payoff, so this equilibrium
is the unique consistent bargaining equilibrium.

We use this game to explain the need for a comparison across players’ pay-
offs in this notion. Suppose that we suggested that an equilibrium σ ∗ should

L R

T 1, 3 0, 0

B 0, 0 3, 1

Figure 4.6.10 A battle-of-the-sexes game.
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be a consistent bargaining equilibrium if there is no alternative subgame-perfect
equilibrium σ and player i with vi(σ ) > vi(σ ∗). Then notice that there exists a
subgame-perfect equilibrium σ 1 in which BR is played after every history, and
hence v1(σ

1) = 3. There exists another equilibrium σ 2 that features TL after
every history and hence v2(σ

2) = 3. Given the infeasibility of payoffs (3, 3), this
ensures that there would be no consistent bargaining equilibrium. This result illus-
trates the intuition surrounding a consistent bargaining equilibrium. A player i has
a persuasive objection to an equilibrium, not simply when there is an alternative
equilibrium under which that player invariably fares better, but when there is an
alternative under which every player invariably fares better than i currently does.
In the former case, the player is arguing that he would prefer an equilibrium in
which things work out better for him, whereas in the latter he can argue that he is
being asked to endure an outcome that no one need endure.

●

Example

4.6.7
We consider the three versions of the prisoners’ dilemmas, shown in figure 4.6.11.
The first two are familiar, and the third makes it most attractive to shirk when
the opponent is exerting effort. Consider an equilibrium path with a value vi to
player i. We use the possibility of public correlation to assume that this value
is received in every period, simplifying the calculations. Let �i be the increase
in player i’s current payoff that can be achieved by deviating from equilibrium
play. Restrict attention to simple strategies, and let ṽi be the value of the resulting
punishment. We can further assume that this punishment takes the form of a finite
number of periods of mutual shirking, followed by a return to the equilibrium
path. This ensures that the continuation payoff provided by the punishment is
lowest in its initial period, and that the only nontrivial incentive constraint is the
condition that play along the equilibrium path be optimal, which can be rearranged
to give

ṽi ≤ vi − 1− δ
δ

�i.

Let us focus on the case of δ = 1/2, so that the incentive constraint becomes

ṽi ≤ vi −�i.

E S

E 2, 2 −1, 3

S 3,−1 0, 0

E S

E 3, 3 −1, 4

S 4,−1 1, 1

E S

E 2, 2 −1, 4

S 4,−1 0, 0

Figure 4.6.11 Three prisoners’ dilemma games. In the left game, the
incentives to shirk rather than exert effort are independent of the opponent’s
action. The incentive to shirk is strongest when the opponent shirks in the
middle game, and strongest when the opponent exerts effort in the right game.
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The search for a consistent bargaining equilibrium thus becomes the search for
an equilibrium featuring a pair of values (vi, ṽi ) with the property that (because
ṽi ≤ vi) no other equilibrium features continuation values that all exceed ṽi .

Now consider the prisoners’dilemma in the left panel of figure 4.6.11. Here,�i
is fixed at 1, independently of the opponents’ actions. This fixes the relationship
between vi and ṽi , for any equilibrium. Finding a consistent bargaining equilib-
rium now becomes a matter of finding the equilibrium with the largest value of
ṽi . Given the fixed relationship between vi and ṽi , this is equivalent to finding the
equilibrium that maximizes vi . This calls for permanent effort and equilibrium
payoffs (2, 2). This is the unique consistent bargaining equilibrium outcome in
this game.

In the middle game, the incentives to shirk now depend on the equilibrium
actions, so that�i is no longer fixed. Finding a consistent bargaining equilibrium
again requires finding the equilibrium with the largest value of ṽi . Moreover,
�i is larger the more likely one’s opponent is to shirk. This reinforces the fact
that maximizing ṽi calls for maximizing vi . As a result, a consistent bargaining
equilibrium again requires that vi be maximized, and hence the unique consistent
bargaining equilibrium again calls for payoffs (2, 2).

In the right game, the incentives to shirk are strongest when the opponent exerts
effort. Hence, �i becomes smaller the more likely is the opponent to shirk. It is
then no longer the case that the equilibrium maximizing ṽi , and hence providing
our candidate for a consistent bargaining equilibrium, is also the equilibrium
that maximizes vi . Instead, the unique consistent bargaining equilibrium here
calls for the two players to attach equal probability (again, with the help of a
public correlating device) to ES and SE. Notice that equilibrium is inefficient, with
expected payoffs of 3/2 rather than the expected payoffs (2, 2) provided by mutual
effort. To see that this is the unique consistent bargaining equilibrium, notice that
the incentive constraint for the proposed equilibrium must deter shirking when
the public correlation has selected the agent in question to exert effort and the
opponent to shirk. A deviation to shirking under these circumstances brings a
payoff gain of 1, so that the punishment value ṽi must satisfy

ṽi ≤ vi −�i = 3
2 − 1 = 1

2 .

The proposed equilibrium thus has continuation values of 3/2 and 1/2. Any equi-
librium featuring higher continuation values must sometimes exhibit mutual effort.
Here, the incentive constraint is

ṽi ≤ vi −�i = vi − 2.

Because this incentive constraint must hold for both players, at least one player
must face a continuation payoff of 0. This ensures that no such equilibrium can
yield a collection of continuation values which are all strictly larger than 1/2.
As a result, the equilibrium that mixes over outcomes SE and ES is the unique
consistent bargaining equilibrium.

●
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5 Variations on the Game

An important motivation for work with repeated games, as with all economic models,
is that the repeated game is an analytically convenient model of a more complicated
reality. This chapter explores some variations of the canonical repeated-game model
in which the strategic interactions are not literally identical from period to period.

5.1 RandomMatching

We begin with a setting in which every player shares some of the characteristics of
a short-lived player and some of a long-lived player.1 Our analysis is based on the
familiar prisoners’ dilemma of figure 1.2.1, reproduced in figure 5.1.1. The phrase
“repeated prisoners’ dilemma” refers to a single pair of long-lived players who face
each other in each period. Here, we study a model with an even number M ≥ 4 of
players. In each period, the M players are matched into M/2 pairs to play the game.
Matchings are independent across periods, with each possible configuration of pairs
equally likely in each period. Each matched pair then plays the prisoners’ dilemma, at
which point we move to the next period with current matches dissolved and the players
entered into a new matching process. We refer to such a game as a matching game.
A common interpretation is a market where people are matched to complete bilateral
trades in which they may either act in good faith or cheat.

Players in the matching game discount their payoffs at rate δ and maximize the
average discounted value of payoffs. In any given match, both players appear to be
effectively short-lived, in the sense that they play one another once and then depart.
Were this literally the end of the story, we would have a collection of ordinary prisoners’
dilemma stage games with the obvious (and only) equilibrium outcome of shirking at
every opportunity.

However, the individual interactions in the matching game are not perfectly iso-
lated. With positive probability, each pair of matched players has a subsequent rematch.
Given enough time, the matching process will almost certainly bring them together
again. But if the population is sufficiently large, the probability of a rematch in the near
future will be sufficiently small as to have a negligible effect on current incentives. In
that event, mutual shirking appears to be the only equilibrium outcome.

1. The basic model is due to Kandori (1992a). Our elaboration is due to Ellison (1994), which
allows for a public correlating device.
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E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 5.1.1 Prisoners’ dilemma.

5.1.1 Public Histories

There may still be hope for outcomes other than mutual shirking. Much hinges on the
information players have about others’ past play. We first consider the public-history
matching game, in which in every period each player observes the actions played in
every match. A period t history is then a t-tuple of outcomes, each of which consists of
an (M/2)-tuple of pairs of actions. Because histories are public, just as in the standard
perfect-monitoring repeated game, every history leads to a subgame. Consequently,
the appropriate equilibrium concept is, again, subgame perfection.

Proposition

5.1.1
An outcome a = (a0, a1, . . .) ∈ A∞ is an equilibrium outcome in the repeated
prisoners’ dilemma if and only if there is an equilibrium in the public-history
matching game in which action profile at is played by every pair of matched
players in period t .

The idea of the proof is that any deviation from a in the public-history matching game
can prompt the most severe punishments possible from the repeated game. This can
be done despite the fact that partners are scrambled each period, because histories are
public. Because deviations from outcome a are deterred by the punishments of the
equilibrium supporting outcome a in the repeated game, they are also deterred by the
(possibly more severe) punishments of the matching game. This is essentially the argu-
ment lying behind optimal penal codes (section 2.6.1). Though interest often focuses
on the prisoners’ dilemma, the argument holds in general for two-player games.

Proof Let a be an equilibrium outcome in the repeated prisoners’ dilemma and σ the
corresponding equilibrium profile. Let σ ′ be a strategy profile that duplicates σ
except that at any history ht �= at , σ ′ prescribes that every player shirk. Because
perpetual mutual shirking is an optimal punishment in the prisoners’ dilemma,
from Corollary 2.6.1, σ ′ is also a subgame-perfect equilibrium of the repeated
game with outcome a.

We now define a strategy profileσ ′′ for the public-history matching game. Apair
of players matched in period t chooses action profile at if every pair of matched
players in every period τ < t has chosen profile aτ . Otherwise, the players shirk.
Notice that the publicness of the histories in the public-history matching game
makes this strategy profile feasible. Notice also that these strategies accomplish
the goal of producing profile at in each match in each period t . It remains to show
that the proposed strategies are a subgame-perfect equilibrium of the public-history
matching game.
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Consider a player in the public-history matching game, in period t , with aτ

having been played in every match in every period τ < t . Let the resulting history
be called ĥt and let ht be the corresponding history (i.e., at ), in the repeated game.
Then we need only note that the optimality of action profile at in the matching
game is equivalent to

Ui(σ
′|ht ) ≥ Ui(σi, σ ′−i |ht ),

for all repeated-game strategies σi , whereUi is the repeated-game payoff function.
This is simply the observation that the player faces precisely the same future
play, with or without a deviation, in the matching game as in the repeated game.
The optimality conditions for the repeated game thus imply the corresponding
optimality conditions for the full-information matching game. Similar reasoning
gives the converse.

■

There is thus nothing special about having the same players matched with each
other in each period of a repeated game, as long as sufficient information about previous
play is available. What matters in the matching game is that player i be punished in
the future for current deviations, regardless of whether the punishment is done by the
current partner or someone else. In the equilibrium we have constructed, a deviation
from the equilibrium path is observed by all and trips everyone over to the punishment.
Having one’s partner enter the punishment suffices to deter the deviation in the repeated
game, and having the remainder of the population do so suffices in the matching game.
Why would someone against whom a player has never played punish the player?
Because it is an equilibrium to do so, and failing to do so brings its own punishment.

5.1.2 Personal Histories

We now consider the personal-history game. We consider the extreme case in which at
the beginning of period t , player i’s history consists only of the actions played in each
of the previous t matches in which i has been involved. Player i does not know the
identities of the partners in the earlier matches, nor does he know what has transpired
in any other match.2 Hence, a period t personal history is an element of At , where
A = {EE, SE,ES, SS}.

In analyzing this game, we cannot simply study subgame-perfect equilibria,
because there are no nontrivial subgames, and so subgame perfection is no more
restrictive than Nash. The appropriate notion of sequential rationality in this setting is
sequential equilibrium. Though originally introduced for finite extensive form games
by Kreps and Wilson (1982b), the notion has a straightforward intuitive description
in this setting: A strategy profile is a sequential equilibrium if, after every personal
history, player i is best responding to the behavior of the other players, given beliefs
over the personal histories of the other players that are “consistent” with the personal
history that player i has observed.

We are interested in the possible existence of a sequential equilibrium of the
personal-history game in which players always exert effort. Figure 5.1.2 displays
the candidate equilibrium strategies, where q ∈ [0, 1] is to be determined; denote the

2. In particular, player i does not know if he has been previously matched with his current partner.
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Ew Sw

EE SSSEES ,,

0w
)1( q−

)(q

)(q

)1( q−

Figure 5.1.2 The individual automaton describing a single player i’s strategy σ̂i
for the personal history game. Transitions not labeled by a strategy profile occur for
all strategy profiles. Transitions labeled by (·) are random and are conditioned on
ω, the realization of a public random variable, returning the automaton to state wE
if ω > q; the probability of that transition is 1− q.

strategy profile by σ̂ . In contrast to the other automata we use in part I but in a preview
of our work with private strategies and private-monitoring games, an automaton here
describes the strategy of a single player rather than a strategy profile, with one such
automaton associated with each player (see remark 2.3.1). The actions governing the
transitions in the automaton are those of the player and the partner in the current stage
game. The transitions are also affected by a public random variable, which allows the
players in the population to make perfectly correlated transitions.

Each player’s automaton begins in state wE , where the player exerts effort. If
the player or the player’s partner shirks, then a transition is made to state wS , and to
shirking, unless the realization ω ∈ [0, 1] of the uniformly distributed public random
variable is larger than q, in which case no transition is made. The automaton remains
in state wS until at some future date ω > q. The public randomization thus ensures
that in every period, there is probability 1− q that every player returns to state wE of
their automaton. With probability q, every player proceeds with a transition based on
his personal history.

Under these strategies, any deviation to shirking sets off a contagion of further
shirking. In the initial stages of this contagion, the number of shirkers approximately
doubles every period (as long as ω < q), as the relatively small number of shirkers
tend to meet primarily partners who have not yet been contaminated by shirking. We
think of the public correlation device as occasionally (and randomly) pushing a “reset
button” that ends the contagion.

Consider first a player who has observed only mutual effort. Then, he is in state
wE . Because he does not observe the personal history of his current match, he also
does not know her current state. However, the only belief about her personal history
that is consistent with his personal history and the profile σ̂ is that she also has observed
only mutual effort and so is in state wE .

Suppose now that a player has observed his partner in the last period play S, and
ω > q. Then again, because ω is public, player i must believe that every other players’
current state is wE . On the other hand, if ω ≤ q, then the player’s current state is wS .
If the previous period was the initial period, sequentiality requires player i to believe
that his period 0 partner unilaterally deviated, and at the end of the period 0, all players
except player i and his period 0 partner are in state wE , whereas the remaining two
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players are in state wS . Consequently, in period 1, he is rematched with his previous
partner with probability 1/(M − 1), and with complementary probability, is matched
with a player in state wE .

However, if this observation occurs much later in the game, sequentiality would
allow player i to believe that the original deviation occurred in period 0 and had
spread throughout most of the population. At the same time, if in every period after
observing S, ω ≤ q, player i must believe that at least one other player has observed
a personal history leaving that player in state wS . As will be clear from the proof, the
most difficult incentive constraint to satisfy is that player i, in state wS , shirk when he
believes that exactly one other player is in state wS .

Proposition

5.1.2
There exists δ < 1 such that, for any δ ∈ (δ, 1), there exists a value of q = q(δ)
such that σ̂ (the profile of strategies in figure 5.1.2) is a sequential equilibrium of
the personal-history matching game.

Proof Let V (S , δ, q) be the expected value of a player i ∈ S ⊂ {1, . . . ,M} when the
players in S are in state wS and the remaining players are in state wE , given
discount factor δ and probability q(δ) = q. Given the uniformity of the matching
process, this value depends only on the number of players in state wS and is
independent of their identities and the identity of player i ∈ S . We take i to be
player 1 unless otherwise specified and often take S to be Sk ≡ {1, . . . , k}.

We begin by identifying two sufficient conditions for the proposed strategy
profile to be an equilibrium. The first condition is that player 1 prefer not to shirk
when in statewE . Player 1 then believes every other player (including his partner)
to also be in state wE , as specified by the equilibrium strategies, either because
no shirking has yet occurred or because no shirking has occurred since the last
realization ω > q. This gives an incentive constraint of

2 ≥ (1− δ)3+ δ[(1− q)2+ qV (S2, δ, q)],

or

1 ≤ δq

1− δ [2− V (S2, δ, q)]. (5.1.1)

The second condition is that player 1 must prefer not to exert effort while in
state wS . Because exerting effort increases the likelihood of effort from future
partners, this constraint is not trivial. In this case, player 1 cannot be certain of
the state of his partner and may be uncertain as to how many other players are in
state wS of their automata. Notice, however, that if player 1’s partner shirks in
the current interaction, then exerting effort only reduces player 1’s current payoff
without retarding the contagion to shirking and hence is suboptimal. If there are to
be any gains from exerting effort when called on to shirk, they must come against
a partner who exerts effort. If player 1 shirks against a partner who exerts effort,
the number of players in state wS next period (conditional on ω < q) is larger
by 1 (player 1’s partner) than it would be if player 1 exerts effort. Because we are
concerned with the situation in which player 1 is in state wS and meets a partner
in statewE , there must be at least two players in the population in statewS (player
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1 and his previous partner). Hence, it suffices for shirking to be optimal that, for
all k ≥ 2,3

(1− δ)3+ δ[(1− q)2+ qV (Sk+1, δ, q)]
≥ (1− δ)2+ δ[(1− q)2+ qV (Sk, δ, q)],

where Sk is the set of players in statewS next period if player 1 exerts effort, and
Sk+1 is the set in state wS if player 1 shirks. Rearranging, this is

1 ≥ δq

1− δ [V (Sk, δ, q)− V (Sk+1, δ, q)]. (5.1.2)

We now proceed in two steps. We first show that there exists δ such that for
every δ ∈ (δ, 1), we can find a q(δ) ∈ [0, 1] such that (5.1.1) holds with equality,
that is, players are indifferent between shirking and exerting effort on the induced
path. Note that in that case, (5.1.2) holds for k = 1, because V (S1, δ, q) = 2 is
the value to a player when all other players are in statewE , and the player deviates
to S. We then show that if (5.1.2) holds for any value k, it also holds strictly for
any larger value k′. In particular, when a player is indifferent between shirking
and exerting effort on the induced path, after deviating, that player now strictly
prefers to shirk because the earlier deviation has triggered the contagion.

Step 1. Fix q = 1 and consider how the right side of (5.1.1) varies in the discount
factor,

lim
δ→0

δ

(1− δ) [2− V (S2, δ, 1)] = 0,

and lim
δ→1

δ

(1− δ) [2− V (S2, δ, 1)] = ∞.

The first equality follows from noting that V (S2, δ, 1) ∈ [0, 3] for all δ. The
second follows from noting that V (S2, δ, 1) approaches 0 as δ approaches 1,
because under σ̂ with q = 1, eventually every player is in statewS , and hence the
expected stage-game payoffs converge to 0, at a rate independent of δ. Because
δ

(1−δ) [2− V (S2, δ, 1)] is continuous, there is then (by the intermediate value

theorem) a value of δ at which δ
1−δ [2− V (S2, δ, 1)] = 1, and hence at which

(5.1.1) holds with equality when q = 1. Denote this value by δ, and then take
q(δ) = 1. Summarizing,

1 = δ

(1− δ)q(δ)[2− V (S2,δ, 1)]. (5.1.3)

We now show that (5.1.1) holds for every δ ∈ (δ, 1), for suitable q(δ). We first
acquire the tools for summarizing key aspects of a history of play. Fix a period and
a history of play, and consider the continuation game induced by that history. Let ξ
be a specification of which players are matched in the period 0 (of the continuation

3. In fact, it would suffice to have k ≥ 3 because there are at least three players in state wS next
period (including the current partner of the other shirker). However, as will become clear, it is
convenient to work with the stronger requirement, k ≥ 2.
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game) and in each future period. Let i(j, t, ξ) denote the partner of player j in
period t under the matching ξ . We now recursively construct a sequence of sets,
beginning with an arbitrary set S ⊂ {1, . . . ,M}. For any set of players S , let

T0(S , ξ) = {1, . . . ,M} \S

and Tt+1(S , ξ) = {j ∈ Tt (S , ξ) | i(j, t, ξ) ∈ Tt (S , ξ)}.
In our use of this construction, S is the set of players who enter the continuation

game in statewS , with the remaining players in statewE . The state Tt (S , ξ) then
identifies the players that are still in state wE of their automata in period t , given
that the public reset to state wE has not occurred. Define V (S , δ, q | ξ) to be the
continuation value of player i ∈ S when the players in set S (only) are in state
wS , given matching realization ξ . Hence, V (S , δ, q) is the expectation over ξ of
V (S , δ, q | ξ). Let Sk = {1, . . . , k} denote the first k players, and suppose we
are calculating player 1’s (∈ S ) value in V (Sk, δ, q | ξ). Then,

V (Sk, δ, q | ξ)− V (Sk+1, δ, q | ξ)

=
∞∑
t=0

(1− δ)qt δt3χ{τ :i(1,τ,ξ)∈Tτ (Sk,ξ)\Tτ (Sk+1,ξ)}(t), (5.1.4)

where χC is the indicator function, χC(t) = 1 if t ∈ C and 0 otherwise. Equation
(5.1.4) gives the loss in continuation value to player 1, when entering a con-
tinuation game in state wS , from having k + 1 players rather than k players in
state wS .

It is immediate from (5.1.4) that δ
(1−δ)q(δ)[V (S1, δ, q)− V (S2, δ, q)]

depends only on the product qδ. For every δ ∈ [δ, 1), we can then define

q(δ) = δ/δ.
This ensures that (5.1.3) holds for every δ ∈ (δ, 1) and q(δ), and hence that (5.1.1)
holds for every such pair. This completes our first step.

Step 2. We finish the argument by showing that (5.1.2) holds for all values k ≥ 2,
for all δ ∈ (δ, 1) and q = q(δ). For this, it suffices to show that for all k ≥ 2
and s = 1, . . . ,M − k − 1,

V (Sk, δ, q | ξ)− V (Sk+1, δ, q | ξ) > V (Sk+s , δ, q | ξ)− V (Sk+s+1, δ, q | ξ),
for any realization ξ , that is, slowing the contagion to shirking is more valuable
when fewer people are currently shirking. This statement follows immediately
from (5.1.4) and the observation that, with strict containment for some t ,

Tt (Sk+s , ξ) \ Tt (Sk+s+1, ξ) ⊂ Tt (Sk, ξ) \ Tt (Sk+1, ξ).

■

Kandori (1992a) works without a public correlating device, thus examining the
special case of this strategy profile in which q = 1 and punishments are therefore per-
manent. As Ellison (1994) notes, the purpose of the reset button is to make punishments
less severe, and hence make it less tempting for a player who has observed an incidence
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of shirking to continue exerting effort in an attempt to retard the contagion to shirking.
Without public correlation, a condition on payoffs is needed to ensure that such an
attempt to slow the contagion is not too tempting (Kandori 1992a, theorem 1). This
condition requires that the payoff lost by exerting effort (instead of shirking) against a
shirking partner be sufficiently large and requires this loss to grow without bound as
the population size grows. If this payoff is fixed, then effort will become impossible
to sustain, no matter how patient the players, when the population is sufficiently large.
In contrast, public correlation allows us to establish a lower bound δ for the discount
factor that increases as does the size of the population, but with the property that for
any population size there exist discount factors sufficiently large (but short of unity)
that support equilibrium effort.

Remark

5.1.1
Although we have assumed that players cannot remember the identities of earlier
partners, the strategy profile σ̂ is still a sequential equilibrium when players are
not so forgetful, with essentially the same proof. Harrington (1995) considers this
extension as well as more general matching technologies. Okuno-Fujiwara and
Postlewaite (1995) examine a related model in which each player is characterized
by a history-dependent status that allows direct but partial transfer of information
across encounters. Ahn and Suominen (2001) examine a model with indirect
information transmission.

◆

5.2 Relationships in Context

In many situations, players are neither tied permanently to one another (as in a repeated
game) nor destined to part at first opportunity (as in the matching games of section 5.1).
In addition, players often have some control over how long their relationship lasts and
have views about the desirability of continuing that depend on the context in which
the relationship is embedded. One may learn about one’s partner over the course of a
relationship, making it either more or less attractive to continue the relationship. One
might be quite willing to leave one’s job or partner if it is easy to find another, but not
if alternatives are scarce. One may also pause to reflect that alternative partners may
be available because they have come from relationships whose continuation was not
profitable.

This section presents some simple models that allow us to explore some of these
issues. These models share the feature that in each period, players have the opportunity
to terminate their relationship. Although many of the models in this section are not
games (because there is no initial node), the notions of strategy and equilibrium apply
in the obvious manner.

The ability to end a relationship raises issues related to the study of renegoti-
ation in section 4.6. Renegotiating to a new and better equilibrium may not be the
only recourse available to players who find themselves facing an undesirable continu-
ation equilibrium. What if, instead, the players have the option of quitting the game?
This possibility becomes more interesting if there is a relationship between the value
of quitting a game and play in the game itself. Suppose, for example, that quitting
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a game allows one to begin again with a new partner. We must then jointly examine the
equilibrium of the game and the implications of this equilibrium for the environment
in which the game is played.

5.2.1 A Frictionless Market

As our point of departure, we consider a market in which the stage game is the prisoners’
dilemma of figure 5.1.1 and players who terminate one relationship encounter no
obstacles in forming a new one.

We can view this model as a version of the personal-history matching model of
section 5.1 with three modifications. First, we assume that there is an infinite number of
players, most commonly taken to correspond to a continuum such as the unit interval,
with individual behavior unobserved (see remark 2.7.1). This precludes any possibility
of using the types of contagion arguments explored in section 5.1 to support nontrivial
equilibrium outcomes.

Second, at the end of each period the players in each match simultaneously decide
whether to continue or terminate their match. If both continue, they proceed to the
next period. If either decides to terminate, then both enter a pool of unmatched players
where they are paired with a new partner to begin play in the next period. The prospect
for continuing play restores some hope of creating intertemporal incentives.

Third, similar to section 4.2, at the end of each period (either before or after
making their continuation decisions), each pair of matched players either “dies” (with
probability 1− δ) or survives until the next period (with probability δ).4 Agents who
die are replaced by new players who join the pool of unmatched players.5 We assume
that players do not discount, with the specter of death filling the role of discounting
(section 4.2), though it costs only extra notation to add discounting as well.

At the beginning of each period, each player is either matched or unmatched.
Unmatched players are matched into pairs, and each (new or continuing) pair plays the
prisoners’ dilemma. Agents in a continuing match observe the history of play in their
own match, but players receive no information about new partners they meet in the
matching pool. In particular, they cannot observe whether a partner is a new entrant to
the unmatched pool or has come from a previous relationship.

The flow of new players into the pool of unmatched players ensures that this pool
is never empty, and hence players who terminate a match can always anonymously
rematch. Otherwise, the possibility arises that no player terminates a match in equi-
librium, because there would be no possibility of finding a new match (because the
matching pool is empty . . .).

In this market, players who leave a match can wipe away any record of their past
behavior and instantly find a new partner. What effect does this have on equilibrium
play?

4. It simplifies the calculations to assume that if one player in a pair dies, so does the other. At the
cost of somewhat more complicated expressions, we could allow the possibility that one player
in a pair leaves the market while the other remains, entering the matching pool, without affecting
the conclusions.

5. From the point of view of an individual player, the probability of death is random, but we exploit
the continuum of players to assume that there is no aggregate uncertainty.
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We begin with two immediate observations. First, there exists an equilibrium
in which every player shirks at every opportunity. Second, there is no equilibrium in
which the equilibrium path of play features only effort. Suppose that there were such an
equilibrium. A player could then increase his payoff by shirking in the current period.
This shirking results in a lower continuation if the player remained matched with his
current partner, but the player can instead terminate the current match, immediately
find a new partner, and begin play anew with a clean history and with a continuation
equilibrium that prescribes continued effort. Consequently, shirking is a profitable
deviation.

The difficulty here is that punishments can be carried out only within a match,
whereas there is no penalty attached to abandoning a match to seek a new one. The
public-history matching model of section 5.1 avoids this difficulty by allowing a
player’s past to follow the player into the matching pool. The personal-history matching
game provides players with less information about past play but exploits the finiteness
of the set of players to allow enough information transmission to support effort (with
sufficient patience). In the current model, no information survives the termination of
a match, and there are no punishments that can sustain effort.

5.2.2 Future Benefits

Players may be less inclined to shirk and run if new matches are not as valuable as
current ones. Moreover, these differences in value may arise endogenously as a product
of equilibrium play. In the simplest version of this, consider equilibrium strategies
in which matched players shirk during periods 0, . . . , T − 1, begin to exert effort in
periodT , and exert thereafter. Any deviation from these strategies prompts both players
to abandon the match and enter the matching pool. If a deviation from such strategies
is ever to be optimal, it must be optimal in period T , the first period of effort. It then
suffices that it is optimal to exert effort in period T (for a continuation payoff 2) instead
of shirking, which requires:

2 ≥ (1− δ)3+ δT+12,

which we can solve for

2 ≥ 1− δ
1− δT+1

3.

For δ > 1/2, the inequality is satisfied for T ≥ 1. Taking the limit as T →∞, we
find that this inequality can be satisfied for finite T if the familiar inequality δ > 1/3
holds. Hence, as long as the effective continuation probability is sufficiently large to
support the strict optimality of effort in the ordinary repeated prisoners’ dilemma, we
can make the introductory shirking phase sufficiently long to support some effort when
an exit option is added to the repeated game. Moreover, as the continuation probability
δ approaches 1, we can set T = 1 and still preserve incentives. Hence, in the limit
as δ→ 1, the equilibrium value of δ2 converges to 2. Very patient players can come
arbitrarily close to the payoff they could obtain by always exerting effort.

An alternative interpretation is that the introductory phase may take place outside
of the current relationship. Suppose that whenever a player returns to the matching
pool, he must wait some number of periods T before beginning another match. Then
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the previous calculations apply immediately, indicating that effort can be supported
within a match as long as T is sufficiently long relative to the incentives to shirk.
This trade-off is the heart of the efficiency wage model of Shapiro and Stiglitz (1984).
Efficiency wages, in the form of wages that offer a matched worker a continuation
value higher than the expected continuation value of entering the pool of unemployed
workers, create the incentives to exert effort rather than accept the risk of terminating
the relationship that accompanies shirking. In Shapiro and Stiglitz (1984), the counter-
parts of the value of T as well as the payoffs in the prisoners’ dilemma are determined
as part of a market equilibrium.

Carmichael and MacLeod (1997) note that any technology for paying sunk costs
can take the place of the initial T periods of shirking. Suppose players can burn a sum
of money θ . Consider strategies prescribing that matched players initially exert effort
if both have burned the requisite sum θ , with any deviation prompting termination to
enter the matching pool. Once a pair of players have matched and burned their money,
continued effort is optimal if

2 ≥ (1− δ)3+ δ(2− (1− δ)θ),

or

θ ≥ 1

δ
.

Hence, the sum to be burned must exceed the payoff premium to be earned by shirking
rather than exerting effort against a cooperator. For these strategies to be an equilibrium,
it must in turn be the case that the amount of money to be burned is less than the benefits
of the resulting effort, or

(1− δ)θ ≤ 2.

These two constraints on θ can be simultaneously satisfied if δ ≥ 1/3. Notice that the
efficiency loss of burning the money can be as small as (1− δ)/δ, which becomes
arbitrarily small as the continuation probability approaches 1.

We seldom think of people literally burning money. Instead, this is a metaphor for
an activity that is costly but creates no value. In some contexts, advertising is offered
as an example. In the case of people being matched to form partnerships, it suffices
for the players to exchange gifts that are costly to give but have no value (other than
sentimental) to the recipient. Wedding rings are often mentioned as an example.

5.2.3 Adverse Selection

Ghosh and Ray (1996) offer a model in which returning to the matching pool is costly
because it exposes players to adverse selection. We consider a simplified version of
their argument.

We now assume that players discount as well as face a probability that the game
does not continue. There are two types of players, “impatient” players characterized by
a discount factor of 0 and “patient” players characterized by a discount factor δ > 0.
The pool of unmatched players will contain a mixture of patient and impatient players.
Matching is random, with players able to neither affect the type of partner with whom
they are matched nor observe this type. Once matched, their partners’ plays may allow
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them to draw inferences about their partner that will affect the relative payoffs of
continuing or abandoning the match. Denote the continuation probability by ρ. The
effective discount factor is then δρ, and we normalize accordingly payoffs by the factor
(1− δρ).

We begin by assuming that the proportion of impatient types in the matching pool
is exogenously fixed at λ. Players who enter the matching pool are matched with a
new partner in the next period.

As usual, one configuration of equilibrium strategies is that every player shirks
at every opportunity, coupled with any configuration of decisions about continuing or
abandoning matches. We are interested in an alternative equilibrium in which impatient
players again invariably shirk but patient players initially exert effort, continuing to do
so as long as they are matched with a partner who exerts effort. Patient players respond
to any shirking by terminating the match. Patient players thus screen their partners,
abandoning impatient ones to seek new partners while remaining and exerting effort
with patient ones. The temptation to shirk against a patient partner is deterred by the
fact that such shirking requires a return to the matching pool, where one may have to
sort through a number of impatient players before finding another patient partner.

The incentive facing the impatient players in this equilibrium are trivial, and they
must always shirk in any equilibrium. Suppose a patient player is in the middle of a
match with a partner who is exerting effort and hence who is also patient. Equilibrium
requires that continued effort be optimal, rather than shirking and then returning to the
matching pool. Let V be the value of entering the pool of unmatched players. Then
the optimality of effort requires:

2 ≥ (1− δρ)3+ δρV . (5.2.1)

Now consider a patient player at the beginning of a match with a partner of unknown
type, being impatient with probability λ. If it is to be optimal for the patient player to
exert effort, we must have

(1− λ)2+ λ[(1− δρ)(−1)+ δρV ] ≥ (1− λ)[(1− δρ)3+ δρV ] + λδρV,
or

2− λ

1− λ(1− δρ) ≥ (1− δρ)3+ δρV .
The latter constraint is clearly more stringent than that given by (5.2.1), for exerting
effort in a continuing relationship. Hence, if it is optimal to exert in the first period,
continued effort against a patient partner is optimal. We thus need only investigate
initial effort.

Let VE and VS be the expected payoff to a player who exerts effort and shirks,
respectively, in the initial period of a match. Then we have

VE = 2(1− λ)+ λ[(1− δρ)(−1)+ δρV ] (5.2.2)

and

VS = (1− λ)[(1− δρ)3+ δρV ] + λδρV. (5.2.3)
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If we are to have an equilibrium in which patient players exert effort in the initial
period, then VE = V , and we can solve (5.2.2) to find

VE = 2− 3λ+ δρλ
1− δρλ . (5.2.4)

A necessary and sufficient condition for the optimality of exerting effort is obtained by
inserting V = VE in (5.2.2)–(5.2.3) to write VE ≥ VS as

VE ≥ (1− λ)[(1− δρ)3+ δρVE] + λδρVE,
and then using (5.2.4) to solve for

3δρλ2 − 4δρλ+ 1 ≤ 0.

If δρ < 3/4, there are no real values of λ that satisfy this inequality. Effort cannot be
sustained without sufficient patience. If δρ ≥ 3/4, then this condition is satisfied, and
effort is optimal, for values of λ ∈ [λ, λ̄], for some

0 < λ < λ̄ < 1.

Hence, if effort is to be optimal, the proportion of impatient players λ must be neither
too high nor too low. If λ is low, and hence almost every player is patient, then there is
little cost to entering the matching pool in search of a new partner, making it optimal
to shirk in the first round of a match and then abandon the match. If λ is very high,
so that almost all players are impatient, then the probability that one’s new partner is
patient is so low as to not make it worthwhile risking initial effort, no matter how bleak
the matching pool.

What fixes the value of λ, the proportion of impatient types in the matching pool?
We illustrate one possibility here. First, we assume that departing players are replaced
by new players of whom φ are impatient and 1− φ patient.6 Let � and h be the
mass of players in the unmatched pool in each period who are impatient and patient,
respectively. We then seek values of � and h, and hence λ = �/(�+ h), for which we
have a steady state, in the sense that the values � and h remain unchanged from period
to period, given the candidate equilibrium strategies.7

Let zHH , zHL, and zLL be the mass of matches in each period that are between
two patient players, one patient and one impatient player, or between two impatient
players. Notice that these must sum to 1/2 because there are half as many matches as
players. In a steady state,

� = φ(1− ρ)+ ρ(zHL + 2zLL) (5.2.5)

and

h = (1− φ)(1− ρ)+ ρzHL, (5.2.6)

6. Recall that there is a continuum of players, of mass 1, and we assume there is no aggregate
uncertainty.

7. A more ambitious analysis would fix � and h at arbitrary initial values and allow them to evolve.
This is significantly more difficult, because the value of λ is then no longer constant, and hence
our preceding analysis inapplicable.
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reflecting the flow of players into the unmatched pool from replacing departing players
(the first term in each case) or from terminating matches (the second term).

In each period, surviving matches between patient players as well as newly formed
matches from players in the unmatched pool form matches in proportions,

zHH = ρzHH + 1

2
(h+ �) h2

(h+ �)2 ,

zHL = 1

2
(h+ �) 2h�

(h+ �)2 ,

and

zLL = 1

2
(h+ �) �2

(h+ �)2 .
Substituting into (5.2.5), we obtain

� = φ(1− ρ)+ ρ�
=⇒ � = φ,

whereas substituting into (5.2.6), we obtain

h = (1− φ)(1− ρ)+ ρ h�

h+ �
= (1− φ)(1− ρ)+ ρ hφ

h+ φ ≡ f (h).

Because f (0) > 0, f (1− φ) < 1− φ, and f ′(h) ∈ (0, 1), f has a unique fixed point,
and this point is strictly smaller than 1− φ. It remains to verify that λ ∈ [λ, λ̄], that
is, that the steady state is indeed an equilibrium. As for the exogenous λ case, extreme
values of φ preclude equilibrium. Fix ρ and δ so that δρ > 3/4. As φ→ 0, �→ 0
while h→ 1− ρ and so λ→ 0. On the other hand, as φ→ 1, �→ 1 while h→ 0
and so λ→ 1. From continuity, there will be intermediate values of φ for which the
implied steady-state values of h and � are consistent with equilibrium.

In equilibrium, the proportion of patient players in the unmatched pool falls short
of the proportion of new entrants who are patient, ensuring that the unmatched pool is
biased toward impatient players (λ > φ). This reflects adverse selection in the process
by which players reach the unmatched pool. Patient players tend to lock themselves
into partnerships that keep them out of the unmatched pool, whereas impatient players
continually flow back into the pool.

5.2.4 Starting Small

In section 5.2.2, we saw that patient players have an incentive to not behave opportunis-
tically in the presence of attractive outside options when the value of the relationship
increases over time. In addition, the possibility that potential partners may be impatient
can reduce the value of the outside option sufficiently to again provide patient players
with an incentive to not behave opportunistically (section 5.2.3). Here we explore an
adverse selection motivation, studied by Watson (1999, 2002), for “starting small.”8

8. Similar ideas appear in Diamond (1989).
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We continue with the prisoners’ dilemma of figure 5.1.1. As in section 5.2.3,
we assume that players can come in two types, impatient and patient. The impa-
tient type has a discount factor δ < 1/3, and the patient type has a discount factor
δ̄ > 1/3. Because our focus is on the players’ response to this adverse selection within
a relationship (rather than how their behavior responds to the adverse selection within
the population), we assume each player is impatient with exogenous probability λ.
Each player knows his own type. Similarly, at the end of each period, each player
has the option of abandoning the relationship and, on doing so, receives an exoge-
nous outside option. The impatient type’s option is worth 0, and a patient type’s is
worth V̄ ∈ (0, 2). As in section 5.1.2, the relevant equilibrium notion is sequential
equilibrium.

Because δ < 1/3, even if an impatient player knows he is facing a patient player
playing grim trigger, the impatient player’s unique best reply is to shirk immediately.
In other words, the immediate reward from shirking is too tempting for the impatient
player. Consequently, the only equilibrium outcome of the repeated prisoner’s dilemma
of figure 5.1.1, when one player is known to be impatient, is perpetual shirking. Thus, if
the probability of the impatient type is sufficiently large, the only equilibrium outcome
is again perpetual shirking.

The new aspect considered in this section is that the scale of the relationship may
change over time. Early periods involve confidence building, whereas in later periods
the players hope to reap the rewards of the relationship. To capture this, we study the
game in figure 5.2.1. This partnership game extends the prisoners’dilemma by adding a
moderate effort choice that lowers the cost from having a partner shirk while lowering
the benefit from effort.

We consider separating strategies of the following form. Patient players chooseM
for T periods, and then exert effort E as long as their partner also does so, abandoning
the match after any shirking. Impatient players always shirk and terminate play after
the first period of any game.

What is required for these strategies to be optimal? There are two strategies that
could be optimal for an impatient player. He could shirk in the first period of a match,
thereafter abandoning the match, or he could choose M until period T (if the partner
does, abandoning the match otherwise), and then shirk in period T . Under the latter
strategy, the player shirks at high stakes against a patient opponent, at the cost of

E M S

E 2, 2 0, 1 −1, 3

M 1, 0 2z, 2z −z, 3z

S 3,−1 3z,−z 0, 0

Figure 5.2.1 A partnership game extending
the prisoners’ dilemma, where z ∈ [0, 1].
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delaying the shirking and the risk of being exploited by an impatient partner. The
incentive constraint is given by

(1− λ)(1− δ)3z ≥ (1− λ)(1− δ)
(
T−1∑
t=0

δt2z+ δT 3

)
+ λ(1− δ)(−z).

The left side is the payoff produced by immediate shirking. If z = 1, then the impatient
player will always shirk immediately. There is then no gain from waiting for the chance
to shirk at higher stakes. Alternatively, if z = 0, then the impatient player will surely
wait until period T to shirk, because this is the only opportunity available to secure a
positive payoff.

For the patient player, the relevant choices are either to shirk immediately and then
abandon the match or follow the equilibrium strategy, for an incentive constraint of

(1− λ)[(1− δ̄)3z+ δ̄V̄ ] + λδ̄V̄

≤ (1− λ)
[
(1− δ̄)

T−1∑
t=0

δ̄t2z+ δ̄T 2

]
+ λ[(1− δ̄)(−z)+ δ̄V̄ ].

The left side is again the payoff from immediate shirking. For any T , if δ̄ is sufficiently
large, this incentive constraint will hold for any z ∈ (0, 1). Suppose δ̄ is sufficiently
large that it holds for T = 1.

We now evaluate the impact of varying z and T on the payoff of the patient player.
In doing so, we view z as a characteristic of the partnership (perhaps one that could be
designed in an effort to nurture the relationship), whereas T , of course, is a parameter
describing the strategy profile. We are thus asking what relationship the patient type
prefers, noting that the answer depends on the attendant equilibrium.

The derivative of the patient player’s payoff under the candidate equilibrium profile
with respect to z is given by

(1− δ̄)
[

2(1− λ)(1− δ̄
T )

(1− δ̄) − λ
]
.

If λ < 2/3, then this derivative is positive, for any T . Patient players then prefer z
to be as large as possible, leading to an optimum of z = 1 or T = 0 (and reinforcing
the incentives of impatient players in the process). In this case, impatient players are
sufficiently rare that it is optimal to simply bear the consequences of meeting such
players, rather than taking steps to minimize the losses they inflict that also reduce the
gains earned against impatient players. As a result, patient players would prefer that
the interaction start at full size.

If λ > 2/3, the derivative is negative for T = 1. In this case, an impatient player is
sufficiently likely that the patient player prefers a smaller value of z andT = 1 toT = 0
to minimize the losses imposed by meeting an impatient type. The difficulty is that a
small value of z, with T = 1, may violate the incentive constraint for the impatient
player. Because the constraint holds strictly with z = 1, there will exist an interval
[z1, 1) for which the constraint holds. The patient player will prefer the equilibrium



5.3 ■ Multimarket Interactions 161

E S E S

E 2, 2 −1, 3 E 3, 3 −1, 4

S 3,−1 0, 0 S 4,−1 0, 0

Figure 5.3.1 Prisoners’ dilemma stage games for two repeated
games between players 1 and 2.

T = 1 for any z ∈ [z1, 1) to the equilibrium with T = 0. We thus have a basis for
starting small.9

5.3 Multimarket Interactions

Suppose that players 1 and 2 are engaged in more than one repeated game. The players
may be firms who produce a variety of products and hence repeatedly compete in
several markets. They may be agents who repeatedly bargain with one another on
behalf of a variety of clients. How does this multitude of interactions affect the set
of equilibrium payoffs? For example, if the players are firms, does the multimarket
interaction enhance the prospects for collusion?

One possibility is to view the games in isolation, conditioning behavior in each
game only on the history of play in that game. In this case, any payoff that can
be sustained as an equilibrium in one of the constituent repeated games can also be
sustained as the equilibrium outcome of that game in the combined interaction. Putting
the games together can thus never decrease the set of equilibrium payoffs.

An alternative is to treat the constituent games as a single metagame, now allow-
ing behavior in one game to be conditioned on actions in another game. It initially
appears as if this must enlarge the set of possible payoffs. A deviation in one game
can be punished in each of the other games, allowing the construction of more severe
punishments that should seemingly increase the set of equilibrium payoffs. At the same
time, however, the prospect arises of simultaneously deviating from equilibrium play
in each of the constituent games, making deviations harder to deter.

It is immediate that if the constituent games are identical, then the set of equilibrium
payoffs in the metagame, averaged across constituent games, is precisely that of any
single constituent game. If the constituent games differ, then the opportunity for cross-
subsidization arises.

We illustrate these points with an example. Consider the pair of prisoner’s dilem-
mas in figure 5.3.1. It is a familiar calculation that an expected payoff of (2, 2) can
be achieved in the left game, featuring an equilibrium path of persistent effort, when-
ever δ ≥ 1/3, and that otherwise a payoff of (0, 0) is the only equilibrium possibility

9. There may exist yet better combinations of z and T > 1 for the patient player.
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(see section 2.5.2). A payoff of (3, 3), the result of persistent effort, is available in the
right game if and only if δ ≥ 1/4.

Suppose now that δ = 3/10. If the games are played separately, the largest sym-
metric equilibrium payoff, summed across the two games, is (3, 3), reflecting the fact
that the left game features only mutual shirking as an equilibrium outcome, whereas
effort can be supported in the right game. Now suppose that the two games are com-
bined, with an equilibrium strategy of exerting effort in both games as long as no prior
shirking in either game has occurred, and shirking in both games otherwise. To verify
these are equilibrium strategies, we need only show that the most lucrative deviation,
to simultaneously shirking in both games, is unprofitable. The equilibrium payoff from
the two games is 5, and the deviation brings an immediate payoff of 7 followed by a
future of zero payoffs, for an incentive constraint of

5 ≥ (1− δ)7,
which we solve for δ ≥ 2/7 (<3/10).

The mechanism at work here is that the right game satisfies the incentive constraint
for exerting effort with some slack when δ = 3/10. This slack can be used to subsidize
effort in the left game, allowing effort to be an equilibrium outcome in both.

The potential gains to be realized from linking heterogeneous games are only
available when the discount factor is sufficiently large that at least one of the constituent
games has a nontrivial subgame-perfect equilibrium. Multimarket interactions cannot
manufacture new possibilities out of thin air. But if there is such a game, and the
incentive constraints in that game hold with strict inequality, then new possibilities
arise in games that in isolation allow only trivial equilibria. Bernheim and Whinston
(1990) pursue this issue in the context of oligopoly markets.

5.4 Repeated Extensive Forms

This section discusses repeated games in which the players play an extensive-form
stage game in each period. For our purposes, we can restrict attention to extensive-
form games without nature and continue to use subgame perfection as the equilibrium
notion. A stage-game action then specifies, for the player in question, a choice at each
of the player’s information sets in the extensive-form stage game. At the end of the
period, the players observe the terminal node y reached as a result of that period’s
play. In any particular period, some of a player’s information sets may be reached in
the course of play, but others may not be. As a result, observing a terminal node y
will not in general reveal the players’ actions. That is, and as our examples make clear,
if the game has a nontrivial dynamic structure, several action profiles can lead to the
same terminal node. It is then natural to think of a repeated extensive-form game as a
repeated game of imperfect public monitoring with the terminal node being the signal.
Section 9.6 characterizes the set of subgame-perfect equilibrium payoffs for repeated
extensive-form games and proves a folk theorem using tools developed for the general
analysis of public-monitoring repeated games in chapters 7–9.10 This section presents

10. The approach in sections 3.4.2 and 3.7 can also be used to immediately prove a folk theorem for
repeated extensive-form games. See the end of section 5.4.1.



5.4 ■ Repeated Extensive Forms 163

some examples illustrating the new issues raised by repeated extensive-form (rather
than normal-form) games.11

Given an action profile a of the extensive form, because there are no moves
of nature, a unique terminal node y(a) is reached under the path of play implied
by a. A sequence of action profiles (a0, a1, . . . , at−1) induces a public history of
terminal nodes ht = (y(a0), y(a1), . . . , y(at−1)), and a strategy for player i specifies
in period t , as a function of the history of terminal nodes, ht , the action to be taken in
period t (where this action is a contingent plan of behavior within the extensive form).

A repeated extensive-form game often has more subgames than does the repeated
game constructed from the corresponding normal form. These additional subgames
consist of, for some node ξ of the extensive form, the subgame of the extensive form
with that initial node, followed by the infinite repetition of the entire extensive form. A
profile is subgame perfect if, for every subgame (including those whose initial node is
not at the beginning of the extensive form), the continuation strategy profile is a Nash
equilibrium of the subgame (see section 9.6 for a formal treatment). We are interested
in comparing the set of subgame-perfect equilibrium payoffs in a repeated extensive-
form game with the set of equilibrium payoffs in the repeated game constructed from
the corresponding normal form. We continue to use E (δ) for the set of subgame-perfect
equilibrium payoff profiles in the repeated normal-form game, given discount factor
δ, and let E E(δ) be the corresponding set for the repeated extensive form.

5.4.1 Repeated Extensive-Form Games Have More Subgames

The additional subgames in repeated extensive forms can have a significant impact.
Consider the chain store game shown in figure 5.4.1.12 We focus on equilibria that
support an outcome in which player 2 chooses Out in every period.

Consider first the repeated normal-form game. Here, the action profile (Out, F )
is a Nash equilibrium of the normal form. As a result, strategies that specify (Out, F )
after every history are a subgame-perfect equilibrium of the infinitely repeated game,
for every discount factor δ ∈ [0, 1].

Now consider the repeated extensive-form version of this game. Regardless of
the discount factor, strategies specifying (Out, F ) after every history do not constitute

11. An alternative approach to extensive form games, which we will not develop, restricts attention
to extensive-form games that are playable, in the sense that there is a mapping from information
sets to a set of numbers {1, 2, . . . , T } with the property that no information set mapped into
t precedes an information set mapped into some τ < t (Mailath, Samuelson, and Swinkels
1994). For a playable extensive-form game, we can think of the corresponding repeated game
as a dynamic game (sections 5.5–5.7), with each play of the extensive-form game broken into
T periods, each of which is now considered a period in the repeated game. In many of these
periods, only some players will have choices, and in many the payoff function will be trivial.
There may also be imperfect monitoring, as some choices may not be observed by other players.
We can then apply results for dynamic games to the study of repeated extensive forms.

12. The chain store game is commonly interpreted as a game between a long-lived incumbent firm
and a sequence of short-lived entrants. In the stage game, the entrant first decides between
entering the market (In) and staying out (Out); if the entrant does enter, the incumbent then
chooses between acquiescing to the entry (A) or fighting (F ) by, for example, pricing below
cost. We examine the finitely repeated version (where it became famous) in chapter 17. Here, we
consider an infinitely repeated game between two long-lived players but refer to the first mover
as player 2, because this player is the entrant and is accordingly commonly referred to player 2
when modeled as a short-lived player.
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Figure 5.4.1 Chain-store game. Player 1’s payoff is listed
first at each terminal node of the extensive-form game.

a subgame-perfect equilibrium. Fix a strategy profile specifying such behavior, and
suppose that a history ht occurs after which player 2 has chosen In, with player 1 now
to choose between F and A. Given that all subsequent histories prescribe the actions
(Out, F ), subgame perfection calls for player 1 to playA, no matter what the discount
factor.

The force at work here is that playing the stage game in extensive form expands
the set of histories after which choices must be made, and hence expands the list of
conditions required for sequential rationality. The incentives for player 1 to choose F
simultaneously with player 2’s choice of Out, as in the normal-form game, differ from
the incentives for player 1 to choose F after 2 has chosen In. The latter situation can
arise only in the extensive-form game and suffices to ensure that invariably playing
(Out, F ) is not a subgame-perfect equilibrium.

This does not preclude the possibility of an equilibrium in the extensive-form
game in which player 2 always chooses Out, though we must look for other strategies
to support such an outcome. To minmax player 2, player 1 choosesF , with 2’s minmax
value being 0. Player 2 receives precisely this minmax value in any equilibrium in which
she plays Out in every period. Hence, if player 2 is to choose Out in every period,
it must be that In causes player 1 to choose F (with sufficiently high probability) in
the current period, because this (rather than relying on continuation payoffs) is the
only effective way to punish player 2. However, because F is not a best response in
the stage game, we must use appropriately designed continuation payoffs to create the
incentives for 1 to choose F .

Player 1 is minmaxed by 2’s choice of In, giving player 1 a minmax value of 2. Our
best hope for sustaining Out along the equilibrium path is then given by the strategy
profile in which 2 chooses Out after every history in which every period has featured
either Out or (In, F ), and in which player 1 chooses F after any history in which all
previous periods have featured either Out or (In, F ) and player 2 has chosen In in the
current period. Otherwise, (In, A) is played. Hence, player 2 stays out, deterred from
entry by the threat of F . Player 1 chooses F whenever entry occurs, deterred by the
threat of a switch to the subsequent play of the stage-game equilibrium (In, A), which
minmaxes player 1.
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Because the equilibrium path involves a best response for player 2 and the punish-
ment involves repeated play of a subgame-perfect equilibrium of the stage game, the
only incentive problem involves the prescription that player 1 chooseF , should 2 enter
and the punishment not have been triggered. The optimality condition in this case is

(1− δ)(−1)+ δ5 ≥ 2

or δ ≥ 1/2. We conclude that there exist equilibria of the repeated extensive-form game
in which player 2 always chooses Out, but that these exist for a subset of the discount
factors under which this outcome can be supported in the repeated normal-form game.
For δ < 1/2, E E(δ) is a strict subset of E (δ).

We can construct a folk theorem result for the repeated extensive-form chain store
game. The equilibrium outcome Out in every period minmaxes player 2, whereas the
stage-game Nash equilibrium (A, In)minmaxes player 1. For any feasible and strictly
individually rational payoff profile, we thus need only specify stage-game behavior that
yields this payoff with deviations by player i punished by reversion to the equilibrium
that minmaxes player i.

In general, we will not have the convenience of being able to minmax players
by playing stage-game Nash equilibria. However, this construction illustrates why the
extra subgames created by an extensive-form stage game are generally no obstacle to
obtaining a folk theorem. The difficulty raised by the extensive form is that we must
provide incentives for players to take appropriate actions at the subgames that arise
within a period’s play of the extensive-form game. If δ is small, all incentives must
effectively be created within a period, which may be impossible. For large δ, however,
we can freely rely on continuation play to create incentives, even for subgames that do
not appear in the repeated normal form. The extra subgames created by the extensive
form can thus fade into insignificance as δ approaches 1.13

5.4.2 Player-Specific Punishments in Repeated Extensive-Form Games

We concluded the previous subsection with a sketch of why a folk theorem holds for
repeated extensive-form games. We now describe an example from Rubinstein and
Wolinksy (1995), that illustrates the scope of that result. In this example, E E is a strict
subset of E , even in the limit as δ approaches 1.

Consider the normal-form game shown in the left panel of figure 5.4.2. There
are two pure Nash equilibria, (T , R) and (B,L). The former of these minmaxes each
of the players. The set F ∗ of feasible, strictly individually rational payoffs is the
convex combination of the stage-game Nash equilibrium payoffs (1, 1) and (2, 2)with
positive weight on (2, 2). By appropriately alternating between these two stage-game
equilibria, we can construct repeated game equilibria for any sufficiently large discount
factor that attain as a payoff any such convex combination of (1, 1) and (2, 2).

13. This discussion concerns strictly individually rational payoffs, and so does not contradict our
observation that in supporting (Out, F ) as an equilibrium outcome of the repeated extensive-
form chain store game, player 2 must be deterred from choosing In by attaching a sufficiently
high probability to F in that period (rather than by adjusting payoffs). In the latter case, at the
beginning of every period, player 2 faces a continuation equilibrium payoff that is precisely her
minmax value, ensuring that we cannot punish her by reducing continuation payoffs. The folk
theorem, restricted to strict individual rationality, does not apply to such outcomes.
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L R

T 1, 1 1, 1

B 2, 2 0, 0

L R

T 1, 1 1, 1

B 2, 3 0, 0

Figure 5.4.2 Normal-form game that does not allow player-
specific punishments (left game) and one that does (right game).
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Figure 5.4.3 Extensive-form stage game accompanying
the left normal form from figure 5.4.2.

Now consider the extensive form in figure 5.4.3, which has this normal form. We
find a lower bound on equilibrium payoffs. Suppose player 1 chooses B at the first
opportunity. In the repeated normal-form game, such an action could be quite unhelpful.
For example, if the equilibrium calls for a first-period profile of (T , R) and player 2 has
accordingly chosen R, playing B sacrifices current payoffs, possibly without bringing
any future gains. In the extensive form, in contrast, player 2 has not made a choice and
is faced with player 1’s fait accompli of B. What are the continuation payoffs?

Let v∗ be the smallest subgame-perfect equilibrium payoff. Given the agreement
between the two players’ stage-game payoffs, this minimum payoff must be the same
for both players and hence needs no subscript. Following player 1’s choice of B, a
choice of L by player 2 ensures both players a payoff of at least (1− δ)2+ δv∗. The
equilibrium continuation payoff must then be at least this high, and hence so must the
equilibrium payoff. This gives

v∗ ≥ (1− δ)2+ δv∗,
which implies

v∗ = 2.

No matter what the discount factor, E E(δ) is thus a strict subset of E (δ).
The difficulty here is traced to the perfectly correlated payoffs or, equivalently, the

lack of player-specific punishments. In a two-player repeated normal-form game, the
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L R

T 4, 2 −4, 0

M −2, 0 2, 2

B −1, 10 −1, 10

Figure 5.4.4 Normal-form game.

feasibility of mutual minmaxing renders player-specific punishments unnecessary. For
a repeated extensive-form game, we can no longer be assured of mutual minmaxing,
even with two players. In this case, mutual minmaxing requires the play of TR. What
if player 1 plays B instead? In the extensive form, this presents player 2 with a choice.
If player 2 is to choose R, ensuring the effectiveness of the mutual minmaxing, then L
must bring player 2 a lower continuation payoff. If payoffs are perfectly aligned and
we are already at the minimum equilibrium payoff, no such punishment is available,
giving rise to the unraveling argument leading to the conclusion that (2, 2) is the
smallest subgame-perfect equilibrium payoff.

If payoffs are not perfectly aligned, then we can shift continuation payoffs along
the lower frontier of subgame-perfect equilibrium payoffs, being able to always punish
either player 1 for choosing B or player 2 for choosing L. This suffices to generate
a folk theorem result as the players become patient. To illustrate, consider the right
game in figure 5.4.2, which corresponds to changing player 2’s payoff at the node
reached by BL from 2 to 3. The set of feasible payoffs now has a nonempty interior.
It is now straightforward that we can construct subgame-perfect equilibria with pay-
offs smaller than (2, 3) and that in the limit as δ→ 1 the set of equilibrium payoffs
approaches co{(1, 1), (1, 3/2), (2, 3)}, with a basic construction mimicking the proof
of proposition 3.4.1.

5.4.3 Extensive-Form Games and Imperfect Monitoring

The extensive form of a game can conceal information from the players. We illustrate
with an example adapted from Sorin (1995).14 Consider the normal-form game shown
in figure 5.4.4. The minmax utilities for the two players are given by (0, 1), which are
produced by the stage-game Nash equilibrium in which player 1 mixes equally over
T and M and player 2 mixes equally over L and R.

Suppose now that the game is played twice (without discounting). In the normal-
form version of the game, the players can choose strategies in which player 1 plays
B in the first period while 2 mixes equally between L and R. If L is chosen in the

14. Since the extensive-form game is nongeneric, the generality of the phenomenon remains to be
explored.
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Figure 5.4.5 Extensive-form counterpart of
game from figure 5.4.4.

first period, second-period play is (T , L), otherwise it is (M,R). Expected payoffs are
(2, 12). If player 1 deviates in the first period, the mixed stage-game equilibrium is
played.

Consider the extensive-form version of this game, shown in figure 5.4.5 and again
played twice. Suppose player 1 chooses B. Then player 2 has no opportunity to move,
and hence player 1 collects no information about player 2’s action. As a result, the pay-
off (2, 12) cannot be obtained in the twice-played extensive form. The extensive form
conceals information that the players can use to coordinate behavior in the normal form.

This difference would disappear, of course, if the players had access to a public
correlating device. In its absence, the players are using 2’s action in the first period of
the normal-form game to coordinate their second-period actions.

5.4.4 Extensive-Form Games and Weak Individual Rationality

As we have noted, if player-specific punishments are possible, we obtain a folk theorem
result for repeated extensive-form games. This nongeneric example, from Rubinstein
and Wolinksy (1995), shows that there may still exist payoff profiles that can be
obtained as subgame-perfect equilibria in the repeated normal-form game for suffi-
ciently patient players, but cannot be obtained as equilibrium outcomes in the repeated
extensive-form game, no matter how patient the players. If this is to be the case, the
payoff profiles must lie in F ∗ \F ∗, which is to say that they must be weakly but not
strictly individually rational.

Consider the game in figure 5.4.6. The minmax utility level for each player is 0. The
three players can be simultaneously minmaxed by player 1 choosing L and 2 choosing
R. The set of feasible payoffs has a nonempty interior, allowing player-specific pun-
ishments. However, consider the payoff (1, 0, 0). Players 2 and 3 receive their minmax
utilities in this profile, removing it from the purview of the folk theorem. Nonetheless,
this payoff profile can be obtained as the outcome of a subgame-perfect equilibrium in
the repeated normal-form game, for any discount factor, because (R,L,L) is a Nash
equilibrium of the stage game.

There is no subgame-perfect equilibrium of the repeated extensive-form game,
for any discount factor, with payoff (1, 0, 0). Once again, the key innovation is the
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Figure 5.4.6 The weakly individually rational payoff (1, 0, 0)
can be supported in the repeated normal form but not in the
repeated extensive form version of this game.

appearance of a new history, namely, one in which player 2 has chosen R and player 3
is called on to play. Suppose that we have a candidate equilibrium with payoffs (1, 0, 0)
and a history in which 2 chooses R. Then it must either be the case that (i) player 3
responds by choosing R or (ii) player 3’s continuation payoff following L exceeds 0.
In either case, the continuation payoff to player 3 is positive. However, player 3’s
payoffs along any continuation path can be positive only if player 2’s payoffs are also
positive because 2’s stage-game payoffs are at least as large as player 3’s. Player 2 can
thus ensure a positive payoff by choosingR, in turn ensuring that there is no subgame-
perfect equilibrium featuring actions (R,L,·) in each period. However, this is the only
outcome yielding the payoff (1, 0, 0), yielding the result.

5.4.5 Asynchronous Moves

Lagunoff and Matsui (1997) examine asynchronous repeated games. We follow their
lead here in concentrating on two-player games with the simplest asynchronous timing
structure, though they note that their results hold for a more general class of specifi-
cations. In period 0, players 1 and 2 simultaneously choose actions. Thereafter, player
1 chooses an action in every odd-numbered period and player 2 an action in every
even-numbered period. If player i chooses action ai in period t (other than player 1 in
period 0), then i is constrained to also play action ai in period t + 1, having the option
of making a new choice in period t + 2.15

Consider the coordination game shown in figure 5.4.7. Suppose that an odd period
t has been reached, so that player 1 must choose an action (to be played in periods t and
t + 1), and that player 2’s period t action (chosen in period t − 1) is L. What should

15. Maskin and Tirole (1988a,b) study oligopoly games with an asynchronous timing structure.
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L R

T 2, 2 0, 0

B 0, 0 1, 1

Figure 5.4.7 Coordination game.

player 1 choose? From the standpoint of the current period, T is most attractive. In
principle, the possibility remains that T may prompt sufficiently unfavorable continu-
ation play to make B a superior choice. However, one can imagine player 1 reasoning,
“For the same reasons that I now find T attractive, player 2 will find L attractive next
period if I choose T now, and player 2 will do so secure in the knowledge that I will
find T attractive in the next period. . . .” Taking this logic one step further, suppose that
player 1 has a chance to move, with R being player 2’s previous-period move. Then B
is player 1’s myopic optimum. However, if player 1 is sufficiently patient, then player
1 might choose T instead, in anticipation that this will prompt player 2 to choose L,
initiating a string of subsequent periods in which TL is played.

These considerations suggest that if one of the players ever chooses T or L,
we should thereafter see TL, and that this process should allow patient players to
secure an outcome in which TL is virtually always played. Notice that the situation
is very much like the one arising in figure 5.4.3. The set of stage-game payoffs is
F = {(0, 0), (1, 1), (2, 2)} (and hence does not allow player-specific punishments). If
the players move simultaneously, either because the game of figure 5.4.3 is played in
normal form each period or the game of figure 5.4.7 is played as a synchronous repeated
game, then there exists a subgame-perfect equilibrium of the repeated game with payoff
(1, 1). If player 1 can move first, either in the extensive form of figure 5.4.3 or the
asynchronous version of figure 5.4.7, player 1 can present player 2 with 1’s having
chosen an action consistent with payoffs (2, 2).

We consider asynchronous games with two-player normal-form pure coordi-
nation stage games (i.e., u1(a) = u2(a) for all a ∈ A). Let a∗ uniquely solve
maxa∈A ui(a) ≡ v∗.

In the case of asynchronous games, we have:

Proposition

5.4.1
Consider an asynchronous move game with two-player normal-form pure-
coordination stage game. Fix a history ht . Then for any ε > 0, there exists δ < 1
such that for all δ ∈ (δ, 1), every subgame-perfect equilibrium of the continuation
game induced by history ht gives an equilibrium payoff in excess of v∗ − ε. If ht

is the null history, this statement holds for ε = 0.

Proof We proceed in three steps.
First, let ht be a history ending in a choice of a∗i for player i (and hence

t ≥ 1), with player j now called on to make a choice in period t . We show
that continuation payoffs are at least v∗ for each player. To establish this result,
let ṽ be the infimum over the set of subgame-perfect equilibrium payoffs, in a
continuation game beginning in a period t ≥ 1, in which player j must choose a
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current action and player i’s period t−1 choice is a∗i . Because the game is one of
pure coordination, this value must be the same for both players. One option open
to player j is to choose a∗j in the current period, earning a payoff of v∗ in the
current period, followed by a continuation payoff no lower than ṽ. We thus have

ṽ ≥ (1− δ)v∗ + δṽ,
allowing us to solve for

ṽ ≥ v∗.
Hence, if the action a∗i or a∗j is ever played, then the continuation payoffs to both
players must be v∗.

Second, we fix an arbitrary history ht , including possibly the null history, with
player j called on to move (or, in the case of the null history, with j being player
2, who does not move in the next period) and with no restriction on player i’s
previous move (or on player 1’s concurrent move, in the case of the null history).
Then one possibility is for player j to choose a∗j . We have shown that this brings
a continuation payoff, beginning in period t + 1, of v∗. Hence, the payoff to this
action must be at least

(1− δ)m+ δv∗,
where m is the smallest stage-game payoff. Choosing

δ = v∗ −m− ε
v∗ −m

then ensures that every subgame-perfect contniuation equilibrium gives a payoff
at least v∗ − ε.

Third, we consider the null history. We show that player 2 prefers to choose
a∗2 in the first period, regardless of 1’s first-period action, given subgame-perfect
continuation play. The initial choice of a∗2 ensures that payoff v∗ will be received
in every period except the first, for a payoff of at least

(1− δ)m+ δv∗.
Choosing any other action can give a payoff at most

(1− δ)[v′ + δv′] + δ2v∗,

where v′ is the second-largest stage-game payoff. Choosing

δ = v′ −m
v∗ − v′

then suffices for the optimality of player 2’s initial choice of a∗2 . Given that player
1 makes a new choice in period 1, it is immediate that 1 finds a∗1 optimal in the
first period. This suffices for the result.

■

This finding contrasts with chapter 3’s folk theorem for repeated normal-form
games. The key to the result is again the appearance of histories in which player i can
choose an action, knowing that player j will not be able to make another choice until
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after observing i’s current choice. This allows player i to lead player j to coordination
on the efficient outcome.

The asynchronous games considered here are a special case of the dynamic games
examined in section 5.5. There, we developed a folk theorem for dynamic games. Why
do we find a different result here? The folk theorem for dynamic games makes use of
player-specific punishments that are not available in the asynchronous games consid-
ered here. Given that there are only two players, why not rely on mutual minmaxing,
rather than player-specific punishments, to create incentives? In the asynchronous
game, player i’s current choice of a∗i ensures future play of a∗. This in turn implies
that player i will invariably choose a∗i rather than minmax player j . Our only hope
for inducing i to do otherwise would be to arrange future play to punish i for not
minmaxing j , and the coordination game does not allow sufficient flexibility to do so.
Conversely, the efficiency result obtained here is tied to the special structure of the
coordination game, with the folk theorem for dynamic games appearing once one has
the ability to impose player-specific punishments.

5.4.6 Simple Strategies

We are often interested in characterizing equilibrium behavior as well as payoffs.
Mailath, Nocke, and White (2004) note that simple strategies may no longer suffice in
extensive-form games. Instead, punishments may have to be tailored not only to the
identity of a deviator but to the nature of the deviation as well.

We must first revisit what it means for a strategy to be simple. Definition 2.6.1, for
normal-form games, defined simple strategies in terms of outcome paths, consisting
of an equilibrium outcome path and a punishment path for each player. The essence of
the definition is that any unilateral deviation by player i, whether from the equilibrium
path or one of the punishments, triggered the same player i punishment. Punishments
thus depend on the identity of the transgressor, but neither the circumstances nor the
nature of the transgression.

As we saw in section 5.4.1, repeated extensive-form games have more information
sets than repeated normal-form games, and so there are two candidates for the notion
of simplicity. First observe that we cannot simply apply definition 2.6.1 because action
profiles are not observed. We can still refer to an infinite sequence of actions a as a
(potential) punishment path for i. Let Yd(a) be the set of terminal nodes reached by
(potentially a sequence of) unilateral deviations from the action profile a, and let i(y) be
the last player who deviated on the path (within the extensive form) to y ∈ Yd(a) (there
is a unique last player by the definition of Yd(a)). Then, we say that a strategy profile is
uniformly simple if i’s punishment path after nodes y ∈ Yd(a) is constant on Ydi (a) ≡
{y′ : i(y′) = i, y′ ∈ Yd(a)}. This notion requires that i’s intertemporal punishments
not be tailored to either when the deviation occurred or the nature of the deviation.

A weaker notion requires that the intertemporal punishments not be tailored to the
nature of the deviation but can depend on when the deviation occurred. The set Ydi (a)
can be partitioned by the information sets h at which i’s deviation occurs; let Ydh (a)
denote a typical member of the partition. We say that a strategy profile is agent simple
if i’s punishment path after nodes y ∈ Yd(a) is constant on Ydh (a) for all h.16 In other

16. The term is chosen by analogy with the agent-normal form, where each information set of an
extensive form is associated with a distinct agent.
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Figure 5.4.8 Representation of an extensive-form game. Each normal-form
game represents a simultaneous move subgame played by players 2 and 3.

words, the punishment path is independent of the nature of the deviation at h but can
depend on h.

We now describe an extensive form, illustrated in figure 5.4.8, and a subgame-
perfect equilibrium outcome of its repetition that cannot be supported using agent-
simple strategy profiles. Player 1 moves first. If player 1 chooses either B, C,D, orE,
then players 2 and 3 play a simultaneous-move subgame, each choosing Y or N . We
are interested in equilibria in which player 1 chooses A in the first period. One such
equilibrium calls for players 2 and 3 to both choose N after choices of B, C, D, or E.
These choices make player 1’s first-period choice of A a best response in the stage
game, but are not a stage-game subgame-perfect equilibrium. To supportA in period 0
as a choice for player 1, we proceed as follows. In period 0, player 1 chooses A and
players 2 and 3 respond to any other choice with NN . From period 1 on, a single stage-
game subgame-perfect equilibrium is played in each period, whose identity depends on
first-period play. Let “equilibrium x” for x ∈ {B,C,D,E} call for player 1 to choose
x and players 2 and 3 to choose Y in each period. The continuation play as a function
of first-period actions is given in figure 5.4.9. Because A is a best response for player
1 in the first period, and because every first-period history leads to a continuation path
consisting of stage-game subgame-perfect equilibria, verifying subgame perfection in
the repeated game requires only ensuring that players 2 and 3 behave optimally out
of equilibrium in the first period. This is ensured by punishing player 2 and 3 for
deviations, by selecting the relatively unattractive continuation equilibria B and E,
respectively. If player 2 and 3 behave as prescribed in period 1, after a choice of B,
C, D or E, then the relatively low-payoff player is rewarded by the selection from
continuation equilibria C or D that is relatively lucrative for that player.

If δ = 2/3, these strategies are a subgame-perfect equilibrium. However, the
strategy profile is not agent-simple because 1’s punishment path depends on the nature
of 1’s deviation. Deviations by player 1 to eitherB orC are followed, given equilibrium
play by players 2 and 3, by continuation equilibrium C. Deviations to D or E are
followed by continuation equilibrium D. This absence of simplicity is necessary to
obtain the payoffs provided by this equilibrium. Consider a deviation by player 1 to B,
and consider player 2’s incentives. Choosing Y produces a payoff of 9 in the current
period, followed by an equilibrium giving player 2 her minmax value of 1, and hence
imposing the most severe possible punishment on player 2. If 2’s choice of N , for a
current payoff of 0, is to be optimal, the resulting continuation payoff v2 must satisfy

δv2 ≥ (1− δ)9+ δ,
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First-period profile Continuation First-period profile Continuation
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BNN, BYY C DNN, DYY D
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CYN E EYN E

CNY B ENY B

Figure 5.4.9 The continuation play of the equilibrium for the repeated game.

or
v2 ≥ 11

2 .

Player 1’s deviation to B must then be followed by a continuation path giving player
2 a payoff of at least 11/2. A symmetric argument shows that the same must be true
for player 3 after 1’s deviation to E. However, there is no stage-game action profile
that gives players 2 and 3 both at least 11/2. Hence, if player 1 is ever to play A,
then deviations to B and E must lead to different continuation paths—the equilibrium
strategy cannot be agent simple. Finally, player 1’s choice of A gives payoffs of
(1, 5, 5), a feat that is impossible if 1 confines himself to choices in {B,C,D,E}. The
payoffs provided by this equilibrium can thus be achieved only via strategies that are
not agent simple.

5.5 Dynamic Games: Introduction

This section allows the possibility that the stage game changes from period to period
for a fixed set of players, possibly randomly and possibly as a function of the history
of play. Such games are referred to as dynamic games or, when stressing that the stage
game may be a random function of the game’s history, stochastic games.

The analysis of a dynamic game typically revolves around a set of game states
that describe how the stage game varies from period to period. Unless we need to
distinguish between game states and states of an automaton (automaton states), we
refer to game states simply as states (see remark 5.5.2). Each state determines a stage
game, captured by writing payoffs as a function of states and actions. The specifi-
cation of the game is completed by a rule for how the state changes over the course
of play.

In many applications, the context in which the game arises suggests what appears
to be a natural candidate for the set of states. It is accordingly common to treat
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the set of states as an exogenously specified feature of the environment. This sec-
tion proceeds in this way. However, the appropriate formulation of the set of states
is not always obvious. Moreover, the notion of a state is an intermediate conven-
tion that is not required for the analysis of dynamic games. Instead, we can define
payoffs directly as functions of current and past actions, viewing states as tools for
describing this function. This suggests that instead of inspecting the environment and
asking which of its features appear to define states, we begin with the payoff func-
tion and identify the states that implicitly lie behind its structure. Section 5.6 pursues
this approach. With these tools in hand, section 5.7 examines equilibria in dynamic
games.

5.5.1 The Game

There are n players, numbered 1, . . . , n. There is a set of states S, with typical state s.
Player i has the compact set of actionsAi ⊂ Rk , for some k. Player i’s payoffs are given
by the continuous function ui : S × A→ R. Because payoffs are state dependent, the
assumption that Ai is state independent is without loss of generality: If state s has
action set Asi , define Ai ≡∏sA

s
i and set ũi (s, a) = ui(s, as). Players discount at the

common rate δ.
The evolution of the state is given by a continuous transition function q : S × A

∪ {∅} → �(S), associating with each current state and action profile a probability
distribution from which the next state is drawn; q(∅) is the distribution over initial
states. This formulation captures a number of possibilities. If S is a singleton, then we
are back to the case of a repeated game. If q(s, a) is nondegenerate but constant in
a, then we have a game in which payoffs are random variables whose distribution is
constant across periods. If S = {0, 1, 2, . . .} and q(s�, a) puts probability one on s�+1,
we have a game in which the payoff function varies deterministically across periods,
independently of behavior.

We focus on two common cases. In one, the set of states S is finite. We then let
q(s′ | s, a) denote the probability that the state s′ is realized, given that the previous
state was s and the players chose action profile a (the initial state can be random in this
case). We allow equilibria to be either pure or, if the action sets are finite, mixed. In
the other case, Ai and S are infinite, in which case S ⊂ Rm for some m. We then take
the transition function to be deterministic, so that for every s and a, there exists s′ with
q(s′ | s, a) = 1 and q(s′′ | s, a) = 0 for all s′′ �= s′ (the initial state is deterministic
and given by s0 in this case). As is common, we then restrict attention to pure-strategy
equilibria.

In each period of the game, the state is first drawn and revealed to the players, who
then simultaneously choose their actions. The set of period t ex ante histories H t is
the set (S × A)t , identifying the state and the action profile in each period.17 The
set of period t ex post histories is the set ˜H t = (S × A)t × S, giving state and

17. Under the state transition rule q, many of the histories in this set may be impossible. If so, the
specification of behavior at these histories will have no effect on payoffs.
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action realizations for each previous period and identifying the current state. Let
˜H = ∪∞t=0

˜H t ; we set H 0 = {∅}, so that ˜H 0 = S. Let H ∞ be the set of outcomes.
A pure strategy for player i is a mapping σi : ˜H → Ai , associating an action with

each ex post history. A pure strategy profile σ , together with the transition function q,
induces a probability measure over H ∞. Player i’s expected payoff is then

Ui(σ ) = Eσ
{
(1− δ)

∞∑
t=0

δtui(s
t , at )

}
,

where the expectation is taken with respect to the measure over H ∞ induced by
q(∅) and σ . Note that the expectation may be nontrivial, even for a pure strategy
profile, because the transition function q may be random. As usual, this formulation
has a straightforward extension to behavior strategies. For histories other than the null
history, we let Ui(σ | h̃t ) denote i’s expected payoffs induced by the strategy profile
σ in the continuation game that follows the ex post history h̃t .

An ex ante history ending in (s, a) gives rise to a continuation game matching
the original game but with q(∅) replaced by q(· | s, a) and the transition function
otherwise unchanged. An ex post history h̃t , ending with state s, gives rise to the
continuation game again matching the original game but with the initial distribution
over states now attaching probability 1 to state s. It will be convenient to denote this
game by G(s).

Definition

5.5.1
A strategy profile σ is a Nash equilibrium if Ui(σ ) ≥ Ui(σ ′i , σ−i ) for all σ ′i and
for all players i. A strategy profile σ is a subgame-perfect equilibrium if, for any
ex post history h̃t ∈ ˜H ending in state s, the continuation strategy σ |

h̃t
is a Nash

equilibrium of the continuation game G(s).

Example

5.5.1
Suppose there are two equally likely states, independently drawn in each period,
with payoffs given in figure 5.5.1. It is a quick calculation that strategies specifying
effort after every ex post history in which there has been no previous shirking
(and specifying shirking otherwise) are a subgame-perfect equilibrium if and only
if δ ≥ 2/7. Strategies specifying effort after any ex post history ending in state
2 while calling for shirking in state 1 (as long as there have been no deviations
from this prescription, and shirking otherwise) are an equilibrium if and only if
δ ≥ 2/5. The deviation incentives are the same in both games, whereas exerting

E S

E 2, 2 −1, 3

S 3,−1 0, 0

State 1

E S

E 3, 3 −1, 4

S 4,−1 0, 0

State 2

Figure 5.5.1 Payoff functions for states 1 and 2 of a dynamic game.
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effort in only one state reduces the equilibrium continuation value, and hence
requires more patience to sustain effort in the other state.18

●

Remark

5.5.1
Repeated games with random states The previous example illustrates the special
case in which the probability of the current state is independent of the previous state
and the players’ actions, that is, q(s | s′, a′) = q(s | s′′, a′′) ≡ q(s). We refer to
such dynamic games as repeated games with random states. These games are a par-
ticularly simple repeated game with imperfect public monitoring (section 7.1.1).
Player i’s pure action set in the stage game is given by the set of functions from
S into Ai , and players simultaneously choose such actions. The pure-action pro-
file σ then gives rise to the signal (s, σ1(s), . . . , σn(s)) with probability q(s), for
each s ∈ S. Player i’s payoff ui(s, a) can then be written as ui((s, σ−i (s)), ai(s)),
giving i’s payoff as a function of i’s action and the public signal. We describe a
simpler approach in remark 5.7.1.

◆

5.5.2 Markov Equilibrium

In principle, strategies in a dynamic game could specify each period’s action as a
complicated function of the preceding history. It is common, though by no means
universal, to restrict attention to Markov strategies:

Definition

5.5.2

1. The strategy profile σ is a Markov strategy if for any two ex post histories h̃t

and h̃τ of the same length and terminating in the same state, σ(h̃t ) = σ(h̃τ ).
The strategy profile σ is a Markov equilibrium if σ is a Markov strategy profile
and a subgame-perfect equilibrium.

2. The strategy profile σ is a stationary Markov strategy if for any two ex post
histories h̃t and h̃τ (of equal or different lengths) terminating in the same state,
σ(h̃t ) = σ(h̃τ ). The strategy profile σ is a stationary Markov equilibrium if σ
is a stationary Markov strategy profile and a subgame-perfect equilibrium.

It is sometimes useful to reinforce the requirement of subgame perfection by referring
to a Markov equilibrium as a Markov perfect equilibrium. Some researchers also refer
to game states as Markov states when using Markov equilibrium (but see remark 5.5.2).

Markov strategies ignore all of the details of a history except its length and the
current state. Stationary Markov strategies ignore all details except the current state.

Three advantages for such equilibria are variously cited. First, Markov equilibria
appear to be simple, in the sense that behavior depends on a relatively small set of
variables, often being the simplest strategies consistent with rationality. To some,
this simplicity is appealing for its own sake, whereas for others it is an analytical or
computational advantage. Markov equilibria are especially common in applied work.19

18. In contrast to section 5.3, we face here one randomly drawn game in each period, instead of both
games.

19. It is not true, however, that Markov equilibria are always simpler than non-Markov equilibria.
The proof of proposition 18.4.4 goes to great lengths to construct a Markov equilibrium featuring
high effort, in a version of the product choice game, that would be a straightforward calculation
in non-Markov strategies.
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Second, the set of Markov equilibrium outcomes is often considerably smaller
than the set of all equilibrium outcomes. This is a virtue for some and a vice for others,
but again contributes to the popularity of Markov equilibria in applied work.

Third, Markov equilibria are often viewed as having some intuitive appeal for
their own sake. The source of this appeal is the idea that only things that are “payoff
relevant” should matter in determining behavior. Because the only aspect of a history
that affects current payoff functions is the current state, then a first step in imposing
payoff relevance is to assume that current behavior should depend only on the current
state.20 Notice, however, that there is no reason to limit this logic to dynamic games.
It could just as well be applied in a repeated game, where it is unreasonably restrictive,
because nothing is payoff relevant in the sense typically used when discussing dynamic
games. Insisting on Markov equilibria in the repeated prisoners’dilemma, for example,
dooms the players to perpetual shirking. More generally, a Markov equilibrium in
a repeated game must play a stage-game Nash equilibrium in every period, and a
stationary Markov equilibrium must play the same one in every period.

Remark

5.5.2
Three types of state We now have three notions of a state to juggle. One is Markov
state, an equivalence class of histories in which distinctions are payoff irrelevant.
The second is game state, an element of the set S of states determining the stage
game in a dynamic game. Though it is often taken for granted that the set of Markov
states can be identified with the set of game states, as we will see in section 5.6,
these are distinct concepts. Game states may not always be payoff relevant and,
more important, we can identify Markov states without any a priori specifica-
tion of a game state. Finally, we have automaton states, states in an automaton
representing a strategy profile. Because continuation payoffs in a repeated game
depend on the current automaton state, and only on this state, some researchers
take the set of automata states as the set of Markov states. This practice unfortu-
nately robs the Markov notion and payoff relevance of any independent meaning.
The particular notion of payoff relevance inherent in labeling automaton states
Markov is much less restrictive than that often intended to be captured by Markov
perfection. For example, Markov perfection then imposes no restrictions beyond
subgame perfection in repeated games, because any subgame-perfect equilibrium
profile has an automaton representation, in contrast to the trivial equilibria that
appear if we at least equate Markov states with game states.

◆

5.5.3 Examples

Example

5.5.2
Suppose that players 1 and 2 draw fish from a common pool. In each period
t , the pool contains a stock of fish of size st ∈ R+. In period t , player i extracts
ati ≥ 0 units of fish, and derives payoff ln(ati ) from extracting ati .

21 The remaining

20. If the function u(s, a) is constant over some values of s, then we could impose yet further
restrictions.

21. We must haveat1 + at2 ≤ st . We can model this by allowing the players to choose extraction levels
āt1 and āt2, with these levels realized if feasible and with a rationing rule otherwise determining
realized extraction levels. This constraint will not play a role in the equilibrium, and so we leave
the rationing rule unspecified and treat ati and āti as identical.
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(depleted) stock of fish doubles before the next period. This gives a dynamic game
with actions and states drawn from the infinite set [0,∞), identifying the current
quantity of fish extracted (actions) and the current stock of fish (states), and with
the deterministic transition function st+1 = 2(st − at1 − at2). The initial stock is
fixed at some value s0.

We first calculate a stationary Markov equilibrium of this game, in which the
players choose identical strategies. That is, although we assume that the players
choose Markov strategies in equilibrium, the result is a strategy profile that is
optimal in the full strategy set—there are no superior strategies, Markov or oth-
erwise. We are thus calculating not an equilibrium in the game in which players
are restricted to Markov strategies but Markov strategies that are an equilibrium
of the full game.

The restriction to Markov strategies allows us to introduce a function V (s)
identifying the equilibrium value (conditional on the equilibrium strategy profile)
in any continuation game induced by an ex post history ending in state s. Let
gt (s0) be the amount of fish extracted by each player at time t , given the period 0
stock s0 and the (suppressed, in the notation) equilibrium strategies. The function
V (s0) identifies equilibrium utilities, and hence must satisfy

V (s0) = (1− δ)
∞∑
t=0

δt ln(gt (s0)). (5.5.1)

Imposing the Markov restriction that current actions depend only on the current
state, let each player’s strategy be given by a function a(s) identifying the amount
of fish to extract given that the current stock is s. We then solve jointly for the
function V (s) and the equilibrium strategy a(s). First, the one-shot deviation
principle (which we describe in section 5.7.1) allows us to characterize the function
a(s) as solving, for any s ∈ S and for each player i, the Bellman equation,

a(s) ∈ arg max
ã∈Ai

(1− δ) ln(ã)+ δV (2(s − ã − a(s))),

where ã is player i’s consumption and the a(s) in the final term captures the
assumption that player j adheres to the candidate equilibrium strategy. If the
value function V is differentiable, the implied first-order condition is

(1− δ)
a(s)

= 2δV ′(2(s − 2a(s))).

To find an equilibrium, suppose that a(s) is given by a linear function, so
that a(s) = ks. Then we have st+1 = 2(st − 2kst ) = 2(1− 2k)st . Using this and
a(s) = ks to recursively replace gt (s) in (5.5.1), we have

V (s) = (1− δ)
∞∑
t=0

δt ln[k(2(1− 2k))t s],



180 Chapter 5 ■ Variations on the Game

and so V is differentiable with V ′(s) = 1/s. Solving the first-order condition,
k = (1− δ)/(2− δ), and so

a(s) = 1− δ
2− δ s

and V (s) = (1− δ)
∞∑
t=0

δt ln

(
1− δ
2− δ s

(
2δ

2− δ
)t)

.

We interpret this expression by noting that in each period, proportion

1− 2a(s) = 1− 2
1− δ
2− δ =

δ

2− δ
of the stock is preserved until the next period, where it is doubled, so that the
stock grows at rate 2δ/(2− δ). In each period, each player consumes fraction
(1− δ)/(2− δ) of this stock.

Notice that in this solution, the stock of resource grows without bound if the
players are sufficiently patient (δ > 2/3), though payoffs remain bounded, and
declines to extinction if δ < 2/3. As is expected from these types of common pool
resource problems, this equilibrium is inefficient. Failing to take into account the
externality that their extraction imposes on their partner’s future consumption,
each player extracts too much (from an efficiency point of view) in each period.

This stationary Markov equilibrium is not the only equilibrium of this game.
To construct another equilibrium, we first calculate the largest symmetric payoff
profile that can be achieved when the firms choose identical Markov strategies.
Again representing the solution as a linear function a = ks, we can write the
appropriate Bellman equation as

a(s) = argmax
ã∈Ai

2(1− δ) ln(ã)+ δ(1− δ)
∞∑
t=0

δt2 ln(k(2(1− 2k))t (s − 2ã)).

Taking a derivative with respect to ã and simplifying, we find that the efficient
solution is given by

a(s) = 1− δ
2

s.

As expected, the efficient solution extracts less than does the Markov equilibrium.
The efficient solution internalizes the externality that player i’s extraction imposes
on player j , through its effect on future stocks of fish.

Under the efficient solution, we have

st+1 = 2st
(

1− 2
1− δ

2

)
= 2δst ,

and hence
st = (2δ)t s0.

The stock of the resource grows without bound if δ > 1/2. Notice also that just
as we earlier solved for Markov strategies that are an equilibrium in the complete
strategy set, we have now found Markov strategies that maximize total expected
payoffs over the set of all strategies.
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We can support the efficient solution as a (non-Markov) equilibrium of the
repeated game, if the players are sufficiently patient. Let strategies prescribe the
efficient extraction after every history in which the quantity extracted has been effi-
cient in each previous period, and prescribe the Markov equilibrium extraction
a(s) = [(1− δ)/(2− δ)]s otherwise. Then for sufficiently large δ, we have an
equilibrium.

●

Example

5.5.3
Consider a market with a single good, produced by a monopoly firm facing a
continuum of small, anonymous consumers.22 We think of the firm as a long-lived
player and interpret the consumers as short-lived players.

The good produced by the firm is durable. The good lasts forever, subject to
continuous depreciation at rate η, so that 1 unit of the good purchased at time
0 depreciates to e−ηt units of the good at time t . This durability makes this a
dynamic rather than repeated game.

Time is divided into discrete periods of length �, with the firm making a
new production choice at the beginning of each period. We will subsequently be
interested in the limiting case as � becomes very short. The players in the model
discount at the continuously compounded rate r . For a period of length �, the
discount factor is thus e−r�.

The stock of the good in period t is denoted x(t). The stock includes the quantity
that the firm has newly produced in period t , as well as the depreciated remnants
of past production. Though the firm’s period t action is the period t quantity of
production, it is more convenient to treat the firm as choosing the stock x(t).
The firm thus chooses a sequence of stocks {x(0), x(1), . . .}, subject to x(t) ≥
e−η�x(t − 1).23 Producing a unit of the good incurs a constant marginal cost of c.

Consumers take the price path as given, believing that their own consump-
tion decisions cannot influence future prices. Rather than modeling consumers’
maximization behavior directly, we represent it with the inverse demand curve
f (x) = 1− x. We interpret f (x) as the instantaneous valuation consumers attach
to x units of the durable good. We must now translate this into our setting with
periods of length �. The value per unit a consumer assigns to acquiring a quan-
tity x at the beginning of a period and used only throughout that period, with no
previous or further purchases, is

F(x) =
∫ �

0
f (xe−ηs)e−(r+η)sds

= 1

r + η (1− e
−(r+η)�)− x 1

r + 2η
(1− e−(r+2η)�)

≡ θ − βx.

22. For a discussion of durable goods monopoly problems, see Ausubel, Cramton, and Deneckere
(2002). The example in this section is taken from Bond and Samuelson (1984, 1987). The
introduction of depreciation simplifies the example, but is not essential to the results (Ausubel
and Deneckere 1989).

23. Because this constraint does not bind in the equilibrium we construct, we can ignore it.
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Because the good does not disappear at the end of the period, the period t price (ref-
lecting current and future values) given the sequence x(t) ≡ {x(t), x(t + 1), . . .}
of period t and future stocks of the good, is given by

p(t, x(t)) =
∞∑
s=0

e−(r+η)�sF (x(t + s)).

The firm’s expected payoff in period t , given the sequence of actions x(t − 1) and
x(t), is given by24

∞∑
τ=t
(x(τ )− x(τ − 1)e−η�)(p(τ, x(τ ))− c)e−r�(τ−t).

If the good were perishable, this would be a relatively straightforward intertem-
poral price discrimination problem. The durability of the good complicates the
relationship between current prices and future actions. We begin by seeking a
stationary Markov equilibrium. The state variable in period t is the stock x(t − 1)
chosen in the previous period. The firm’s strategy is described by a function
x(t) = g(x(t − 1)), giving the period t stock as a function of the previous period’s
stock. However, a more flexible description of the firm’s strategy is more helpful.
We consider a function

g(s, t, x),

identifying the period s stock, given that the stock in period t ≤ s is x. Hence, we
build into our description of the Markov strategy the observation that if period t’s
stock is a function of period t − 1’s, then so is period t + 2’s stock a (different)
function of x(t − 1), and so is x(t + 3), and so on. To ensure this representa-
tion of the firm’s strategy is coherent, we impose the consistency condition that
g(s′, t, x) = g(s′, s, g(s, t, x)) for s′ ≥ s ≥ t . In addition, g(s + τ, s, x) must
equal g(t + τ, t, x) for s �= t , so that the same state variable produces identical
continuation behavior, regardless of how it is reached and regardless of when it
is reached.

The firm’s profit maximization problem, in any period t , is to choose the
sequence of stocks {x(t), x(t + 1), . . . , } to maximize

V (x(t), t | x(t − 1))

=
∞∑
τ=t
[x(τ)− x(τ − 1)e−η�](p(τ, x(τ ))− c)e−r�(τ−t) (5.5.2)

=
∞∑
τ=t
[x(τ)− x(τ − 1)e−η�]

×
( ∞∑
s=0

e−(r+η)�s(θ − βg(s + τ, τ, x(τ )))− c
)
e−r�(τ−t). (5.5.3)

In making the substitution for p(τ, x(τ )) that brings us from (5.5.2) to (5.5.3),
g(s + τ, τ, x(τ )) describes consumers’expectations of the firm’s future stocks and

24. Notice that we must specify the stock in period t − 1 because this combines withx(t) to determine
the quantity produced and sold in period t .
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so their own future valuations. To find an optimal strategy for the firm, we differ-
entiate V (x(t), t | x(t − 1)) with respect to x(t ′) for t ′ ≥ t to obtain a first-order
condition for the latter. In doing so, we hold the values x(τ) for τ �= t ′ fixed, so that
the firm chooses x(τ) and x(t ′) independently. However, consumer expectations
are given by the function g(s + τ, τ, x(τ )), which builds in a relationship between
the current stock and anticipated future stocks that determines current prices.

Fix t ′ ≥ t ≥ 0. The first-order condition dV (x(t), t | x(t − 1))/dx(t ′) = 0 is,
from (5.5.3),

[θ − βx(t ′)− c(1− e−(r+η)�)]

− β[x(t ′)− e−η�x(t ′ − 1)]
∞∑
s=0

e−(r+η)�s dg(t
′ + s, t ′, x)
dx

∣∣∣∣
x=x(t ′)

= 0.

Using x(t ′) = g(t ′, t, x(t)), we rewrite this as

[θ − βg(t ′, t, x(t))− c(1− e−(r+η)�)]
− β[g(t ′, t, x(t))− e−η�g(t ′ − 1, t, x(t))]

×
[ ∞∑
s=0

e−(r+η)�s dg(t
′ + s, t ′, g(t ′, t, x(t)))

dx

]
= 0.

As is typically the case, this difference equation is solved with the help of some
informed guesswork. We posit g(s, t, x) takes the form

g(s, t, x) = x̄ + µs−t (x − x̄),
where we interpret x̄ as a limiting stock of the good and µ as identifying the rate
at which the stock adjusts to this limit. With this form for g, it is immediate that
the first-order conditions characterize the optimal value of x(t ′).

Substituting this expression into our first-order condition gives,{
θ − c(1− e−(r+η)�)− βx̄

(
1+ 1− e−η�

1− e−(r+η)�µ
)}

− βµt ′−t−1(x − x̄)
{
µ+ µ− e−η�

1− e−(r+η)�µ
}
= 0.

Because this equation must hold for all t ′, we conclude that each expression in
braces must be 0. We can solve the second forµ and then insert in the first to solve
for x̄, yielding

µ = 1−√1− e−(r+2η)�

e−(r+η)�
and

x̄ = [θ − c(1− e
−(r+η)�)]

β

√
1− e−(r+2η)�

(
√

1− e−(r+2η)� + 1− e−η�) .

Notice first that µ < 1. The stock of good produced by the monopoly thus
converges monotonically to the limiting stock x̄. In the expression for the limit x̄,

[θ − c(1− e−(r+η)�)]
β
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is the competitive stock. Maintaining the stock at this level in every period gives
p(t, x) = c, and hence equality of price and marginal cost. The term

√
1− e−(r+2η)�

(
√

1− e−(r+2η)� + 1− e−η�) ≡ γ (�, η) (5.5.4)

then gives the ratio between the monopoly’s limiting stock of good and the
competitive stock. The following properties follow immediately from (5.5.4):

γ (�, η) < 1, (5.5.5)

lim
η→∞ γ (�, η) =

1
2 , (5.5.6)

γ (�, 0) = 1, (5.5.7)

and

lim
�→0

γ (�, η) = 1. (5.5.8)

Condition (5.5.5) indicates that the monopoly’s limiting stock is less than that of a
competitive market. Condition (5.5.6) shows that as the depreciation rate becomes
arbitrarily large, the limiting monopoly quantity is half that of the competitive
market, recovering the familiar result for perishable goods.

Condition (5.5.7) indicates that if the good is perfectly durable, then the limiting
monopoly quantity approaches that of the competitive market. As the competi-
tive stock is approached, the price-cost margin collapses to 0. With a positive
depreciation rate, it pays to keep this margin permanently away from 0, so that
positive profits can be earned on selling replacement goods to compensate for the
continual deprecation. As the rate of depreciation goes to 0, however, this source
of profits evaporates and profits are made only on new sales. It is then optimal to
extract these profits, to the extent that the price-cost margin is pushed to 0.

Condition (5.5.8) shows that as the period length goes to 0, the stock again
approaches the competitive stock. If the stock stops short of the competitive stock,
every period brings the monopoly a choice between simply satisfying the replace-
ment demand, for a profit that is proportional to the length of the period, or pushing
the price lower to sell new units to additional consumers. The latter profit is pro-
portional to the price and hence must overwhelm the replacement demand for
short time periods, leading to the competitive quantity as the length of a period
becomes arbitrarily short.

More important, because the adjustment factor µ is also a function of �, by
applying l’Hôpital’s rule to �−1 lnµ, one can show that

lim
�→0

µ
1
� = 0.

Hence, as the period length shrinks to 0, the monopoly’s output path comes arbi-
trarily close to an instantaneous jump to the competitive quantity.25 Consumers

25. At calender time T , T /� periods have elapsed, and so, as �→ 0, x(T /�)→ x̄.
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build this behavior into their pricing behavior, ensuring that prices collapse to
marginal cost and the firm’s profits collapse to 0. This is the Coase conjecture in
action.26

How should we think about the Markov restriction that lies behind this equilib-
rium? The key question facing a consumer, when evaluating a price, concerns how
rapidly the firm is likely to expand the stock and depress the price in the future.
The firm will firmly insist that there is nary a price reduction in sight, a claim
that the consumer would do well to treat with some skepticism. One obvious place
for the consumer to look in assessing this claim is the firm’s past behavior. Has the
price been sitting at nearly its current level for a long time? Or has the firm been rac-
ing down the demand curve, having charged ten times as much only periods ago?
Markov strategies insist that consumers ignore such information. If consumers
find the information relevant, then we have moved beyond Markov equilibria.

To construct an alternative equilibrium with quite different properties, let

xR = [θ − c(1− e
−(r+η)�)]

2β
.

This is half the quantity produced in a competitive market. Choosing this stock
in every period maximizes the firm’s profits over the set of Nash equilibria of the
repeated game.27 Now let H ∗ be the set of histories in which the stock xR has
been produced in every previous period. Notice that this includes the null history.
Then consider the firm’s strategy x(ht ), giving the current stock as a function of
the history ht , given by

x(ht ) =
{
xR, if ht ∈H ∗,
g(t, t − 1, x(t − 1)), otherwise,

where g(·) is the Markov equilibrium strategy calculated earlier. In effect, the
firm “commits” to produce the profit-maximizing quantity xR , with any misstep
prompting a switch to continuing with the Markov equilibrium. Let σR denote
this strategy and the attendant best response for consumers.

It is now straightforward that σR is a subgame-perfect equilibrium, as long as
the length of a period � is sufficiently short. To see this, let U(σR | x) be the
monopoly’s continuation payoff from this strategy, given that the current stock is
x ≤ xR . We are interested in the continuation payoffs given stock xR , or

U(σR | xR) =
∞∑
τ=0

e−r�τ (1− e−η�)xR
(
− c +

∞∑
s=0

e−(r+η)�sF (xR)
)

= (1− e−η�)[F(xR)− c(1− e−(r+η)�)]
(1− e−r�)(1− e−(r+η)�) xR.

26. Notice that in examining the limiting case of short time periods, depreciation has added nothing
other than extra terms to the model.

27. This quantity maximizes [θ − βx − c(1− e−(r+η)�)]x, and hence is the quantity that would be
produced in each period by a firm that retained ownership of the good and rented its services to
the customers. A firm who sells the good can earn no higher profits.
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The key observation now is that

lim
�→∞U(σ

R | xR) > 0.

Even as time periods become arbitrarily short, there are positive payoffs to be
made by continually replacing the depreciated portion of the profit-maximizing
quantity xR . In contrast, as we have seen, as time periods shorten, the continua-
tion payoff of the Markov equilibrium, from any initial stock, approaches 0. This
immediately yields:

Proposition

5.5.1
There exists �∗ such that, if � < �∗, then strategies σR are a subgame-perfect
equilibrium.

This example illustrates that a Markov restriction can make a great difference in
equilibrium outcomes. One may or may not be convinced that a focus on Markov
equilibria is appropriate, but one cannot rationalize the restriction simply as an
analytical convenience.

●

5.6 Dynamic Games: Foundations

What determines the set S of states for a dynamic game? At first the answer seems
obvious—states are things that affect payoffs, such as the stock of fish in example 5.5.2
or the stock of durable good in example 5.5.3. However, matters are not always so
clear.

For example, our formulation of repeated games in chapter 2 allows players to
condition their actions on a public random variable. Are these realizations states,
in the sense of a dynamic game, and does Markov equilibrium allow behavior to
be conditioned on such realizations? Alternatively, consider the infinitely repeated
prisoners’ dilemma. It initially appears as if there are no payoff-relevant states, so that
Markov equilibria must feature identical behavior after every history and hence must
feature perpetual shirking. Suppose, however, that we defined two states, an effort
state and a shirk state. Let the game begin in the effort state, and remain there as along
as there has been no shirking, being otherwise in the shirk state. Now let players’
strategies prescribe effort in the effort state and shirking in the shirk state. We now
have a Markov equilibrium (for sufficiently patient players) featuring effort. Are these
states real, or are they a sleight of hand?

In general, we can define payoffs for a dynamic game as functions of current and
past actions, without resorting to the idea of a state. As a result, it can be misleading to
think of the set of states as being exogenously given. Instead, if we would like to work
with the notions of payoff relevance and Markov equilibrium, we must endogenously
infer the appropriate set of states from the structure of payoffs.

This section pursues this notion of a state, following Maskin and Tirole (2001).
We examine a game with players 1, . . . , n. Each player i has the set Ai of stage-game
actions available in each period. Hence, the set of feasible actions is again independent
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of history.28 Player i’s payoff is a function of the outcome path a ∈ A∞. This formu-
lation is sufficiently general to cover the dynamic games of section 5.6. Deterministic
transitions are immediately covered because the history of actions ht determines the
state s reached in period t . For stochastic transitions, such as example 5.5.1, introduce
an artificial player 0, nature, with action space A0 = S and constant payoffs; random
state transitions correspond to the appropriate fixed behavior strategy for player 0. In
what follows, the term players refers to players i ≥ 1, and histories include nature’s
moves.

Let σ be a pure strategy profile and ht a history. Then we write U∗i (σ | ht ) for
player i’s payoffs given historyht and the subsequent continuation strategy profileσ |ht .
This is in general an expected value because future utilities may depend randomly on
past play, for the same reason that the current state in a model with exogenously
specified states may depend randomly on past actions.

Note that U∗i (σ | ht ) is not, in general, the continuation payoff from σ |ht . For
example, for a repeated game in the class of chapter 2,

U∗i (σ | (a0, a1, . . . , at−1)) =
t−1∑
τ=0

δτ ui(a
τ )+ δtUi(σ |(a0,a1,...,at−1)),

where ui is the stage game payoff and Ui is given by (2.1.2). In this case, U∗i (σ | ht )
and U∗i (σ ′ | ĥt ) differ by only a constant if the continuation strategies σ |ht and σ ′|

ĥt

are identical, and history is important only for its role in coordinating future behavior.
This dual role of histories in a dynamic game gives rise to ambiguity in defining

states. Suppose two histories induce different continuation payoffs. Do these differ-
ences arise because differences in future play are induced, in which case the histories
would not satisfy the usual notion of being payoff relevant (though it can still be criti-
cal to take note of the difference), or because identical continuation play gives rise to
different payoffs? Can we always tell the difference?

5.6.1 Consistent Partitions

Let H t be the set of period t histories. Notice that we have no notion of a state in
this context, and hence no distinction between ex ante and ex post histories. A period t
history is an element ofAt . A partition of H t is denoted Ht , and Ht (ht ) is the partition
element containing history ht .

A sequence of partitions {Ht }∞t=0 is denoted H; viewed as ∪tHt , H is a partition of
the set of all histories H = ∪tH t . We often find it convenient to work with several
such sequences, one associated with each player, denoting them by H1, . . . ,Hn. Given
such a collection of partitions, we say that two histories ht and ĥt are i-equivalent if
ht ∈ Ht

i (ĥ
t ).

A strategy σi is measurable with respect to Hi if, for every pair of histories ht and
ĥt with ht ∈ Ht

i (ĥ
t ), the continuation strategy σi |ht equals σi |ĥt . Let�i(H) denote the

set of pure strategies for player i that are measurable with respect to the partition H.

28. If this were not the case, then we would first partition the set of period t histories H t into subsets
that feature the same feasible choices for each player i in period t and then work throughout
with refinements of this partition, to ensure that our subsequent measurability requirements were
feasible.
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A collection of partitions {Ht
1, . . . ,H

t
n}∞t=0 is consistent if for every player i,

whenever other players’ strategies σ−i are measurable with respect to their partition,
then for any pair of i-equivalent period t histories ht and ĥt , player i has the same
preferences over i’s continuation strategies. Hence, consistency requires that for any
player i, pure strategies σj ∈ �j(Hj ) for all j �= i, and i-equivalent histories ht and
ĥt , there exist constants θ and β > 0 such that

U∗i ((σi, σ−i ) | ht ) = θ + βU∗i ((σi, σ−i ) | ĥt ).

If this relationship holds, conditional on the (measurable) strategies of the other players,
i’s utilities after histories ht and ĥt are affine transformations of one another. We
represent this by writing

U∗i ((·, σ−i ) | ht ) ∼ U∗i ((·, σ−i ) | ĥt ). (5.6.1)

We say that two histories ht and ĥt , with the property that player i has the same
preferences over continuation payoffs given these histories (as just defined) are i-
payoff equivalent. Consistency of a partition is thus the condition that equivalence
(under the partition) implies payoff equivalence.

The idea now is to define a Markov equilibrium as a subgame-perfect equilibrium
that is measurable with respect to a consistent collection of partitions. To follow this
program through, two additional steps are required. First, we establish conditions
under which consistent partitions have some intuitively appealing properties. Second,
there may be many consistent partitions, some of them more interesting than others.
We show that a maximal consistent partition exists, and use this one to define Markov
equilibria.

5.6.2 Coherent Consistency

One might expect a consistent partition to have two properties. First, we might expect
players to share the same partition. Second, we might expect the elements of the period t
partition to be subsets of partition in period t − 1, so that the partition is continually
refined. Without some additional mild conditions, both of these properties can fail.

Lemma

5.6.1
Suppose that for any players i and j , any period t , and any i-equivalent histories
ht and ĥt , there exists a repeated-game strategy profile σ and stage-game actions
aj and a′j such that

U∗i ((·, σ−i ) | (ht , aj )) �∼ U∗i ((·, σ−i ) | (ĥt , a′j )). (5.6.2)

Then if (H1, . . . ,Hn) is a consistent collection of partitions, then in every period t
and for all players i and j , Ht

i = Ht
j .

The expression U∗i ((σi, σ−i ) | (ht , aj )) gives player i’s payoffs, given that ht has
occurred and given that player j chooses aj in period t , with behavior otherwise
specified by (σi, σ−i ). Condition (5.6.2) then requires that player i’s preferences, given
(ht , aj ) and (ĥt , a′j ), not be affine transformations of one another.
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Proof Let ht and ĥt be i-equivalent. Choose a player j and suppose the strategy profile

σ and actions aj and a′j satisfy (5.6.2). We suppose ht and ĥt are not j -equivalent
(and derive a contradiction). Then player j ’s strategy of playing as in σ , except
playing aj after histories in Hj (h

t ) and a′j after histories in Hj (ĥ
t ) is measurable

with respect to Hj . But then (5.6.2) contradicts (5.6.1): Player i’s partition is not
consistent (condition (5.6.2)), as assumed (condition (5.6.1)).

■

To see the argument behind this proof, suppose that a period t arrives in which
player i and j partition their histories differently. We exploit this difference to construct
a measurable strategy for player j that differs across histories within a single element of
player i’s partition, in a way that affects player i’s preferences over continuation play.
This contradicts the consistency of player i’s partition. There are two circumstances
under which such a contradiction may not arise. One is that all players have the same
partition, precluding the construction of such a strategy. This leads to the conclusion
of the theorem. The other possibility is that we may not be able to find the required
actions on the part of player j that affect i’s preferences. In this case, we have reached
a point at which, given a player i history ht ∈ Hi (h

t ), there is nothing player j can
do in period t that can have any effect on how player i evaluates continuation play.
Such degeneracies are possible (Maskin and Tirole, 2001, provide an example), but
we hereafter exclude them, assuming that the sufficient conditions of lemma 5.6.1 hold
throughout.

We can thus work with a single consistent partition H and can refer to histories
as being “equivalent” and “payoff equivalent” rather than i-equivalent and i-payoff
equivalent.

We are now interested in a similar link between periods.

Lemma

5.6.2
Suppose that for any players i and j , and period t , any equivalent histories ht and
ĥt , and any stage-game action profile at , there exists a repeated-game strategy
profile σ and player j actions at+1

j and ãt+1
j such that

U∗i ((·, σ−i ) | (ht , at−i , at+1
j )) �∼ U∗i ((·, σ−i ) | (ĥt , at−i , ãt+1

j )). (5.6.3)

If (H1, . . . ,Hn) is a consistent collection of partitions under which ht and ĥt

are equivalent histories, then for any action profile at , (ht , at ) and (ĥt , at ) are
equivalent.

Proof Fix a consistent collection H = (H1, . . . ,Hn) and an action profile at . Suppose

ht and ĥt are equivalent, and the action profile at , strategy σ , and player j actions
at+1
j and ãt+1

j satisfy (5.6.3). The strategy for every player k other than i and j that
plays according to σk , except for playing atk in period t , is measurable with respect
to H. We now suppose that (ht , at ) and (ĥt , at ) are not equivalent and derive a
contradiction. In particular, the player j strategy of playing at+1

j and then playing

according to σj , after any history ht+1 ∈ H((ht , at )), and otherwise playing ãt+1
j

(followed by σj ) is then measurable with respect to H and from (5.6.3), allows us
to conclude that ht and ĥt are not equivalent (recall (5.6.1)), the contradiction.

■
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The conditions of this lemma preclude cases in which player j ’s behavior in period
t + 1 has no effect on player i’s period t continuation payoffs. If the absence of such
an effect, the set of payoff-relevant states in period t + 1 can be coarser than the set in
period t .29

We say that games satisfying the conditions of lemmas 5.6.1 and 5.6.2 are non-
degenerate and hereafter restrict attention to such games.

5.6.3 Markov Equilibrium

There are typically many consistent partitions. The trivial partition, in which every
history constitutes an element, is automatically consistent. There is clearly nothing
to be gained in defining a Markov equilibrium to be measurable with respect to this
collection of partitions, because every strategy would then be Markov. Even if we
restrict attention to nontrivial partitions, how do we know which one to pick?

The obvious response is to examine the maximally coarse consistent partition,
meaning a consistent partition that is coarser than any other consistent partition.30

This will impose the strictest version of the condition that payoff-irrelevant events
should not matter. Does such a partition exist?

Proposition

5.6.1
Suppose the game is nondegenerate (i.e., satisfies the hypotheses of lemmas 5.6.1
and 5.6.2). A maximally coarse consistent partition exists. If the stage game is
finite, then this maximally coarse consistent partition is unique.

Proof Let � be the set of all consistent partitions of histories. Endow this set with the

partial order ≺ defined by Ĥ ≺ H if H is a coarsening of Ĥ. We show that there
exists a maximal element under this partial order, unique for finite games.

This argument proceeds in two steps. The first is to show that there exist
maximal elements. This in turn follows from Zorn’s lemma (Hrbacek and Jech
1984, p. 171), if we can show that every chain (i.e., totally ordered subset) C =
{H(m)}∞m=1 admits an upper bound. Let H(∞) denote the finest common coarsen-
ing (or meet) of C , that is, for each element h ∈H , H(∞)(h) = ∪∞m=1H(m)(h).
Because C is a chain, H(m)(h) ⊂ H(m+1)(h), and so H(∞) is a partition that is
coarser than every partition in C . It remains to show that H(∞) is consistent. To
do this, suppose that two histories ht and ĥt are contained in a common element
of H(∞). Then they must be contained in some common element of H(m) for some
m, and hence must satisfy (5.6.1). This ensures that H(∞) is consistent, and so
is an upper bound for the chain. Hence by Zorn’s lemma, there is a maximally
coarse consistent partition.

The second step is to show that there is a unique maximal element for finite
stage games. To do this, it suffices to show that for any two consistent partitions,
their meet (i.e., finest common coarsening) is consistent. Let H and Ĥ be con-
sistent partitions, and let H̄ be their meet. Suppose ht and ĥt are contained in a
single element of H̄. Because the stage game is finite, Ht and Ĥt are both finite
partitions. Then, by the definition of meet, there is a finite sequence of histories

29. Again, Maskin and Tirole (2001) provide an example.

30. A partition H
′ is a coarsening of another partition H if for all H ∈ H there exists H ′ ∈ H

′ such
that H ⊂ H ′.
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{ht , ht (1), . . . , ht (n), ĥt } such that each adjacent pair is contained in either the
same element of Ht or the same element of Ĥt , and hence satisfy payoff equiva-
lence. But then ht and ĥt must be payoff equivalent, which suffices to conclude
that H̄ is consistent.

■

Denote the maximally coarse consistent partition by H∗.

Definition

5.6.1
A strategy profile σ is a Markov strategy profile if it is measurable with respect
to the maximally coarse consistent partition H∗. A strategy profile is a Markov
equilibrium if it is a subgame-perfect equilibrium and it is Markov. Elements of
the partition H∗ are called Markov states or payoff-relevant histories.

No difficulty arises in finding a Markov equilibrium in a repeated game, because
one can always simply repeat the Nash equilibrium of the stage game, making history
completely irrelevant. This is a reflection of the fact that in a repeated game, the
maximally coarse partition is the set of all histories. Indeed, all Markov equilibria
feature a Nash equilibrium of the stage game in every period.

Repeated games have the additional property that every history gives rise to an
identical continuation game. As we noted in section 5.5.2, the Markov condition on
strategies is commonly supplemented with the additional requirement that identical
continuation games feature identical continuation strategies. Such strategies are said
to be stationary. A stationary Markov equilibria in a repeated game must feature the
same stage-game Nash equilibrium in every period.

More generally, it is straightforward to establish the existence of Markov equilibria
in dynamic games with finite stage games and without private information. Abackward
induction argument ensures that finite horizon versions of the game have Markov
equilibria, and discounting ensures that the limit of such equilibria, as the horizon
approaches infinity, is a Markov equilibrium of the infinitely repeated game (Fudenberg
and Levine 1983).

Now consider dynamic games G in the class described in section 5.5. The set
S induces a partition on the set of ex post histories in a natural manner, with two
ex post histories being equivalent under this partition if they are histories of the same
length and end with the same state s ∈ S. Refer to this partition as HS . Because the
continuationG(s) is identical, regardless of the history terminating in s, the following
is immediate:

Proposition

5.6.2
Suppose G is a dynamic game in the class described in section 5.5. Suppose HS

is the partition of H with h ∈ HS(h′) if h and h′ are of the same length and both
result in the same state s ∈ S. Then, HS is finer than H∗. If for every pair of states
s, s′ ∈ S, there is at least one player i for which ui(s, a) and ui(s′, a) are not
affine transformations of one another, then H∗ = HS .

The outcomes ω and ω′ of a public correlating device have no effect on players’
preferences and hence fail the condition that there exist a player i for whom ui(ω, a)

and ui(ω′, a) are not affine transformations of one another. Therefore, the outcomes
of a public correlating device in a repeated game do not constitute states.

Markov equilibrium precludes the use of public correlation in repeated games
and restricts the players in the prisoners’ dilemma to consistent shirking. Alternatively,
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much of the interest in repeated games focuses on non-Markov equilibria.31 In our view,
the choice of an equilibrium is part of the construction of the model. Different choices,
including whether Markov or not, may be appropriate in different circumstances, with
the choice of equilibrium to be defended not within the confines of the model but in
terms of the strategic interaction being modeled.

Remark

5.6.1
Games of incomplete information The notion of Markov strategy also plays an
important role in incomplete information games, where the beliefs of uninformed
players are often treated as Markov states (see, for example, section 18.4.4). At
an intuitive level, this is the appropriate extension of the ideas in this section.
However, determining equivalence classes of histories that are payoff-equivalent
is now a significantly more subtle question. For example, because the inferences
that players draw from histories depend on the beliefs that players have about past
play, the equivalence classes now must satisfy a complicated fixed point property.
Moreover, Markov equilibria (as just defined) need not exist, and this has led to
the notion of a weak Markov equilibrium in the literature on bargaining under
incomplete information (see, for example, Fudenberg, Levine, and Tirole, 1985).
We provide a simple example of a similar phenomenon in section 17.3.

◆

5.7 Dynamic Games: Equilibrium

5.7.1 The Structure of Equilibria

This section explores some of the common ground between ordinary repeated games
and dynamic games. Recall that we assume either that the set of states S is finite, or that
the transition function is deterministic. The proofs of the various propositions we offer
are straightforward rewritings of their counterparts for repeated games in chapter 2
and hence are omitted.

We say that strategy σ̂i is a one-shot deviation for player i from strategy σi if there
is a unique ex post history h̃t such that

σ̂i (h̃
t ) �= σi(h̃t ).

It is then a straightforward modification of proposition 2.2.1, substituting ex post
histories for histories and replacing payoffs with expected payoffs to account for the
potential randomness of the state transition function, to establish a one-shot deviation
principle for dynamic games:

Proposition

5.7.1
A strategy profile σ is subgame perfect in a dynamic game if and only if there are
no profitable one-shot deviations.

Given a dynamic game, an automaton is (W ,w0, τ, f ), where W is the set of
automaton states, w0 : S → W gives the initial automaton state as a function of the
initial game state, τ : W × A× S → W is the transition function giving the automaton

31. This contrast may not be so stark. Maskin and Tirole (2001) show that most non-Markov
equilibria of repeated games are limits of Markov equilibria in nearby dynamic games.
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state in the next period as a function of the current automaton state, the current action
profile, and the next draw of the game state. Finally, f : W →∏

i �(Ai) is the output
function. (Note that this description agrees with remark 2.3.3 when S is the space of
realizations of the public correlating device.)

The initial automaton state is determined by the initial game state, through the
function w0. We will often be interested in the strategy induced by the automaton
beginning with an automaton state w. As in the case of repeated games, we write this
as (W , w, τ, f ).32

Let τ(h̃t ) denote the automaton state reached under the ex post history h̃t ∈ ˜H t =
(S × A)t × S. Hence, for a history {s} that identifies the initial game-state s, we have

τ({s}) = w0(s)

and for any ex post history h̃t = (h̃t−1, a, s),

τ(h̃t ) = τ(τ (h̃t−1), a, s).

Given an ex post history h̃t ∈ ˜H , let s(h̃t ) denote the current game state in h̃t .
Given a game state s ∈ S, the set of automaton states accessible in game state s is
W (s) = {w ∈ W : ∃h̃t ∈ ˜H , w = τ(h̃t ), s = s(h̃t )}.33

Proposition

5.7.2
Suppose the strategy profile σ is described by the automaton {W ,w0, τ, f }. Then
σ is a subgame-perfect equilibrium of the dynamic game if and only if for any
game state s ∈ S and automaton state w accessible in game state s, the strategy
profile induced by {W , w, τ, f }, is a Nash equilibrium of the dynamic gameG(s).

Our next task is to develop the counterpart for dynamic games of the recursive
methods for generating equilibria introduced in section 2.5 for repeated games. Restrict
attention to finite sets of signals (with |S| = m) and pure strategies. For each game
state s ∈ S, and each statew ∈ W (s), associate the profile of values Vs(w), defined by

Vs(w) = (1− δ)u(s, f (w))+ δ
∑
s′∈S

Vs′(τ (w, f (w), s
′))q(s′ | s, f (w)).

As is the case with repeated games, Vs(w) is the profile of expected payoffs when
beginning the game in game state s and automaton state w. Associate with each game
state s ∈ S, and each state w ∈ W (s), the function g(s,w)(a) : A→ Rn, where

g(s,w)(a) = (1− δ)u(s, a)+ δ
∑
s′∈S

Vs′(τ (w, a, s
′))q(s′ | s, a).

Proposition

5.7.3
Suppose the strategy profile σ is described by the automaton (W ,w0, τ, f ). Then
σ is a subgame-perfect equilibrium if and only if for all game states s ∈ S and
all w ∈ W (s), f (w) is a Nash equilibrium of the normal-form game with payoff
function g(s,w).

32. Hence, (W ,w0, τ, f ) is an automaton whose initial state is specified as a function of the game
state, (W ,w0(s), τ, f ) is the automaton whose initial state is given by w0(s), and (W , w, τ, f )

is the automaton whose initial state is fixed at an arbitrary w ∈ W .

33. Note that w0(s) is thus accessible in game state s, even if game state s does not have positive
probability under q(· | ∅).
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Let W s be a subset of Rn, for s = 1, . . . , m. We interpret this set as a set of feasible
payoffs in dynamic game G(s). We say that the pure action profile a∗ is pure-action
enforceable on (W 1, . . . ,W m) given s ∈ S if there exists a function γ : A× S →
W 1 ∪ . . . ∪W m with γ (a, s′) ∈ W s′ such that for all players i and all ai ∈ Ai ,

(1− δ)ui(s, a∗)+ δ
∑
s′∈S

γi(a
∗, s′)q(s′ | s, a∗)

≥ (1− δ)ui(s, ai, a∗−i )+ δ
∑
s′∈S

γi(ai, a
∗−i , s′)q(s′ | s, ai, a∗−i ).

We say that the payoff profile v ∈ Rn is pure-action decomposable on (W 1, . . . ,W m)

given s ∈ S if there exists a pure action profile a∗ that is pure-action enforceable on
(W 1, . . . ,W m) given s, with the enforcing function γ satisfying, for all players i,

vi = (1− δ)ui(s, a∗)+ δ
∑
s′∈S

γi(a
∗, s′)q(s′ | s, a∗).

A vector of payoff profiles v ≡ (v(1), . . . , v(m)) ∈ Rnm, with v(s) interpreted as
a payoff profile in game G(s), is pure-action decomposable on (W 1, . . . ,W m) if
for all s ∈ S, v(s) is pure-action decomposable on (W 1, . . . ,W m) given s. Finally,
(W 1, . . . ,W m) is pure-action self-generating if every vector of payoff profiles in∏
s∈S W s is pure-action decomposable on (W 1, . . . ,W m). We then have:34

Proposition

5.7.4
Any self-generating set of payoffs (W 1, . . . ,W m) is a set of pure-strategy
subgame-perfect equilibrium payoffs.

As before, we have the corollary:

Corollary

5.7.1
The set (W 1∗, . . . , W m∗) of pure-strategy subgame-perfect equilibrium payoff
profiles is the largest pure-action self-generating collection (W 1, . . . , W m).

Remark

5.7.1
Repeated games with random states For these games (see remark 5.5.1), the set
of ex ante feasible payoffs is independent of last period’s state and action profile.
Consequently, it is simpler to work with ex ante continuations in the notions of
enforceability, decomposability, and pure-action self-generation. A pure action
profile a∗ is pure-action enforceable in state s ∈ S on W ⊂ Rn if there exists a
function γ : A→ W with such that for all players i and all ai ∈ Ai ,

(1− δ)ui(s, a∗)+ δγi(a∗) ≥ (1− δ)ui(s, ai, a∗−i )+ δγi(ai, a∗−i ).

The ex post payoff profile vs ∈ Rn is pure-action decomposable in state s on W if
there exists a pure-action profile a∗ that is pure-action enforceable in s on W with
the enforcing function γ satisfying vs = (1− δ)u(s, a∗)+ δγ (a∗). An ex ante
payoff profile v ∈ Rn is pure-action decomposable on W if there exist ex post
payoffs {vs : s ∈ S}, vs pure-action decomposable in s on W , such that v =∑
s v

sq(s). Finally, W is pure-action self-generating if every payoff profile in W

is pure-action decomposable on W . As usual, any self-generating set of ex ante

34. See section 9.7 on games of symmetric incomplete information (in particular, proposition 9.7.1
and lemma 9.7.1) for an application.
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payoffs is a set of subgame-perfect equilibrium ex ante payoffs, with the set of
subgame-perfect equilibrium ex ante payoffs being the largest such set.

Section 6.3 analyzes a repeated game with random states in which players have
an opportunity to insure one another against endowment shocks. Interestingly, this
game is an example in which the efficient symmetric equilibrium outcome is some-
times necessarily nonstationary. It is no surprise that the equilibrium itself might
not be stationary, that is, that efficiency might call for nontrivial intertemporal
incentives and their attendant punishments. However, we have the stronger result
that efficiency cannot be obtained with a stationary-outcome equilibrium.

◆

5.7.2 A Folk Theorem

This section presents a folk theorem for dynamic games. We assume that the action
spaces and the set of states are finite.

Let � be the set of pure strategies in the dynamic game and let �M be the set of
pure Markov strategies. For any σ ∈ �, let

Uδ(σ ) = Eσ
{
(1− δ)

∞∑
t=0

δtu(st , at )

}

be the expected payoff profile under strategyσ , given discount factor δ. The expectation
accounts not only for the possibility of private randomization and public correlation
but also for randomness in state transitions, including the determination of the initial
state. We let

Uδ(σ | ht ) = Eσ,ht
{
(1− δ)

∞∑
τ=t

δτ−t u(aτ , sτ )
}

be the analogous expectation conditioned on having observed the history ht , where
continuation play is given by σ |ht . As a special case of this, we have the expected
payoff Uδ(σ | s), which conditions on the initial state realization s.

Let

F (δ) = {v ∈ Rnm : ∃σ ∈ �M s.t. Uδ(σ | s) = v(s) ∀s}.

This is our counterpart of the set of payoff profiles produced by pure stage-game actions
in a repeated game. There are two differences here. First, we identify functions that
map from initial states to expected payoff profiles. Second, we now work directly with
the collection of repeated-game payoffs rather than with stage-game payoffs because
we have no single underlying stage game. In doing so, we have restricted attention only
to payoffs produced by pure Markov strategies. We comment shortly on the reasons
for doing so, and in the penultimate paragraph of this section on the sense in which
this assumption is not restrictive.

We let

F = lim
δ→1

F (δ). (5.7.1)
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This is our candidate for the set of feasible pure-strategy payoffs available to patient
players. We similarly require a notion of minmax payoffs, which we define contingent
on the current state,

vδi (s) = inf
σ−i∈�−i

sup
σi∈�i

Uδi (σ | s)

with

vi(s) = lim
δ→1

vδi (s). (5.7.2)

Dutta (1995, lemma 2, lemma 4) shows that the limits in (5.7.1) and (5.7.2) exist. The
restriction to Markov strategies in defining F (δ) is useful here, as it is relatively easy
to show that the payoffs to a pure Markov strategy, in the presence of finite sets of
actions and states, are continuous as δ→ 1.

Finally, we say that the collection of pure strategies {σ 1, . . . , σ n} is a player-
specific punishment for v if the limits U(σ i | s) = limδ→1 U

δ(σ i | s) exist and the
following hold for all s, s′, and s′′ in S:

Ui(σ
i | s′) < vi(s) (5.7.3)

and

vi(s
′′) < Ui(σ

i | s′) < Ui(σ
j | s). (5.7.4)

We do not require the player-specific punishments to be Markov. The inequalities
in conditions for player-specific punishments are required to hold uniformly across
states. This imposes a tremendous amount of structure on the payoffs involved in these
punishments. We comment in the final paragraph of this section on sufficient conditions
for the existence of such punishments.

We then have the pure-strategy folk theorem.

Proposition

5.7.5
Let v ∈ F be strictly individually rational, in the sense that for all players i and
pairs of states s and s′ we have

vi(s) > vi(s
′),

let v admit a player specific punishment, and suppose that the players have access
to a public correlating device. Then, for any ε > 0, there exists δ such that for all
δ ∈ (δ, 1), there exists a subgame-perfect equilibrium σ whose payoffs U(σ | s)
are within ε of v(s) for all s ∈ S.

The proof of this proposition follows lines that are familiar from proposition 3.4.1
for repeated games. The additional complication introduced by the dynamic game is
that there may now be two reasons to deviate from an equilibrium strategy. One is to
obtain a higher current payoff. The other, not found in repeated games, is to affect
the transitions of the state. In addition, this latter incentive potentially becomes more
powerful as the players become more patient, and hence the benefits of affecting the
future state become more important. We describe the basic structure of the proof. Dutta
(1995) can be consulted for more details.
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Proof We fix a sequence of values of δ approaching 1 and corresponding strategy profiles
σ(δ) with the properties that

lim
δ→1

Uδ(σ (δ) | s) = v(s).

This sequence allows us to approach the desired equilibrium payoffs. Moreover,
Dutta (1995, proposition 3) shows that there exists a strategy profile σ̂ such that
for any η > 0, there exists an integer L(η) such that for all T ≥ L(η) and s ∈ S,

Eσ̂,s
1

T

T−1∑
t=0

ui(s
t , at ) ≤ vδi (s)+

η

2
,

and hence a value δ1 < 1 such that for δ ∈ (δ1, 1),

Eσ̂,s
1

T

T−1∑
t=0

ui(s
t , at ) ≤ vi(s)+ η.

Let {σ 1, . . . , σ n} be the player-specific punishment for v. Conditions (5.7.3)
and (5.7.4) ensure that we can fix δ2 ∈ (δ1, 1),vi ≡ maxs∈S vi(s) and η sufficiently
small that, for all δ ∈ (δ2, 1), all i, and for any states s, s′ and s′′,

vi(s)+ η ≤ vi + η < Uδi (σ
i | s′) < vi(s

′′)

and

Uδi (σ
i | s) < Uδi (σ

j | s′).
We now note that we can assume, for each player i, that the player-specific pun-
ishment σ i has the property that there exists a length of time Ti such that for
each t, t ′ = 0, Ti, 2Ti, . . . , and for all ex ante histories ht and ht

′
and states s,

σ i |{ht ,s} = σ i |{ht ′ ,s}. Hence, σ i has a cyclical structure, erasing its history and

starting from the beginning every Ti periods.35 We can also assume that σ i pro-
vides a payoff to player i that is independent of its initial state.36 We hereafter
retain these properties for the player specific punishments.

The strategy profile now mimics that used to prove proposition 3.4.1, the cor-
responding result for repeated games. It begins with play following the strategy
profile σ(δ); any deviation by player i from σ(δ), and indeed any deviation
from any subsequent equilibrium prescription other than deviations from being

35. Suppose σ i does not have this property. Because each inequality in (5.7.3) and (5.7.4) holds by
at least ε, for some ε, we need only choose Ti sufficiently large that the average payoff from
any strategy profile over its first Ti periods is within at least ε/3 of its payoff. Now construct a
new strategy by repeatedly playing the first Ti periods of σ i , beginning each time with the null
history. This new strategy has the desired cyclic structure and satisfies (5.7.3) and (5.7.4). Dutta
(1995, section 6.2) provides details.

36. Suppose this is not the case. Let s maximize Ui(σ i | s). Define a new strategy as follows: In
each period 0, Ti , 2Ti, . . . , conduct a state-contingent public correlation that mixes between σ i

and a strategy that maximizes player i’s repeated-game payoff, with the correlation set so as to
equate the continuation payoff for each state s′ with Ui(σ i | s). The uniform inequalities of the
player-specific punishments ensure this is possible.
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minmaxed, which are ignored, prompts the first L periods of the corresponding
minmax strategy σ̂ i (δ), followed by the play of the player-specific punishment σ i .

Our task now is to show that these strategies constitute a subgame-perfect equi-
librium, given the freedom to restrict attention to large discount factors and choose
L ≥ L(η). As usual, let M and m be the maximum and minimum stage-game
payoffs.

The condition for deviations from the equilibrium path to be unprofitable is
that, for any state s ∈ S (suppressing the dependence of strategies on δ)

(1− δ)M + δ(1− δL)(vi + η)+ δL+1Uδi (σ
i) ≤ Uδi (σ | s),

which, as δ converges to one for fixed L, becomes Ui(σ i) ≤ vi(s), which holds
with strict inequality by virtue of our assumption that v admits player-specific
punishments. There is then a value δ3 ∈ [δ2, 1) such that this constraint holds for
any δ ∈ (δ3, 1) and L ≥ L(η).

For player j to be unwilling to deviate while minmaxing i, the condition is

(1− δ)M + δ(1− δL)(vj + η)+ δL+1Uδj (σ
j ) ≤ (1− δL)m+ δLUδj (σ i).

Rewrite this condition as

(1− δ)M + (1− δL)(δ(vj + η)−m)+ δL[δUδj (σ j )− Uδj (σ i)] ≤ 0.

The term [δUδj (σ j )− Uδj (σ i)] converges toUj(σ j )− Uj(σ i) < 0 as δ→ 1. We
can then find a value δ4 ∈ [δ3, 1) and an increasing function L(δ) (≥ L(η)) such
that this constraint holds for any δ ∈ (δ4, 1) and the associatedL(δ), and such that
δL(δ) < 1− γ , for some γ > 0. We hereafter take L to be given by L(δ).

Now consider the postminmaxing rewards. For player i to be willing to play
σ i , a sufficient condition is that for any ex post history h̃t under which current
play is governed by σ i ,

(1− δ)M + δ(1− δL(δ))(vi + η)+ δL(δ)+1Uδi (σ
i) ≤ Uδi (σ i | h̃t ).

This inequality is not obvious. The difficulty here is that we cannot exclude the
possibility thatUδi (σ

i) > Uδi (σ
i | h̃t ). There is no reason to believe that player i’s

payoff from strategy σ i is constant across time or states. Should player i find him-
self at an ex post history (ht , s) in which this strategy profile gives a particularly
low payoff, i may find it optimal to deviate, enduring the resulting minmaxing to
return to the relatively high payoff of beginning σ i from the beginning. This is the
incentive to deviate to affect the state that does not appear in an ordinary repeated
game. In addition, this incentive seemingly only becomes stronger as the player
gets more patient, and hence the intervening minmaxing becomes less costly.

A similar issue arises in the proof of proposition 3.8.1, the folk theorem for
repeated games without public correlation, where we faced the fact that the deter-
ministic sequences of payoffs designed to converge to a target payoff may feature
continuation values that differ from the target. In the case of proposition 3.8.1,
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the response involved a careful balancing of the relative sizes of δ and L. Here,
we can use the cyclical nature of the strategy σ i to rewrite this constraint as

(1− δ)M + δ(1− δL(δ))(vi + η)+ δL(δ)+1Uδi (σ
i) ≤ (1− δTi )m+ δTiUδi (σ i),

where (1− δTi )m is a lower bound on player i’s payoff from σ i over Ti periods,
and then the strategy reverts to payoffUδi (σ

i). The key to ensuring this inequality
is satisfied is to note that Ti is fixed as part of the specification of σ i . As a result,
limδ→1 δ

Ti = 1 while δL(δ) remains bounded away from 1.
A similar argument establishes that a sufficiently patient player i has no incen-

tive to deviate when in the middle of strategy σ j . This argument benefits from the
fact that a deviation trades a single-period gain for L periods of being minmaxed
followed by a return to the less attractive payoff Uδi (σ

i). Letting δ5 ∈ (δ4, 1) be
the bound on the discount factor to emerge from these two arguments, these strate-
gies constitute a subgame-perfect equilibrium for all δ ∈ (δ5, 1).

■

We have worked throughout with pure strategies and with pure Markov strategies
when defining feasible payoffs. Notice first that these are pure strategies in the dynamic
game. We are thus not restricting ourselves to the set of payoffs that can be achieved
in pure stage-game actions. This makes the pure strategy restriction less severe than it
may first appear. In addition, any feasible payoff can be achieved by publicly mixing
over pure Markov strategies (Dutta 1995, lemma 1), so that the Markov restriction is
also not restrictive in the presence of public correlation (which we used in modifying
the player-specific punishments in the proof).

Another aspect of this proposition can be more directly traced to the dynamic
structure of the game. We have worked with a function v that specifies a payoff profile
for each state. Suppose instead we defined, for each s ∈ S,

F (δ, s) = {v ∈ Rn : ∃σ ∈ �M s.t. Uδ(σ | s) = v},
the set of feasible payoffs (in pure Markov strategies) given initial state s, with F (s) =
limδ→1 F (δ, s). Let us say that a stochastic game is communicating if for any pair of
states s and s′, there is a strategy σ and a time t such that if the game begins in state
s, there is positive probability under strategy σ that the game is in state s′ in period t .
Dutta (1995, lemma 12) shows that in communicating games, F (s) is independent of
s. If the game communicates independently of the actions of player i, for each i, then
minmax values will also be independent of the state. In this case, we can formulate
the folk theorem for stochastic games in terms of payoff profiles v ∈ Rn and minmax
profiles vi that do not depend on the initial state. In addition, full dimensionality of
the convex hull of F then suffices for the existence of player-specific punishments for
interior v. We can establish a similar result in games in which F (δ, s) depends on s
(and hence which are not communicating), in terms of payoffs that do not depend on
the initial state by concentrating on those payoffs in the set ∩s∈SF (s).
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6 Applications

This chapter offers three examples of how repeated games of perfect monitoring have
been used to address questions of economic behavior.

6.1 PriceWars

More stage-game outcomes can be supported as repeated-game equilibrium actions
in some circumstances than in others. This section exploits this insight in a simple
model of collusion between imperfectly competitive firms. We are interested in whether
successful collusion is likely to be procyclical or countercyclical.1

6.1.1 Independent Price Shocks

We consider a market with n firms who costlessly produce a homogeneous output. In
each period of the infinitely repeated game, a state s is first drawn from the finite set
S and revealed to the firms. The state s is independently drawn in each period, with
q(s) being the probability of state s. We thus have a repeated game with random states
(remarks 5.5.1 and 5.7.1).

After observing the states, the firms simultaneously choose prices for that period.
If the state is s and the firms set prices p1, . . . , pn, then the quantity demanded is given
by s −min{p1, . . . , pn}. This quantity is split evenly among those firms who set the
minimum price.2

The stage game has a unique Nash equilibrium outcome in which the minimum
price is set at 0 in every period and each firm earns a 0 payoff. This is the mutual
minmax payoff for this game. In contrast, the myopic monopoly price in state s is
s/2, for a total payoff of (s/2)2. Higher states feature higher monopoly profits—it is
more valuable to (perfectly) collude when demand is high. However, it is also more
lucrative to undercut the market price slightly, capturing the entire market at only a
slightly smaller price, when demand is high.

1. This example is motivated by Rotemberg and Saloner (1986), who establish conditions under
which oligopolistic firms will behave more competitively when demand is high rather than low.

2. This game violates assumption 2.1.1, because action sets are continua while the payoff func-
tion has discontinuities. The existence of a stage-game Nash equilibrium is immediate, so the
discontinuity poses no difficulties.
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In the repeated game, the firms have a common discount factor δ. We consider the
strongly symmetric equilibrium that maximizes the firms’ expected payoffs, which we
refer to as the most collusive equilibrium. Along the equilibrium path, the firms set
a price denoted by p(s) whenever the state is s. Given our interest in an equilibrium
that maximizes the firms’ expected payoffs, we can immediately assume that p(s) ≤
s/2, and can assume that deviations from equilibrium play are punished by perpetual
minmaxing.

Let v∗ be the expected payoff from such a strategy profile. Necessary and sufficient
conditions for the strategy profile to be an equilibrium are, for each state s,

1

n
(1− δ)p(s)(s − p(s))+ δv∗ ≥ (1− δ)p(s)(s − p(s)), (6.1.1)

where

v∗ = 1

n

∑
ŝ∈S

p(ŝ)(ŝ − p(ŝ))q(ŝ). (6.1.2)

Condition (6.1.1) ensures that the firm would prefer to set the prescribed pricep(s) and
receive the continuation value v∗ rather than deviate to a slightly smaller price (where
the right side is the supremum over such prices) followed by subsequent minmaxing.
Condition (6.1.2) gives the continuation value v∗, which is independent of the current
state.

We are interested in the function p(s) that maximizes v∗, among those that satisfy
(6.1.1)–(6.1.2). For sufficiently large δ, the expected payoff v∗ is maximized by setting
p(s) = s/2, the myopic profit maximizing price, for every state s. This reflects the
fact that the current state of demand fades into insignificance for high discount factors.

Suppose that the discount factor is too low for this to be an equilibrium. In the
most collusive equilibrium, the constraint (6.1.1) can be rewritten as

nδv∗

(n− 1)(1− δ) ≥ p(s)(s − p(s)). (6.1.3)

Hence, there exists s̄ < max S such that for all s > s̄, p(s) is the smaller of the two
roots solving, from (6.1.3),3

p(s)(s − p(s)) = nδv∗

(n− 1)(1− δ) , (6.1.4)

and if s̄ ∈ S, then for all s ≤ s̄, p(s) is the myopic monopoly price

p(s) = s
2 .

It is immediate from (6.1.4) that for s > s̄, p(s) is decreasing in s, giving coun-
tercyclical collusion in high states. The most profitable deviation open to a firm is to

3. One of the solutions to (6.1.4) is larger than the myopic monopoly price and one smaller, with the
latter being the root of interest. Deviations from any price higher than the monopoly price are as
profitable as deviations from the monopoly price, so that the inability to enforce the monopoly
price ensures that no higher price can be enforced.
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undercut the equilibrium price by a minuscule margin, jumping from a 1/n share of
the market to the entire market, at essentially the current price. The higher the state,
the more tempting this deviation. For states s > s̄, this deviation is profitable if firms
set the monopoly price. They must accordingly set a price lower than the monopoly
price, reducing the value of the market and hence the temptation to capture the entire
market. The higher the state, and hence the higher the quantity demanded at any given
price, the lower must the equilibrium price be to render this deviation unprofitable.
The function p(s) is thus decreasing for s > s̄.4 In periods of relatively high demand,
colluding firms set lower prices.

6.1.2 Correlated Price Shocks

The demand shocks in section 6.1.1 are independently and identically distributed over
time. Future values of the equilibrium path are then independent of the current real-
ization of the demand shock, simplifying the incentive constraint given by (6.1.1).
However, this assumption creates some tension with the interpretation of the model as
describing how price wars might arise during economic booms or how pricing policies
might change over the course of a business cycle.

Instead of independent distributions, one might expect the shock describing a
business cycle to exhibit some persistence. If this persistence is sufficiently strong,
then collusion may no longer be countercyclical. It is still especially profitable to cheat
on a collusive agreement when demand is high, but continuation payoffs are now also
especially lucrative in such states, making cheating more costly.

We illustrate these issues with a simple example. Let there be two firms. Demand
can be either high (s = 2) or low (s = 1). The firms have discount factor δ = 11/20.

When demand is low, joint profit maximization requires that each firm set a price
of 1/2, earning a payoff of 1/8. When demand is high, joint profit maximization calls
for a price of 1, with accompanying payoff of 1/2.

Consider the most collusive equilibrium with independent equally likely shocks.
When demand is low, each firm sets price 1/2. When demand is high, each firm sets
price p̃, the highest price for which the high-demand incentive constraint,

sup
p<p̃

[(1− δ)p(2− p)] ≤ (1− δ) 1
2 p̃(2− p̃)+ δ

( 1
2

1
8 + 1

2
1
2 p̃(2− p̃)

)
,

is satisfied. The left side of this constraint is the largest payoff that can be secured by
undercutting p̃ to capture the entire high-demand market, whereas the right side is the
value of the equilibrium strategy, conditional on high demand and noting that price p̃
is set in high-demand states. We solve this expression for

p̃ = 0.22.

Hence, collusion is countercyclical in the sense that lower prices appear in the high-
demand state. High demand coupled with collusion gives rise to especially strong
incentives to cheat. These can be deterred only by making the collusion less valuable,
leading to lower prices than those set in the low-demand state.

4. If s̄ ∈ S, for s ≤ s̄, the (monopoly) prices p(s) may exceed the prices attached to some states
s > s̄. Section 6.1.2 presents an example.
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Now suppose that the state is given by a Markov process. The prior distribution
makes high and low demand equally likely in the first period, and thereafter the period
t state is identical to the period t−1 state with probability 1− φ and switches to the
other state with probability φ. Suppose φ is quite small, so that rather than being almost
independent draws, we have persistent states.

Consider a strategy profile in which the myopic monopoly price is set in each
period, with deviations again prompting perpetual minmaxing. As φ approaches 0, the
continuation value under this profile approaches 1/8 when the current state is low and
1/2 when the current state is high, each reflecting the value of receiving half of the
monopoly profits in every future period, with the state held fixed at its current value.
The incentive constraints for equilibrium approach

sup
p< 1

2

(1− δ)p(1− p) ≤ 1
8

and
sup
p<1

(1− δ)p(2− p) ≤ 1
2 .

These constraints hold if and only if δ ≥ 1/2. Given our discount factor of δ = 11/20,
there is a value φ∗ > 0 such that if φ ≤ φ∗, there exists an equilibrium in which firms
set the myopic monopoly price in each period. Collusion is now procyclical in the
sense that higher prices and profits appear when demand is high.5 Repeated games can
thus serve as a framework for assessing patterns of collusion over the business cycle,
but the conclusions depend importantly on the nature of the cycle.

6.2 Time Consistency

6.2.1 The Stage Game

The stage game is a simple model of an economy. Player 1 is a government. The role
of player 2 is played by a unit continuum of small and anonymous investor/consumers.
As we have noted in section 2.7 (in particular in remark 2.7.1), this has the effect of
ensuring that player 2 is a short-lived player when we consider the repeated game.

Each consumer is endowed with one unit of a consumption good. The consumer
divides this unit between consumption c and capital 1− c. Capital earns a gross return
of R, so that the consumer amasses R(1− c) units of capital. The government sets
a tax rate t on capital, collecting revenue tR(1− c), with which it produces a public
good. One unit of revenue produces γ > 1 of the public good, whereR − 1 < γ < R.
Untaxed capital is consumed.6

5. Bagwell and Staiger (1997), Haltiwanger and Harrington (1991), and Kandori (1991b) examine
variations on this model with correlated shocks, establishing conditions under which collusive
behavior is either more or less likely to occur during booms or recessions.

6. In a richer economic environment, period t untaxed capital is the period t+1 endowment, and so
investors face a nontrivial intertemporal optimization problem. The essentials of the analysis are
unchanged, because small and anonymous investors (while intertemporally optimizing) assume
their individual behavior will not affect the government’s behavior. Small and anonymous players
who intertemporally optimize appear in example 5.5.3.
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Figure 6.2.1 Consumer best response c(t) as a function of the tax rate t , and government
best response t (c) as a function of the consumption c. The unique stage-game equilibrium
outcome features c = 1, as at A, whereas the efficient allocation is B and the constrained
(by consumer best responses) efficient allocation is C.

The consumer’s utility is given by

c + (1− t)R(1− c)+ 2
√
G, (6.2.1)

where G is the quantity of public good. The government chooses its tax rates to
maximize the representative consumer’s utility (i.e., the government is benevolent).
We examine equilibria in which the consumers choose identical strategies.

Each individual consumer makes a negligible contribution to the government’s
tax revenues, and accordingly treats G as fixed. The consumer thus chooses c to
maximize c + (1− t)R(1− c). The consumer’s optimal behavior, as a function of the
government’s tax rate t , is then given by:

c =

0, if t < R−1

R
,

1, if t > R−1
R

.

When every consumer chooses consumption level c, the government’s best
response is to choose the tax rate maximizing

c + (1− t)R(1− c)+ 2
√
γ tR(1− c),

where the government recognizes that the quantity of the public good depends on its
tax rate. The government’s optimal tax rate as a function of c is

t = min

{
γ

R(1− c) , 1

}
. (6.2.2)

Figure 6.2.1 illustrates the best responses of consumers and the government.7

7. We omit in figure 6.2.1 the fact that if consumers set c = 1, investing none of their endowment,
then the government is indifferent over all tax rates, because all raise a revenue of 0.
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Because the government’s objective is to maximize the consumers’ utilities, it
appears as if there should be no conflict of interest in this economy. The efficient
outcome calls for consumers to set c = 0. Because R > 1, investing in capital is
productive, and because the option remains of using the accumulated capital for either
consumption or the public good, this ensures that it is efficient to invest all of the
endowment. The optimal tax rate (from (6.2.2)) is t = γ /R. This gives the allocationB
in figure 6.2.1.

6.2.2 Equilibrium, Commitment, and Time Consistency

It is apparent from figure 6.2.1 that the stage game has a unique Nash equilibrium
outcome in which consumers invest none of their endowment (c = 1) and the gov-
ernment tax rate is set sufficiently high as to make investments suboptimal. Outcome
A in figure 6.2.1 is an example.8 No matter what consumers do, the government’s
best response is a tax rate above (R − 1)/R, the maximum rate at which consumers
find it optimal to invest. No equilibrium can then feature positive investment by con-
sumers. Notice that the stage-game equilibrium minmaxes both the consumer and the
government.

It is impossible to obtain the efficient allocation (B in figure 6.2.1) as an equilib-
rium outcome, even in a repeated game. The consumers are not choosing best responses
at B, whereas small and anonymous players must play best responses either in a stage-
game equilibrium or in each period of a repeated-game equilibrium (section 2.7).
Constraining consumers to choose best responses, the allocation that maximizes
the government’s (and hence also the consumers’) payoffs is C in figure 6.2.1.
The government sets the highest tax rate consistent with consumers’ investing,
given by (R − 1)/R, and the latter invest all of their endowment. Let v̄1 denote the
resulting payoff profile for the government (this is the pure-action Stackelberg payoff
of section 2.7.2).

If the government could choose its tax rate first with this choice observed by
consumers before they make their investment decisions, then it can guarantee a payoff
(arbitrarily close to) v̄1. In the absence of the ability to do so, we can say that the
government has a commitment problem—its payoff could be increased by the ability
to commit to a tax rate before consumers make their choices.

Alternatively, this is often described as a time consistency problem, or the govern-
ment is described as having a tax rate ((R − 1)/R) that is optimal but time inconsistent
(Kydland and Prescott, 1977). In keeping with the temporal connotation of the phrase,
it is common to present the game with a sequential structure. For example, we might
let consumers choose their allocations first, to be observed by the government, who
then chooses a tax rate. The unique subgame-perfect equilibrium of this sequential
stage game again features no investment, whereas a better outcome could be obtained
if the government could commit to the time-inconsistent tax rate of (R − 1)/R. Alter-
natively, we might precede either the simultaneous or sequential stage game with a
stage at which the government makes a cheap-talk announcement of what its tax rate

8. There are other Nash equilibria in which the government sets a tax rate less than 1 (because the
government is indifferent over all tax rates when c = 1), but they all involve c = 1.
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Figure 6.2.2 Candidate equilibrium for repeated game. In the low-tax/
investment state wL, the government chooses t = t∗ and consumers
invest everything, and in the high-tax/no-investment state wH , the
government chooses t = 1 and consumers invest nothing.

is going to be. Here, time inconsistency appears in the fact that the government would
then prefer an announcement that would induce investment, if there were any, but
any such announcement would be followed by an optimal tax rate that rendered the
investment suboptimal. Again, this is ultimately the observation that the government’s
payoff could be increased by the ability to commit to an action.

6.2.3 The Infinitely Repeated Game

Now suppose that the stage game is infinitely repeated, with the government dis-
counting at rate δ.9 As expected, repeated play potentially allows the government to
effectively commit to more moderate tax rates. Let t∗ ≡ (R − 1)/R be the optimal tax
rate and consider the strategy profile described by the automaton (W , wL, f, τ ), with
states W = {wL,wH }, output function

f (w) =
{
(t∗, 0), if w = wL,

(1, 1), if w = wH ,

and transition function (where c is the average consumption),

τ(w, (t, c)) =
{
wL, if w = wL and t = t∗,
wH, otherwise.

This is a grim-trigger profile with a low-tax/investment state wL and a high-tax/no-
investment state wH . The profile is illustrated in figure 6.2.2. The government begins
with tax rate t∗ = (R − 1)/R and consumers begin by investing all of their endowment.
These actions are repeated, in the absence of deviations, and any deviation prompts a
reversion to the permanent play of the (minmaxing) stage-game equilibrium. Because it
involves the play of stage-game Nash equilibrium, reversion to perpetual minmaxing is
a continuation equilibrium of the repeated game and is also the most severe punishment
that can be inflicted in the repeated game. The government is not playing a best response
along the proposed equilibrium path but refrains from setting higher tax rates to avoid
triggering the punishment.

9. The stage game is unchanged, so that in each period capital is either taxed away to support the
public good or consumed but cannot be transferred across periods.
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Proposition

6.2.1
There exists δ such that, for all δ ∈ [δ, 1), the strategy profile (W , wL, f, τ ) of
figure 6.2.2 is a subgame-perfect equilibrium of the repeated game in which the
constrained efficient allocation (C in figure 6.2.1) is obtained in every period.

Proof Given c = 0, the most profitable deviation by the government is to the optimal
tax rate of γ /R, for a payoff gain of

(
R
(

1− γ

R

)
+ 2γ

)
−
(
R

(
1− R − 1

R

)
+ 2

√
γ (R − 1)

)
≡ � > 0.

We then need only note that the strategy presented in figure 6.2.2 is an equilibrium if

(1− δ)� ≤ δ(v̄1 − v1),

where v1 is the government’s minmax payoffs. This inequality holds for suffi-
ciently large δ.

■

The tax policy of the government described by the automaton of figure 6.2.2 is
sometimes called a sustainable plan (Chari and Kehoe, 1990). We have presented the
simplest possible economic environment consistent with time consistency being an
issue. Similar issues arise in more complicated economic environments, where agents
(both private and the government) may have contracting opportunities, investment
decisions may have intertemporal consequences, and markets may be incomplete. In
such settings, the model will not be a repeated game. However, the model typically
shares some critical features with the example here: The government is a large long-
lived player, whereas the private agents are small and anonymous. The literature on
sustainable plans exploits the strategic similarity between such economic models and
repeated games.10

6.3 Risk Sharing

We now examine consumption dynamics in a simplification of a model introduced
by Kocherlakota (1996) (and discussed by Ljungqvist and Sargent, 2004, chapters
19–20).11

10. For example, Chari and Kehoe (1993a,b) examine the question of why governments repay their
debts and why governments are able to issue debt in the first place, given the risk that they will
not repay. Domestic debt can be effectively repudiated by inflation or taxation, but there is seem-
ingly no obstacle to an outright repudiation of foreign debt. Why is debt repaid? The common
explanation is that its repudiation would preclude access to future borrowing. Although intuitive,
a number of subtleties arise in making this explanation precise. Chari and Kehoe (1993b) show
that a government can commit to issuing and repaying debt, on the strength of default triggering
a reversion to a balanced budget continuation equilibrium, only if the government cannot enforce
contracts in which it lends to its citizens. Such contracts can be enforced in Chari and Kehoe
(1993a), and hence simple trigger strategies will not sustain equilibria with government debt.
More complicated strategies do allow equilibria with debt. These include a case in which multiple
balanced budget equilibria can be used to sustain equilibria with debt in finite horizon games.

11. Thomas and Worrall (1988) and Ligon, Thomas, and Worrall (2002) present related models.
Koeppl (2003) qualifies Kocherlakota’s (1996) analysis, see note 14 on page 219.



6.3 ■ Risk Sharing 209

Interest in consumption dynamics stems from the following stylized facts: Con-
ditional on the level of aggregate consumption, individual consumption is positively
correlated with current and lagged values of individual income. People consume more
when they earn more, and people consume more when they have earned more in
the past.

At first glance, nothing could seem more natural—the rich consume more than the
poor. On closer inspection, however, the observation is more challenging. The pattern
observed in the data is not simply that the rich consume more than the poor but that
the consumption levels of the poor and rich alike are sensitive to their current and past
income levels (controlling for a variety of factors, such as aggregate consumption, so
that we are not simply making the observation that everyone consumes more when
more is available). If a risk-averse agent’s income varies, there are gains to be had
from smoothing the resulting consumption stream by insuring against the income
fluctuations. Why aren’t consumption fluctuations perfectly insured?

One common answer, to which we return in chapter 11, is based on the adverse
selection that arises naturally in games of imperfect monitoring. It can be difficult to
insure an agent against income shocks if only that agent observes the shocks. Here, we
examine an alternative possibility based on moral hazard constraints that arise even in
the presence of perfectly monitored shocks to income.

We work with a model in which agents are subject to perfectly observed income
shocks. In the absence of any impediments to contracting on these shocks, the agents
should enter into insurance contracts with one another, with each agent i making trans-
fers to others when i’s income is relatively high and receiving transfers when i’s income
is relatively low. In the simple examples we consider here, featuring no fluctuations
in aggregate income, each agent’s equilibrium consumption would be constant across
states (though perhaps with some agents consuming more than others). We refer to this
as a full insurance allocation. The conventional wisdom is that consumption fluctuates
more than is warranted under a full insurance allocation.

This excess consumption sensitivity must represent some difficulties in condi-
tioning consumption on income. We focus here on one such difficulty, an inability
to write contracts committing to future payments. In particular, in each period, and
after observing the current state, each agent is free to abandon the current insurance
contract.12 As a result, any dependence of current behavior on current income must
satisfy incentive constraints. The dynamics of consumption and income arise out of
this restriction.

6.3.1 The Economy

The stage game features two consumers, 1 and 2. There is a single consumption good.
A random draw first determines the players’ endowments of the consumption good to

12. Ljungqvist and Sargent (2004, chapter 19) examine a variation on this model in which one side
of the insurance contract can be bound to the contract, whereas the other is free to abandon the
contract at any time. Such a case would arise if an insurance company can commit to insurance
policies with its customers, who can terminate their policies at will. We follow Kocherlakota
(1996), Ljungqvist and Sargent (2004, chapter 20), and Thomas and Worrall (1988) in
examining a model in which either party to an insurance contract has the ability to abandon the
contract at will.
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be either e(1) ≡ (ȳ,y) or e(2) ≡ (y, ȳ), with player 1’s endowment listed first in each
case and with ȳ = 1− y ∈ (1/2, 1). Player i thus fares relatively well in state i. Each
state is equally likely.

After observing the endowment e(i), players 1 and 2 simultaneously transfer
nonnegative quantities of the consumption good to one another and then consume the
resulting net quantities c1(i) and c2(i), evaluated according to the utility function u(·).
The function u is strictly increasing and strictly concave, so that players are risk averse.

This stage game obviously has a unique Nash equilibrium outcome in which no
transfers are made. Because the consumers are risk averse, this outcome is inefficient.

Suppose now that the consumers are infinitely lived, playing the game in each
period t = 0, 1, . . . The endowment draws are independent across periods, with the
two endowments equally likely in each period. We thus again have a repeated game
with random states (remarks 5.5.1 and 5.7.1). Players discount at the common rate δ.

An ex ante period t history is a sequence identifying the endowment and the trans-
fers in each previous period. However, smaller transfers pose less stringent incentive
constraints than do larger ones, and hence we need never consider cases in which
the agents make simultaneous transfers, replacing them with an equivalent outcome in
which one agent makes the net transfer and the other agent makes none. We accordingly
take an ex ante period t history to be a sequence ((e0, c0

1, c
0
2), . . . , (e

t−1, ct−1
1 , ct−1

2 ))

identifying the endowment and the consumption levels of the two agents in each pre-
vious period. An ex post period t history is the combination of an ex ante history and
a selection of the period t state. We let ˜H t denote the set of period t ex post histories,
with typical element h̃t . Let ˜H denote the set of ex post histories.

A pure strategy for player i is a function σi : ˜H → [0, 1], identifying the amount
player i transfers after each ex post history (i.e., after each ex ante history and realized
endowment). Transfers must satisfy the feasibility requirement of not exceeding the
agent’s endowment, that is, σi(ht , e) ≤ yi where yi is i’s endowment in e. When
convenient, we describe strategy profiles in terms of the consumption levels rather than
transfers that are associated with a history. We consider pure-strategy subgame-perfect
equilibria of the repeated game.

6.3.2 Full Insurance Allocations

The consumers in this economy can increase their payoffs by insuring each other
against the endowment risk. An ex post history is a consistent history under a strategy
profile σ if, given the implied endowment history, in each period the transfers in the
history are those specified by σ .

Definition

6.3.1
A strategy profile σ features full insurance if there is a quantity c such that
after every consistent ex post history under σ , player 1 consumes c and 2 con-
sumes 1− c.

As the name suggests, player 1’s (and hence player 2’s) consumption does not vary
across histories in a full insurance outcome. Note that under this outcome, we have
full intertemporal consumption smoothing as well as full insurance with respect to
the uncertain realization of endowments. Risk-averse players strictly prefer smooth
consumption profiles over time as well as states. We refer to the resulting payoffs as
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Figure 6.3.1 The set F∗ of feasible, strictly individually rational
payoffs consists of those payoff pairs (weakly) below the frontier
connecting (u(y), u(ȳ)) and (u(ȳ), u(y)), and giving each player a
payoff in excess of v.

full insurance payoffs. There are many full insurance profiles that differ in how they
distribute payoffs across the two agents.

When can full insurance strategy profiles be subgame-perfect equilibria? As usual,
we start by examining the punishments that can be used to construct an equilibrium.
The minmax payoff for each agent i is given by

v = 1
2u(ȳ)+ 1

2u(y).

The players have identical minmax payoffs, and hence no subscript is required. Each
player i can ensure at least this payoff simply by never making any transfers to player j .
Figure 6.3.1 illustrates the set F ∗ of feasible, strictly individually rational payoffs for
this game.Any of the payoff profiles along the frontier ofF ∗ is a potential full insurance
payoff, characterized by different allocations of the surplus between the two players.

The unique Nash equilibrium of the stage game features no transfers, and hence
strategies that never make transfers are a subgame-perfect equilibrium of the repeated
game. Because this equilibrium produces the minmax payoffs, it is the most severe
punishment that can be imposed. We refer to this as the autarkic equilibrium.

Now fix a full insurance strategy profile and let (c1, c2) be the corresponding
consumption of agents 1 and 2 after any (and every) history. Let the strategy profile
specify play of the autarkic equilibrium after any nonequilibrium history. For this
strategy profile to be a subgame-perfect equilibrium, it must satisfy the incentive
constraints given by

u(c1) ≥ (1− δ)u(ȳ)+ δv
and u(c2) ≥ (1− δ)u(ȳ)+ δv.

These ensure that deviating from the equilibrium to keep the entire relatively high
endowment ȳ, when faced with the opportunity to do so, does not dominate the
equilibrium payoff for either player. These constraints are most easily satisfied
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(i.e., are satisfied for the largest set of discount factors, if any) when c1 = c2 = 1/2.
Hence, there exists at least one full-insurance equilibrium as long as

1− δ
δ
≤ u

( 1
2

)− v
u(ȳ)− u( 1

2

) .
Let δ∗ denote the value of the discount factor that solves this relationship with equality,
and hence the minimum discount factor for supporting a full insurance equilibrium.

When δ = δ∗, this equal-payoff equilibrium is the only full insurance equilibrium
outcome. Full insurance outcomes with asymmetric payoffs create stronger incentives
for deviation on the part of the player receiving the relatively small payoff and hence
require larger discount factors. The set of full insurance outcomes expands as the dis-
count factor increases above δ∗, encompassing in the limit as δ→ 1 any full insurance
payoff that gives each player a payoff strictly larger than v.

6.3.3 Partial Insurance

Suppose that δ falls short of δ∗, so that full insurance is impossible. If δ is not too
small, we can nonetheless support equilibrium outcomes that do not simply repeat
the stage-game Nash equilibrium in each period. To show this, we consider a class of
equilibria with stationary outcomes in which the agents consume (ȳ − ε,y + ε) after
any ex post history ending in endowment e(1) and (y + ε, ȳ − ε) in endowment e(2).
Hence, the high-income player transfers ε of his endowment to the other player. In the
full insurance equilibrium ε = ȳ − 1

2 = 1
2 − y ≡ ε∗.

The incentive constraint for the high-endowment agent to find this transfer
optimal is

(1− δ)u(ȳ)+ δv ≤ (1− δ)u(ȳ − ε)+ δ 1

2
[u(ȳ − ε)+ u(y + ε)], (6.3.1)

or
1− δ
δ
≤

1
2 [u(ȳ − ε)+ u(y + ε)] − v

u(ȳ)− u(ȳ − ε) .

Now consider the derivative of the right side of this expression in ε, evaluated at
ε = ε∗. The derivative has the same sign as

−(u( 1
2

)− v)u′( 1
2

)
< 0.

Hence, reducing ε below ε∗ increases the upper bound on (1− δ)/δ for satisfying
the incentive constraint, thereby decreasing the bound on values of δ for which the
incentive constraint can be satisfied. This implies that there are values of the discount
factor that will not support full insurance but will support stationary-outcome equilibria
featuring partial insurance.

For a fixed value of δ < δ∗, with δ sufficiently large, there is a largest value of ε
for which the incentive constraint given by (6.3.1) holds with equality. This value of ε
describes the efficient, (ex ante) strongly symmetric, stationary-outcome equilibrium
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given δ, in which consumption is (ȳ − ε,y + ε) in endowment 1 and (y + ε, ȳ − ε)
in endowment 2. It will be helpful to refer to this largest value of ε as ε̂ and to refer to
the associated equilibrium as σ̂ .

There is a collection of additional stationary-outcome equilibria in which the
high-endowment agent makes transfer ε to the low-endowment agent for any ε ∈
[0, ε̂). These equilibria give symmetric payoffs that are strictly dominated by the
payoffs produced by σ̂ . There also exist equilibria with stationary outcomes that give
asymmetric payoffs, with agent i making a transfer εi to agent j whenever i has a high
endowment, and with ε1 �= ε2.

6.3.4 Consumption Dynamics

We continue to suppose that δ < δ∗, so that players are too impatient to support a full
insurance outcome, but that the discount factor nonetheless allows them to support a
nontrivial subgame-perfect equilibrium. The equilibrium σ̂ is the efficient stationary-
outcome, strongly symmetric equilibrium. We now characterize the frontier of efficient
equilibria.

Consider an ex ante history that induces equilibrium consumption profiles c(1)
and c(2) and equilibrium continuation payoff profiles γ (1) and γ (2) in states 1 and 2.
Then these profiles satisfy

(1− δ)u(c1(1))+ δγ1(1) ≥ (1− δ)u(ȳ)+ δv, (6.3.2)

(1− δ)u(c1(2))+ δγ1(2) ≥ (1− δ)u(y)+ δv, (6.3.3)

(1− δ)u(1− c1(2))+ δγ2(2) ≥ (1− δ)u(ȳ)+ δv, (6.3.4)

and

(1− δ)u(1− c1(1))+ δγ2(1) ≥ (1− δ)u(y)+ δv. (6.3.5)

These incentive constraints require that each agent in each endowment prefer the equi-
librium payoff to the punishment of entering the autarkic equilibrium. As is typically
the case with problems of this type, we expect only two of these constraints to bind,
namely, those indicating that the high-income agent be willing to make an appropriate
transfer to the low-income agent.

Fix a pure strategy profile σ . For each endowment history et ≡ (e0, e1, . . . , et ),
only one period t ex post history is consistent under σ . Accordingly, we can write σ [et ]
for the period t transfers after the ex post history consistent under σ with endowment
history et . This allows us to construct a useful tool for examining equilibria. Consider
two pure strategy profiles σ and σ̌ . We recursively construct a strategy profile σ̄
as follows. To begin, let σ̄ (e0) = 1

2σ(e
0)+ 1

2 σ̌ (e
0). Then fix an ex post history h̄t

and let et be the sequence of endowments realized under this history. For each of σ
and σ̌ , there is a unique consistent ex post history associated with et , denoted by ht

and ȟt . If h̄t is a consistent history under σ̄ , then let σ̄ (h̄t ) = 1
2σ(h

t )+ 1
2 σ̌ (ȟ

t ), i.e.,
σ̄ [et ] = 1

2σ [et ] + 1
2 σ̌ [et ] for all et . Otherwise, the autarkic equilibrium actions are

played. We refer to σ̄ as the average of σ and σ̌ .
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Lemma

6.3.1
If σ and σ̌ are equilibrium strategy profiles, then so is their average, σ̄ . Moreover,
Ui(σ̄ ) ≥ (Ui(σ )+ Ui(σ̌ ))/2 for i = 1, 2.

Proof The average σ̄ specifies the stage-game equilibrium at any history that is not
consistent under σ̄ , so we need only consider histories consistent under σ̄ . We
know that σ and σ̌ satisfy (6.3.2)–(6.3.5) for every consistent history and must
show that σ̄ does so. Notice that the right side of each constraint is independent
of the strategy profile, and therefore we need show only that σ̄ gives a left side of
each constraint at least as large as the average of the values obtained from σ and σ̌ .

The critical observation is that for any endowment history, the period t con-
sumption profile under σ̄ is the average of the corresponding consumption profiles
under σ and σ̌ , and so

ui(σ̄ [et ]) ≥ ui(σ [et ])+ ui(σ̌ [et ])
2

.

Because this observation holds for all endowment histories, and i’s expected
payoff from a profile σ is

Ui(σ ) = (1− δ)
∞∑
t=0

δtE[ui(σ [et ])],

where the expectation is taken over endowment histories, we then have

Ui(σ̄ ) ≥ Ui(σ )+ Ui(σ̌ )
2

.

Moreover, similar inequalities hold conditional on any endowment history, and
so if σ and σ̌ satisfy (6.3.2)–(6.3.5), so does σ̄ .

■

This result allows us to identify one point on the efficient frontier. The stationarity
and strong symmetry constraints that we imposed when constructing the equilibrium
profile σ̂ are not binding:

Lemma

6.3.2
The efficient, strongly symmetric, stationary-outcome equilibrium strategy profile
σ̂ is the strongly efficient, symmetric-payoff equilibrium.

Proof Suppose that σ ′ is an equilibrium strategy profile with symmetric payoffs that
strictly dominate those of σ̂ . Let σ ′′ be the strategy profile obtained from σ ′ that
reverses the roles of players 1 and 2. Then, σ ′′ also has symmetric payoffs that
strictly dominate those of σ̂ . Lemma 6.3.1 then implies that σ̄ , the average of σ ′
and σ ′′, is a strongly symmetric strategy profile, whose payoffs strictly dominate
those of σ̂ .

We now construct a stationary-outcome strongly symmetric equilibrium, with
payoffs at least as high as σ̄ , by replacing any low-payoff continuation with the
highest payoff continuation. Because ci(s) is then the same after each ex ante
history, the profile σ̄ is a stationary-outcome, strongly symmetric equilibrium
with payoffs higher than those of σ̂ , a contradiction.

■
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We now characterize efficient equilibria as solutions to a maximization problem.
Recall that E p is the set of pure-strategy subgame-perfect equilibrium payoffs. The task
is to choose current consumption levels c1(1) and c1(2), giving agent 1’s consumption
in states 1 and 2, and continuation payoffs γ (1) and γ (2) in states 1 and 2, to maximize

1
2 {(1− δ)[u(c1(1))+ u(c1(2))] + δ[γ1(1)+ γ1(2)]}

subject to (6.3.2)–(6.3.5),

1
2 ((1− δ)[u(1− c1(1))+ u(1− c1(2))] + δ[γ2(1)+ γ2(2)]) ≥ v2

and
γ (1), γ (2) ∈ E p.

We describe this constrained optimization problem as max1. The problem max1 max-
imizes player 1’s payoff given a fixed payoff for player 2 over the current consumption
plan, identified by c1(1) and c1(2), and the continuation payoffs γ (1) and γ (2). Each
of the latter is a subgame-perfect equilibrium payoff profile, as ensured by the final
constraint. The first displayed constraint ensures that player 2’s target utility is realized.

Lemma

6.3.3
Fix v2 and suppose that problem max1 has a solution in which (6.3.2)–(6.3.5) do
not bind. Then

c1(1) = c1(2)

and γ2(1) = γ2(2) = v2.

This in turn implies that there exists an equilibrium featuring c1(1) = c1(2) after
every history, and hence full insurance.

Proof Suppose that we have a solution to the optimization problem max1 in which
none of the incentive constraints bind. Then c1(1) = c1(2), that is, consumption
does not vary with the endowment. (Suppose this were not the case, so that
c1(1) > c1(2). Then the current consumption levels can be replaced by a smaller
value of c1(1) and larger c1(2) while preserving their expected value and the
incentive constraints. But given the concavity of the utility function, this increases
both players’ utilities, ensuring that the candidate solution was not optimal.)

Next, suppose that γ2(1) �= γ2(2), so that continuation utilities vary with the
state. Then states 1 and 2 must be followed by different continuation equilibria. The
average of these equilibria is an equilibrium with higher average utility (lemma
6.3.1) and hence yields a contradiction.

Finally, suppose that γ2(1) = γ2(2) �= v2. Then the equilibrium features a con-
sumption allocation for player 2 that is not constant over equilibrium histories,
and the current expected utility v2 is a convex combination of the consump-
tion levels attached to these histories. Let c∗2 solve u(c2) = (1− δ)u(1− c1)

+ δγ2, where c1 is 1’s state-independent consumption and γ2 is 2’s state-
independent continuation. Denote by σ ∗ the strategy profile that gives player 2
consumption c∗2 in the current period and after every consistent history and oth-
erwise prescribes the stage-game Nash equilibrium. By construction, (6.3.4) and
(6.3.5) are satisfied, with γ ∗2 = u(c2). Because the utility function is concave,
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player 1’s payoff in this newly constructed strategy profile is larger than in the
equilibrium under consideration, and so (6.3.2) and (6.3.3) are satisfied, with
γ ∗1 = u(1− c∗2). Finally, because (6.3.2)–(6.3.5) are simply the enforceability
constraints for this game, we have just shown that {(v,v), (u(1− c∗2), u(c∗2))} is
self-generating, and so (u(1− c∗2), u(c∗2)) ∈ E p (recall remark 5.7.1). We thus
have an equilibrium that offers player 1 a higher payoff, a contradiction.

Hence, the solution to max1 has state-independent consumption, c1 for
player 1, and state-independent continuations for player 2, γ2 = v2 (so that
u(1− c1) = v2). Hence, as before, the set of payoffs {(v,v), (u(c1), u(1− c1))}
is self-generating, and so (u(c1), u(1− c1)) ∈ E p. The profile yielding payoffs
(u(c1), u(1− c1)) is clearly a full insurance equilibrium.

■

The conclusion is that in any efficient equilibrium σ , if the incentive constraints do
not bind at some ex ante consistent history under σ , then the continuation equilibrium
is a full insurance equilibrium. Because this requires full insurance to be consistent
with equilibrium, for the discount factors δ < δ∗, after every consistent history at least
one incentive constraint must bind.

Now let us examine the subgame-perfect equilibrium that maximizes player 1’s
payoff. A first observation is immediate.

Lemma

6.3.4
Let σ ∗ be a subgame-perfect equilibrium. Then player 1 receives at least as
high a payoff from an equilibrium that specifies consumption (ȳ,y) after any
ex post history in which only state 1 has been realized, and otherwise specifies
equilibrium σ ∗.

As a result, the equilibrium maximizing player 1’s payoff must feature nonstationary
outcomes, and must begin with (ȳ,y) after any ex post history which only state 1 has
been realized.

Proof We first note that consumption bundle (ȳ,y) is incentive compatible in state 1,
because no transfers are made. As a result, the prescription of playing (ȳ,y)
after any ex post history in which only state 1 has been realized, and otherwise
playing equilibrium σ ∗, is itself a subgame-perfect equilibrium. Because there
is no subgame-perfect equilibrium in which player 1 earns u(ȳ), the constructed
equilibrium must give at least as high a payoff as σ ∗, for any equilibrium σ ∗, and
must give a strictly higher payoff if σ ∗ does not itself prescribe (ȳ,y) after any
ex post history in which only state 1 has been realized.

■

The task of maximizing player 1’s payoff now becomes one of finding that equi-
librium that maximizes player 1’s payoff, conditional on endowment 2 having been
drawn in the first period.

Lemma

6.3.5
The equilibrium maximizing player 1’s payoff, conditional on state 2 having been
drawn in the first period, is the efficient symmetric-payoff stationary-outcome
equilibrium σ̂ .

This result gives us a complete characterization of the equilibrium maximizing
player 1’s (and, reversing the roles, player 2’s) equilibrium payoff. Consumption is
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given by (ȳ,y) as long as state 1 is realized, with the first draw of state 2 switching
play to the efficient, symmetric-payoff stationary-outcome equilibrium.

Proof We begin by noting that the payoffs provided by equilibrium σ̂ are the equally
weighted convex combination of two continuation payoffs, one following the draw
of state 1 and one following the draw of state 2. In the first of these continuation
equilibria, the incentive constraint for player 1 binds,

(1− δ)u(c1(1))+ δγ1(1) = (1− δ)u(ȳ)+ δv,
whereas in the second the incentive constraint for player 2 binds,

(1− δ)u(1− c1(2))+ δγ2(2) = (1− δ)u(ȳ)+ δv.
Refer to these continuation payoffs as U(σ̂ | e(1)) and U(σ̂ | e(2)), respectively,
where player i draws the relatively high share of the endowment in endowment
e(i). Figure 6.3.2 illustrates the payoffs U(σ̂ | e(1)) and U(σ̂ | e(2)). These con-
straints ensure that in each case, the player drawing the high endowment earns an
expected payoff of (1− δ)u(ȳ)+ δv ≡ v̄. Notice also that

(1− δ)u(ȳ)+ δv = v̄ > u
( 1

2

)
,

because otherwise the sufficient conditions hold for a full-insurance equilibrium
in which consumption is (1/2, 1/2) after every history, contrary to our hypothesis.

Now consider the equilibrium that maximizes player 1’s payoff, conditional
on state 2. Because we are maximizing player 1’s payoff, the incentive constraint
for player 2 to make a transfer to player 1 in state 2 must bind. Player 2 must
then earn a continuation payoff of (1− δ)u(ȳ)+ δv. One equilibrium delivering
such a payoff to player 2 is σ̂ . Is there another equilibrium that respects player
2’s incentive constraint and provides player 1 a higher payoff than that which he
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Figure 6.3.2 Representation of efficient, symmetric-payoff
equilibrium payoff U(σ̂ ) as the equally likely combination of
U(σ̂ | e(1)) and U(σ̂ | e(2)). The utility v̄ equals (1− δ)u(ȳ)+ δv.
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earns under σ̂? If so, then we would have an equilibrium that weakly dominates
σ̂ , conditional on drawing state 2. Reversing the roles of the players, we could
also construct an equilibrium weakly dominating σ̂ , conditional on endowment
1 having been drawn. Combining these two, we would find a symmetric-payoff
equilibrium strictly dominating σ̂ , yielding a contradiction.

■

We have thus constructed the equilibrium that maximizes player 1’s payoff and
can do similarly for player 2, as a convex combination of an initial segment, in which
a consumption binge is supported by fortunate endowment draws, followed by con-
tinuation paths of the efficient symmetric-payoff equilibrium. Let σ 1 and σ 2 denote
these equilibria. Figure 6.3.3 illustrates. Because

U(σ 1) = 1
2U(σ̂ | e(2))+ 1

2 ((1− δ)(u(ȳ), u(y))+ δU(σ 1)),

the payoff vector U(σ 1) is a convex combination of U(σ̂ | e(2)) and (u(ȳ), u(y)).
Moreover, player 2 earns a payoff of v. This follows from the observation that 2 earns
u(y) after any initial history featuring only state 1, and on the first draw of state 2 earns
a continuation payoff equivalent to receiving u(ȳ) in the current period andv thereafter.
Hence, 2’s payoff equals that of receiving ȳ whenever endowment 2 is drawn and y
when endowment 1 is drawn, which is v. Similarly, player 1 earns v in equilibrium σ 2.

This argument can be extended to show that every payoff profile on the efficient
frontier consists of an initial segment in which the player drawing the high-income
endowment does relatively well, with the first switch to the other endowment prompting
a switch to σ̂ , with a continuation payoff of either U(σ̂ | e(1)) or U(σ̂ | e(2)), as
appropriate. The most extreme version of this initial segment allows the high-income
player i to consume his entire endowment (generating equilibrium σ i), and the least
extreme simply begins with the play of σ̂ . By varying the transfer made from the
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Figure 6.3.3 Illustration of how equilibria σ 1 and σ 2, maximizing
player 1’s and player 2’s payoffs, respectively, are constructed as
convex combinations of (u(ȳ), u(y)) and U(σ̂ | e(2)) in the case
of σ 1 and of (u(y), u(ȳ)) and U(σ̂ | e(1)) in the case of σ 2.
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high-income to the low-income player in this initial segment, we can generate the
intervening frontier.

To see how the argument works, consider a payoff profile on the efficient frontier in
which player 2 earns a payoff v2 larger thanv but smaller thanU2(σ̂ ). One equilibrium
producing a payoff of v2 for player 2 calls for continuation equilibrium σ̂ with value
U(σ̂ | e(2)) on the first draw of state 2, with any history in which only state 1 has been
drawn prompting a transfer of ε from player 1 to player 2, where ε is calculated so as to
give player 2 an expected payoff of v2.13 Call this equilibrium profile σ ′. Now let σ ′′ be
an equilibrium that maximizes player 1’s payoff, subject to player 2 receiving at least v2.
We argue thatU1(σ

′′) = U1(σ
′). Suppose instead thatU1(σ

′′) > U1(σ
′). Then equilib-

rium σ ′′ must yield a higher expected continuation payoff for player 1 from histories in
which only state 1 has been realized (because σ ′ has the largest payoff for player 1 after
state 2 is first realized), and hence a lower payoff for player 2. To preserve player 2’s
expected payoff of v2, there must then be some consistent history under σ ′′ in which
state 2 has been drawn and in which player 2 receives a higher payoff (and hence player 1
a lower payoff) than under σ̂ . This, however, is a contradiction, as the continuation
payoff that σ ′′ prescribes after the history in question can be replaced by σ̂ and payoff
U(σ̂ | e(2)) without disrupting incentives, thereby increasing both players’ payoffs.

This model captures part of the stylized consumption behavior of interest, namely,
that current consumption fluctuates in current income more than would be the case if
risk could be shared efficiently. However, beyond a potential initial segment preceding
the first change of state, it fails to capture a link between past income and current
consumption.

The stationarity typified by σ̂ and built into every efficient strategy profile after
some initial segment is not completely intuitive. Because the discount factor falls
below δ∗, complete risk sharing within a period is impossible. However, players face
the same expected continuation payoffs at the end of every period. Why not share
some of the risk over time by eliciting a somewhat larger transfer from the high-
income agent in return for a somewhat lower continuation value? One would expect
such a trade-off to appear as a natural feature of the first-order conditions used to solve
the maximization problem characterizing the efficient solution. The difficulty is that
the frontier of efficient payoffs is not differentiable at the point U(σ̂ ).14 The failure of
differentiability suffices to ensure that in no direction is there such a favorable trade-off
between current and future risk.

6.3.5 Intertemporal Consumption Sensitivity

A richer model (in particular, more possible states) allows links between past income
and current consumption to appear. We present an example with three states. We leave
many of the details to Ljungqvist and Sargent (2004, chapter 20), who provide an

13. Such an ε exists, because setting ε = 0 produces expected payoff v for player 2, whereas ε = ε̂
produces U2(σ̂ ). Notice also that the transfer of ε is incentive compatible for player 1, with
deviations punished by reversion to autarky, because the transfer of ε̂ is incentive compatible in
equilibrium σ̂ .

14. The nondifferentiability of the frontier of repeated-game payoffs is demonstrated in Ljungqvist
and Sargent (2004, section 20.8.2).
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Figure 6.3.4 The payoff profiles for our three-state example and the
first equilibrium we construct.

analysis of the general case of finitely many states, finding properties analogous to
those of our three-state example.

The three equally likely endowments are e(1), e(m), and e(2), with, as before,
e(1) = (ȳ,y), e(2) ≡ (y, ȳ), where ȳ ∈ (1/2, 1] and y = 1− ȳ. The new endow-
ment e(m) splits the endowment evenly, e(m) = (1/2, 1/2). Hence, we again have a
symmetric model in which player i receives a relatively large endowment in state i.
Figure 6.3.4 illustrates these endowments.

The most severe punishment available is again an autarkic equilibrium in which
no transfers are made, giving each player their minmax value of

v = 1
3

(
u(ȳ)+ u( 1

2

)+ u(y)).
Incentive constraints are given by the fact that, in state i, player i must receive a
payoff at least v̄ = (1− δ)u(ȳ)+ δv. In state m, each player must receive at least
(1− δ)u( 1

2

)+ δv.
The symmetric-payoff full insurance outcome is straightforward. In state m, no

transfers are made (and hence incentive constraints are automatically satisfied). In
state i, the high-income player i transfers ε∗ = ȳ − 1

2 to the low-income player. Hence,
consumption after every ex post history is (1/2, 1/2). As in the two-state case, if there
is any full insurance equilibrium outcome, then the symmetric-payoff full insurance
outcome is an equilibrium outcome. If the discount factor is sufficiently large, then
there also exist other full insurance equilibrium outcomes in which the surplus is split
asymmetrically between the two players.

We now suppose the discount factor is sufficiently large that there exist subgame-
perfect equilibria that do not simply repeat the autarkic equilibrium but not so large
that there are full insurance equilibrium outcomes. Hence, it must be the case that
v̄ ≡ (1− δ)u(ȳ)+ δv > u

( 1
2

)
.



6.3 ■ Risk Sharing 221

We examine the efficient, symmetric-payoff equilibrium for this case. We can
construct a likely candidate for such an equilibrium by choosing ε to satisfy

(1− δ)u(ȳ − ε)+ δ 1
3

(
u(ȳ − ε)+ u( 1

2

)+ u(y + ε)) = v̄.
Given our presumption that the discount factor is large enough to support more than
the autarky equilibrium but too small to support full insurance, this equation is solved
by some ε ∈ (0, ε∗). This equilibrium leaves consumption untouched in statem, while
treating states 1 and 2 just as in the two-state case of the previous subsection. We refer
to this as equilibrium σ . Figure 6.3.4 illustrates.

This equilibrium provides some insurance, but we can provide more. Notice first
that in state m, there is slack in the incentive constraint of each agent, given by

(1− δ)u( 1
2

)+ δU(σ) ≥ (1− δ)u( 1
2

)+ δv.
Now choose some small ζ and let consumption in state m be given by

( 1
2 + ζ, 1

2 − ζ
)

with probability 1/2 (conditional on state m occurring), and by
( 1

2 − ζ, 1
2 + ζ

)
with

the complementary probability. The slack in the incentive constraints ensures that this
is feasible. The derivative of an agent’s utility, as ζ increases and evaluated at ζ = 0,
is signed by u′

( 1
2

)− u′( 1
2

) = 0. Hence, increasing ζ above 0 has only a second-order
effect (a decrease) in expected payoffs.

Let us now separate ex ante histories into two categories, category 1 and category 2.
A history is in category i if agent i is the most recent one to have drawn a high
endowment. Hence, if the last state other thanmwas state 1, then we have a category 1
history. Now fix ζ > 0, and let the prescription for any ex post history in which the
agents find themselves in state m prescribe consumption

( 1
2 + ζ, 1

2 − ζ
)

if this is a
category 1 history and consumption

( 1
2 − ζ, 1

2 + ζ
)

if this is a category 2 history. In
essence, we are using consumption in state m to reward the last agent who has had a
large endowment and transferred part of it to the other agent.

This modification of profile σ has two effects. We are introducing risk in state m
but with a second-order effect on total expected payoffs. However, because we now
allocate state m consumption as a function of histories, rather than randomly, this
adjustment gives a first-order increase in the expected continuation payoff to agent i
after a history of category i. This relaxes the incentive constraints facing agents in
states 1 and 2. We can thus couple the increase in ζ with an increase in ε, where
the latter is calculated to preserve equality in the incentive constraints in states 1
and 2, thereby allowing more insurance in states 1 and 2. The increased volatility
of consumption in state m thus buys reduced volatility in states 1 and 2, allowing a
first-order gain on the latter at a second-order cost on the former.

Figure 6.3.5 illustrates the resulting consumption pattern. The remaining task is
to calculate optimal values of ζ and ε. For any value of ζ , we choose ε(ζ ) to preserve
equality in the incentive constraints in states 1 and 2. The principle here is that insurance
is always valuable in states 1 and 2, where income fluctuations are relatively large,
and hence we should insure up to the limits imposed by incentive constraints in those
states.

As ζ increases from 0, this adjustment increases expected payoffs. We can continue
increasing ζ , and hence the equilibrium payoffs, until one of two events occurs. First,
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Figure 6.3.5 Payoff profiles for the efficient, symmetric equilibrium.
Consumption bundle c(mi) follows a history in which state m has
been drawn, and the last state other than m to be drawn was state i.

the statem incentive constraints may bind. At this point, we have reached the limits of
our ability to insure across states m and states 1 and 2, and the optimal value of ζ is
that which causes the statem incentive constraints to hold with equality. This gives the
consumption pattern illustrated in figure 6.3.5, with four distinct consumption profiles.
Second, it may be that the cost of the increased consumption risk in statem overwhelms
the gains from increased insurance in states 1 and 2. This will certainly be the case if
ζ becomes so large that

ȳ − ε(ζ ) = 1
2 + ζ and y + ε(ζ ) = 1

2 − ζ.
In this last case, the optimal value of ζ is that which satisfies these two equalities. We
now have a consumption pattern in which volatility in state m consumption matches
that of states 1 and 2, and hence there are no further opportunities to smooth risk across
states. Then, c(1) = c(m1) and c(2) = c(m2), and only two consumption bundles arise
in equilibrium.

Together, these two possibilities fix the value of ζ that gives the efficient
symmetric-payoff equilibrium. Notice, however, that this symmetric-payoff equilib-
rium does not feature stationary outcomes (nor is it strongly symmetric). Current
consumption depends on whether the history is in category 1 or category 2, in addition
to the realization of the current state. Intuitively, we are now spreading risk across
time as well as states within a period, exchanging a relatively large transfer from a
high-endowment agent for a relatively lucrative continuation payoff. In terms of con-
sumption dynamics, agents with high endowments in their history are now more likely
to have high current consumption.
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7 The Basic Structure of Repeated
Games with Imperfect
Public Monitoring

The first part of the book has focused on games with perfect monitoring. In these
games, deviations from the equilibrium path of play can be detected and punished.
As we saw, it is then relatively straightforward to provide incentive for players to not
myopically optimize (play stage-game best replies).

In this chapter, we begin our study of games with imperfect monitoring: games in
which players have only noisy information about past play. The link between current
actions and future play is now indirect, and in general, deviations cannot be unambigu-
ously detected. However, equilibrium play will affect the distribution of the signals,
allowing intertemporal incentives to be created by attaching “punishments” to signals
that are especially likely to arise in the event of a deviation. This in turn will allow us
to again support behavior in which players do not myopically optimize. Because the
direct link between deviations and signals is broken, these punishments may sometimes
occur on the equilibrium path. The equilibria we construct will thus involve strategies
that are similar in spirit to those we have examined in perfect monitoring games, but
significantly different in some of their details and implications.

Throughout this second part, we maintain the important assumption that any sig-
nals of past play, however imprecise and noisy, are invariably observed by all players.
This is often stressed by using the phrase imperfect public monitoring to refer to such
games. These commonly observed signals allow players to coordinate their actions in a
way that is not possible if the signals observed by some players are not observed by oth-
ers. The latter case, referred to as one of private monitoring, is deferred until chapter 12.

7.1 The Canonical Repeated Game

7.1.1 The Stage Game

The specification of the stage game follows closely that of perfect monitoring games,
allowing for the presence of short-lived players (section 2.7). Players 1, . . . , n are
long-lived and players n+ 1, . . . , N are short-lived, with player i having a set of
pure actions Ai . We explicitly allow n = N , so that there may be no short-lived
players. As for perfect monitoring games, we assume each Ai is a compact sub-
set of the Euclidean space Rk for some k. Players choose actions simultaneously.
The correspondence mapping any mixed-action profile for the long-lived players to
the corresponding set of static Nash equilibria for the short-lived players is denoted

225



226 Chapter 7 ■ Imperfect Public Monitoring

B : ∏n
i=1�(Ai)⇒

∏N
i=n+1�(Ai), with its graph denoted by B ⊂∏N

i=1�Ai . If there
are no short-lived players, B =∏n

i=1�(Ai).
At the end of the stage game, players observe a public signal y, drawn from a

signal space Y . The signal space Y is finite (except in section 7.5). The probability that
the signal y is realized, given the action profile a ∈ A ≡∏iAi , is denoted by ρ(y | a).
The function ρ : Y × A→ [0, 1] is continuous (so that ex ante payoffs are continuous
functions of actions). We have the obvious extension ρ(y | α) to mixed-action profiles.
We say ρ has full support if ρ(y | a) > 0 for all y and a. We invoke full support only
when needed and are explicit when doing so.

The players receive no information about opponents’ play beyond the signal y. If
players receive payoffs at the end of each period, player i’s payoff after the realization
(y, a) is given by u∗i (y, ai).1 Ex ante stage game payoffs are then given by

ui(a) =
∑
y∈Y

u∗i (y, ai)ρ(y | a). (7.1.1)

For ease of reference, we now list the maintained assumptions on the stage game.

Assumption

7.1.1
1. Ai is either finite or a compact and convex subset of the Euclidean space Rk

for some k. As in part I, we refer to compact and convex action spaces as
continuum action spaces.

2. Y is finite, and, if Ai is a continuum action space, then ρ : Y × A→ [0, 1] is
continuous.

3. If Ai is a continuum action space, then u∗i : Y × Ai → R is continuous, and
ui is quasiconcave in ai .

Remark

7.1.1
Pure strategies As for perfect monitoring games (see remark 2.1.1), when the
action spaces are a continuum, we avoid some tedious measurability details by
considering only pure strategies. We use αi to both denote pure or mixed strategies
in finite games and pure strategies only in continuum action games.

Abreu, Pearce, and Stacchetti (1990) do allow for a continuum of signals but
assume A is finite and restrict attention to pure strategies. We discuss their bang-
bang result, which requires a continuum of signals, in section 7.5.

◆

7.1.2 The Repeated Game

In the repeated game, the only public information available in period t is the t-period
history of public signals, ht ≡ (y0, y1, . . . , yt−1). The set of public histories is

H ≡ ∪∞t=0Y
t ,

where we set Y 0 ≡ ∅.

1. The representation of ex ante stage-game payoffs as the expected value of ex post payoffs is
typically made for interpretation and is not needed for any of the results in this chapter and the
next ((7.1.1) is only used in lemma 9.4.1 and those results, propositions 9.4.1 and 9.5.1, that
depend on it). An alternative (but less common) assumption is to view discounting as reflecting
the probability of the end of the game (as discussed in section 4.2), with payoffs, a simple
sum of stage-game payoffs, awarded at the end of play (so players cannot infer anything from
intermediate stage-game payoffs).
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A history for a long-lived player i includes both the public history and the history
of actions that he has taken, hti ≡ (y0, a0

i ; y1, a1
i ; . . . ; yt−1, at−1

i ). The set of histories
for player i is

Hi ≡ ∪∞t=0(Ai × Y )t .
A pure strategy for player i is a mapping from all possible histories into the set of pure
actions,

σi :Hi → Ai.

Amixed strategy is, as usual, a mixture over pure strategies, and a behavior strategy
is a mapping

σi :Hi → �(Ai).

As for perfect-monitoring games, the role of a short-lived player i = n+ 1, . . . , N
is filled by a countable sequence of players. We refer simply to a short-lived player
i, rather than explicitly referring to the sequence of players. We assume that each
short-lived player in period t only observes the public history ht .2

In general, a pure strategy profile does not induce a deterministic outcome path
(i.e., an infinite sequence in (A× Y )∞), because the public signals may be random.
As usual, long-lived players have a common discount factor δ. Following the notation
for games with perfect monitoring, the vector of long-lived players’ payoffs from a
strategy profile σ is denoted U(σ). To give a flavor of U(σ), we write a partial sum
for U(σ) when σ is pure, letting a0 = σ(∅):

Ui(σ ) = (1− δ)ui(a0)

+ (1− δ)δ
∑
y0∈Y

ui(σ1(a
0
1, y

0), . . . , σn(a
0
n, y

0))ρ(y0 | a0)+ · · ·

Public monitoring games include the following as special cases.

1. Perfect monitoring games. Because we restrict attention to finite signal spaces
(with the exception of section 7.5, which requires A finite), perfect monitoring
games are only immediately covered when A is finite. In that case, simply
set Y = A and ρ(y | a) = 1 if y = a, and 0 otherwise. However, the analysis
in this chapter also covers perfect monitoring games with continuum action
spaces, given our restriction to pure strategies (see remark 2.1.1).3

2. Games with a nontrivial extensive form. In this case, the signal is the terminal
node reached. There is imperfect observability, because only decisions on the
path of play are observed. We have already discussed this case in section 5.4
and return to it in section 9.6.

3. Games with noisy monitoring. When the prisoners’ dilemma is interpreted
as a partnership game, it is natural to consider an environment where output

2. Although this assumption is natural, the analysis in chapters 7–9 is unchanged when short-
lived players observe predecessors’ actions (because the analysis restricts attention to public
strategies).

3. While the signal space is a continuum in this case, its cardinality does not present measurability
problems because, with pure strategies, all expectations over the signals are trivial, since for
any pure action profile only one signal can arise. Compare, for example, the proof of proposi-
tion 2.5.1, which restricts attention to pure strategies, and proposition 7.3.1, which does not.
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(the product of the partnership) is a random function of the choices of the part-
ners. Influential early examples are Radner’s (1985), Rubinstein’s (1979b), and
Rubinstein and Yaari’s (1983) repeated principal-agent model with noisy mon-
itoring (discussed in section 11.4.5) and Green and Porter’s (1984) oligopoly
with noisy prices (section 11.1).

4. Games of repeated adverse selection. In these games, the moves of players
are public information, but moves are taken after players learn some private
information. For example, in Athey and Bagwell’s (2001) model of a repeated
oligopoly, firm prices are public, but firm costs are subject to privately observed
i.i.d. shocks. Firm i’s price is a public signal of firm i’s action, which is the
mapping from possible costs into prices. We discuss this in section 11.2.

5. Games with incomplete observability. Games with semi-standard information
(Lehrer 1990), where each player’s action space is partitioned and other players
only observe the element of the partition containing that action.

7.1.3 Recovering a Recursive Structure: Public Strategies and Perfect
Public Equilibria

In perfect monitoring games, there is a natural isomorphism between histories and
information sets. Consequently, in perfect monitoring games, every history, ht , induces
a continuation game that is strategically identical to the original repeated game, and
for every strategy σi in the original game, ht induces a well-defined continuation
strategy σi |ht . Moreover, any Nash equilibrium induces Nash equilibria on the induced
equilibrium outcome path.

Unfortunately, none of these observations hold for public monitoring games.
Because long-lived players potentially have private information (their own past action
choices), a player’s information sets are naturally isomorphic to the set of their own
private histories, Hi , not to the set of public histories, H . Thus there is no continuation
game induced by any history—a public history is clearly insufficient, and i’s private
history will not be known by the other players. There are examples of Nash equilibria
in public monitoring games whose continuation play resembles that of a correlated
and not Nash equilibrium (see section 10.3). This lack of a recursive structure is a
significant complication, not just in calculating Nash equilibria but in formulating a
tractable notion of sequential rationality.4

A recursive structure does hold, however, on a restricted strategy space.

Definition

7.1.1
A behavior strategy σi is public if, in every period t , it depends only on the
public history ht ∈ Y t and not on i’s private history: for all hti, ĥ

t
i ∈Hi satisfying

yτ = ŷτ for all τ ≤ t − 1,

σi(h
t
i) = σi(ĥti ).

A behavior strategy σi is private if it is not public.

4. The problem lies not in defining sequential rationality, because the notion of Kreps and Wilson
(1982b) is the natural definition, adjusting for the infinite horizon. Rather, the difficulty is in
applying the definition.
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We can thus take H to be the domain of public strategies. Note that short-lived players
are necessarily playing public strategies.5 When all players but i are playing public
strategies, player i essentially faces a Markov decision problem with states given by the
public histories, and so has a Markov best reply. We consequently have the following
result.

Lemma

7.1.1
If all players other than i are playing a public strategy, then player i has a public
strategy as a best reply.

Because the result is obvious, we provide some intuition rather than a proof. Let
hti ∈Hi be a private history for player i. Player i’s actions before t may well be
relevant in determining i’s beliefs over the actions chosen by the other players before
t . However, because the other players’ continuation behavior in period t is only a
function of the public history ht and not their own past behavior, player i’s expected
payoffs are independent of i’s beliefs over the past actions of the other players, and so
i has a best reply in public strategies. Note that i need not have a public best reply to
a nonpublic strategy profile.

We provide some examples in chapter 10 illustrating behavior that is ruled out by
restricting attention to public strategies. However, to a large extent the restriction to
public strategies is not troubling. First, every pure strategy is realization equivalent to
a public pure strategy (lemma 7.1.2). Second, as chapter 9 shows, the folk theorem
holds under quite general conditions with public strategies. Finally, for games with a
product structure (discussed in section 9.5), the set of equilibrium payoffs is unaffected
by the restriction to public strategies (proposition 10.1.1).

Restricting attention to public strategy profiles, every public history ht induces
a continuation game that is strategically identical (in terms of public strategies) to
the original repeated public monitoring game, and for any public strategy σi in the
original game, ht induces a well-defined continuation public strategy σi |ht . Moreover,
any Nash equilibrium in public strategies induces Nash equilibria (in public strategies)
on the induced equilibrium outcome path.

Two strategies, σi and σ̂i , are realization equivalent if, for all strategies for the
other players, σ−i , the distributions over outcomes induced by (σi, σ−i ) and (σ̂i , σ−i )
are the same.

Lemma

7.1.2
Every pure strategy in a public monitoring game is realization equivalent to a
public pure strategy.

Proof Let σi be a pure strategy. Let a0
i = σi(∅) be the first-period action. In the sec-

ond period, after the signal y0, the action a1
i (y

0) ≡ σi(y0, a0
i ) = σi(y0, σi(∅))

is played. Proceeding recursively, in period t after the public history, ht =
(y0, y1, . . . , yt−1) = (ht−1, yt−1), the action ati (h

t ) ≡ σi(ht ; a0
i , a

1
i (y

0), . . . ,

at−1
i (ht−1)) is played. Hence, for any public outcomeh ∈ Y∞, the pure strategyσi

5. This is a consequence of our assumption that a period t short-lived player i only observes ht ,
the public history. We refer to such public monitoring games as canonical public monitoring
games. There is no formal difficulty in assuming that a period t short-lived player i knows the
choices of previous short-lived player i’s, in which case short-lived players could play private
strategies. However, in most situations, one would not expect short-lived players to have such
private information.
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puts probability one on the action path (a0, a1(y0), . . . , at (ht ), . . .). Conse-
quently, the pure strategy σi is realization equivalent to the public strategy that
plays ati (h

t ), after the public history ht .
■

For example, let there be two actions available to player 1, T andB, and two signals, y′
and y′′. Let strategy σ1 specify T in the first period, and then in each period t , specify
T if (at−1, yt−1) ∈ {(T , y′′), (B, y′)}, andB if (at−1, yt−1) ∈ {(B, y′′), (T , y′)}. This
is a private strategy. However, it is realization equivalent to a public strategy that plays
action T in the first period and thereafter plays T after any history with an even number
of y′ signals and B after any history with an odd number of y′ signals.

Remark

7.1.2
Automata The recursive structure of public strategies is most clearly seen by
observing that a public strategy profile has an automaton representation very
similar to that of strategy profiles in perfect monitoring games (discussed in sec-
tion 2.3): Every public behavior strategy profile can be represented by a set of
states W , an initial state w0, a decision rule f : W →∏

i �(Ai) associating
mixed-action profiles with states, and a transition function τ : W × Y → W .

As for perfect monitoring games, we extend τ to the domain W ×H \{∅} by
recursively defining

τ(w, ht ) = τ(τ (w, ht−1), yt−1).

A state w′ ∈ W is accessible from another state w ∈ W if there exists a sequence
of public signals such that beginning at w, the automaton transits eventually to
w′, that is, there exists ht such that w′ = τ(w, ht ).

In contrast, the automaton representation is more complicated for private strate-
gies, requiring a separate automaton for each player (recall remark 2.3.1): Each
behavior strategy σi can be represented by a set of states Wi , an initial state w0

i , a
decision rule fi : Wi → �(Ai) specifying a distribution over action choices for
each state, and a transition function τi : Wi × Ai × Y → Wi . Note that the tran-
sitions are potentially private because they depend on the realized action choice,
which is not public. It is also sometimes convenient to use mixed rather than behav-
ior strategies when calculating examples with private strategies (see section 10.4.2
for an example). A private mixed strategy can also be represented by an automaton
(Wi , w

0
i , fi, τi), where fi : Wi → �(Ai) is the decision rule (as usual), but where

transitions are potentially random, that is, τi : Wi × Ai × Y → �(Wi ).
◆

Remark

7.1.3
Minimal automata An automaton (W , w0, τ, f ) is minimal if every statew ∈ W

is accessible from w0 ∈ W and, for every pair of states w, ŵ ∈ W , there exists a
sequence of signals ht such that for some i, fi(τ (w, ht )) �= fi(τ (ŵ, ht )).

Every public profile has a minimal representing automaton. Moreover, this
automaton is essentially unique: Suppose (W , w0, τ, f ) and (W̃ , w̃0, τ̃ , f̃ ) are
two minimal automata representing the same public strategy profile. Define a map-
ping ϕ : W → W̃ as follows: Set ϕ(w0) = w̃0. For ŵ ∈ W \{w0}, let ht be a pub-
lic history reaching ŵ (i.e., ŵ = τ(w0, ht )), and set ϕ(ŵ) = τ̃ (w̃0, ht ). Because
both automata are minimal and represent the same profile, ϕ does not depend on
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the choice of public history reaching ŵ. It is straightforward to verify that ϕ is one-
to-one and onto. Moreover, τ̃ (w̃, y) = ϕ(τ(ϕ−1(w̃), y)), and f (w) = f̃ (ϕ(w)).

◆

Remark

7.1.4
Public correlation If the game has public correlation, the only change in the
automaton representation of public strategy profiles is that the initial state is
determined by a probability distribution µ0 and the transition function maps
into probability distributions over states, that is, τ : W × Y → �(W ) (see
remark 2.3.3).

◆

Attention in applications is often restricted to strongly symmetric public strategy
profiles, in which after every history, the same action is chosen by all long-lived
players:6

Definition

7.1.2
Suppose Ai = Aj for all long-lived i and j . A public profile σ is strongly
symmetric if, for all public histories ht , σi(ht ) = σj (ht ) for all long-lived i and j .

Once we restrict attention to public profiles, there is an attractive formulation
of sequential rationality, because every public history ht does induce a well-defined
continuation game (in public strategies).

Definition

7.1.3
A perfect public equilibrium ( PPE) is a profile of public strategies σ that for any
public history ht , specifies a Nash equilibrium for the repeated game, that is, for
all t and all ht ∈ Y t , σ |ht is a Nash equilibrium. A PPE is strict if each player
strictly prefers his equilibrium strategy to every other public strategy.

When the public monitoring has full support, that is, ρ(y | a) > 0 for all y and a,
every public history arises with positive probability, and so every Nash equilibrium in
public strategies is a PPE.

We denote the set of PPE payoff vectors of the long-lived players by E (δ) ⊂ Rn.
The one-shot deviation principle plays as useful a role here as it does for subgame-

perfect equilibria in perfect monitoring games. A one-shot deviation for player i from
the public strategy σi is a strategy σ̂i �= σi with the property that there exists a unique
public history h̃t ∈ Y t such that for all hτ �= h̃t ,

σi(h
τ ) = σ̂i (hτ ).

The proofs of the next two propositions are straightforward modifications of their
perfect-monitoring analogs (propositions 2.2.1 and 2.4.1), and so are omitted.

Proposition

7.1.1
The one-shot deviation principle A public strategy profile σ is a PPE if and
only if there are no profitable one-shot deviations, that is, if and only if for all
public histories ht ∈ Y t , σ(ht ) is a Nash equilibrium of the normal-form game
with payoffs

6. Because it imposes no restriction on short-lived players’ behavior, the concept of strong sym-
metry is most useful in games without short-lived players. Section 11.2.6 presents a strongly
symmetric equilibrium of a game with short-lived players that is most naturally described as
asymmetric.
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gi(a) =
{
(1− δ)ui(a)+ δ∑y∈Y Ui(σ |ht ,y)ρ(y | a), for i = 1, . . . , n,

ui(a), for i = n+ 1, . . . , N .

Proposition

7.1.2
Suppose the public strategy profile σ is described by the automaton (W , w0, f, τ ),
and let Vi(w) be the long-lived player i’s average discounted value from play that
begins in state w. The strategy profile σ is a PPE if and only if for all w ∈ W

accessible from w0, f (w) is a Nash equilibrium of the normal-form game with
payoffs

gwi (a) =
{
(1− δ)ui(a)+ δ∑y∈Y Vi(τ (w, y))ρ(y | a), for i = 1, . . . , n,

ui(a), for i = n+ 1, . . . , N .
(7.1.2)

Equivalently, σ is a PPE if and only if for all w ∈ W accessible from w0,
f (w) ∈ B and (f1(w), . . . , fn(w)) is a Nash equilibrium of the normal-form game
with payoffs (gw1 , . . . , g

w
n ), where gwi (·, fn+1(w), . . . , fN(w)) :∏n

i=1Ai → R,
for i = 1, . . . , n, is given by (7.1.2).

We also have a simple characterization of strict PPE under full-support public
monitoring: Because every public history is realized with positive probability, strict-
ness of a PPE is equivalent to the strictness of the induced Nash equilibria of the normal
form games of propositions 7.1.1 and 7.1.2.

Corollary

7.1.1
Suppose ρ(y | a) > 0 for all y ∈ Y and a ∈ A. The profile σ is a strict PPE if
and only if for all w ∈ W accessible from w0, f (w) is a strict Nash equilibrium
of the normal-form game with payoffs gw.

Clearly, strict PPE must be in pure strategies, and so we can define:

Definition

7.1.4
Suppose ρ(y | a) > 0 for all y ∈ Y and a ∈ A. A pure public strategy profile
described by the automaton (W , w0, f, τ ) is a uniformly strict PPE if and only if
there exists υ > 0 such that for all w ∈ W accessible from w0, for all i,

gwi (f (w)) ≥ gwi (ai, f−i (w))+ υ, ai �= fi(w),
where gw is defined by (7.1.2).

7.2 A Repeated Prisoners’ Dilemma Example

This section illustrates some key issues that arise in games of imperfect monitoring.
We again study the repeated prisoners’ dilemma. The imperfect monitoring is captured
by two signals ȳ and y, whose distribution is given by

ρ(ȳ | a) =



p, if a = EE,

q, if a = SE or ES,

r, if a = SS,

(7.2.1)
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y y

E (3−p−2q)
(p−q) − (p+2q)

(p−q)

S 3(1−r)
(q−r) − 3r

(q−r)

E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 7.2.1 The left matrix describes the ex post payoffs for the prisoners’
dilemma with the public monitoring of (7.2.1). The implied ex ante payoff matrix is
on the right and agrees with figure 1.2.1.

where 0 < q < p < 1 and 0 < r < p. If we interpret the prisoners’dilemma as a part-
nership game, then the effort choices of the players stochastically determine whether
output is high (ȳ) or low (y). High output, the “good” signal, has a higher probability
when both players exert effort. Output thus provides some noisy information about
whether both players exerted effort and may or may not provide information distin-
guishing the three stage-game outcomes in which at least one player shirks (depending
on q and r). The ex post payoffs and implied ex ante payoffs (that agree with the
payoffs from figure 1.2.1) are in figure 7.2.1.

In conducting comparative statics with respect to the monitoring distribution, we
fix the ex ante payoffs and so are implicitly adjusting the ex post payoffs as well
as the monitoring distribution. Although it is more natural for ex post payoffs to be
fixed, with changes in monitoring reflected in changes in ex ante payoffs, fixing ex
ante payoffs significantly simplifies calculations (without altering the substance of the
results).

7.2.1 Punishments Happen

As with perfect monitoring games, any strategy profile prescribing a stage-game Nash
equilibrium in each period, independent of history, constitutes a PPE of the repeated
game of imperfect monitoring. In this case, players can simply ignore any signals they
see, secure in the knowledge that every player is choosing a best response in every
period. In the prisoners’ dilemma, this implies that both shirk in every period.

Equilibria in which players exert effort require intertemporal incentives, and a
central feature of such incentives is that some realizations of the signal must be followed
by low continuation values. As such, they have the flavor of punishments, but unlike
the case with perfect monitoring, these low continuation values need not arise from a
deviation. As will become clear, they are needed to provide appropriate incentives for
players to exert effort.

One of the simplest profiles in which signals matter calls for the players to exert
effort in the first period and continue to exert effort until the first realization of low
output y, after which players shirk forever. We refer to this profile as grim trigger
because of its similarity to its perfect monitoring namesake. This strategy has a simple
representation as a two-state automaton. The state-space is W = {wEE, wSS}, initial
state wEE , output function
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EEw SSw

y

y

yy,

0w

Figure 7.2.2 The grim trigger automaton for the
prisoners’ dilemma with public monitoring.

f (wEE) = EE,

and f (wSS) = SS,

and transition function

τ(w, y) =
{
wEE, if w = wEE and y = ȳ,
wSS , otherwise,

where y is the previous-period signal. The automaton is illustrated in figure 7.2.2.
We associate with each state a value describing the expected payoff when play

begins in the state in question. The value function is given by (omitting subscripts,
because the setting is symmetric)

V (wEE) = (1− δ)2+ δ{pV (wEE)+ (1− p)V (wSS)}
and

V (wSS) = (1− δ)× 0+ δV (wSS).
We immediately have V (wSS) = 0, so that

V (wEE) = 2(1− δ)
1− δp . (7.2.2)

The strategies will be an equilibrium if and only if in each state, the prescribed
actions constitute a Nash equilibrium of the normal-form game induced by the cur-
rent payoffs and continuation values (proposition 7.1.2). Hence, the conditions for
equilibrium are

V (wEE) ≥ (1− δ)3+ δ{qV (wEE)+ (1− q)V (wSS)} (7.2.3)

and
V (wSS) ≥ (1− δ)(−1)+ δV (wSS).

It is clear that the incentive constraint for defecting in state wSS is trivially satisfied,
because the state wSS is absorbing. The incentive constraint in the state wEE can be
rewritten as

V (wEE) ≥ 3(1− δ)
1− δq ,
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or using (7.2.2) to substitute for V (wEE),

2(1− δ)
1− δp ≥

3(1− δ)
1− δq ,

that is,

δ(3p − 2q) ≥ 1. (7.2.4)

If ȳ is a sufficiently good signal that both players had exerted effort, in the sense that

p > 1
3 + 2

3q, (7.2.5)

so that 3p − 2q > 1, then grim trigger is an equilibrium, provided the players are
sufficiently patient. For δ sufficiently large (and p > 1

3 + 2
3q), (7.2.3) holds strictly, in

which case the equilibrium is strict (in the sense of definition 7.1.3).
If the incentive constraint (7.2.3) holds, then the value of the equilibrium is given

by (7.2.2). Notice that as p approaches 1, so that the action profile EE virtually
guarantees the signal ȳ, the equilibrium value approaches 2, the perfect monitoring
value. Moreover, if p = 1 and q = 0 (so that ȳ is a perfect signal of effort when the
opponent exerts effort), grim trigger here looks very much like grim trigger in the
game with perfect monitoring, and (7.2.4) is equivalent to the bound δ ≥ 1/3 obtained
in example 2.4.1.

As in the case of perfect monitoring, we conclude that grim trigger is an equilibrium
strategy profile if the players are sufficiently patient. However, there is an important
difference. Players are initially willing to exert effort under the grim trigger profile
in the presence of imperfect monitoring because shirking triggers the transition to the
absorbing state wSS with too high a probability. Unlike the perfect monitoring case,
playing EE does not guarantee that wSS will not be reached. Players receive positive
payoffs in this equilibrium only from the initial segment of periods in which both exert
effort, before the inevitable and irreversible switch to mutual shirking. The timing of
this switch is independent of the discount factor. As a result, as the players become
more patient and the importance of the initial periods declines, so does their expected
payoff (because V (wEE)→ 0 = V (wSS) as δ→ 1 from (7.2.2)).

This profile illustrates the interaction between continuation values in their role of
providing incentives (where a low continuation value after certain signals, such as y,
strengthens incentives) and the contribution such values make to current values. As
players become patient, the myopic incentive to deviate to the stage-game best reply
is reduced, but at the same time, the impact of the low continuation values may be
increased (we return to this issue in remark 7.2.1).

7.2.2 Forgiving Strategies

We now consider a profile that provides incentives to exert effort without the use of
an absorbing state. Players exert effort after the signal ȳ and shirk after the signal y,
and exert effort in the first period. The two-state automaton representing this profile
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EEw SSw

y
y

y

y

0w

Figure 7.2.3 A simple profile with one-period memory.

has the same state space, initial state, and output function as grim trigger. Only the
transition function differs from the previous example. It is given by

τ(w, y) =
{
wEE, if y = ȳ,
wSS, if y = y,

where y is the previous period signal. The automaton is illustrated in figure 7.2.3. We
can think of the players as rewarding good signals and punishing bad ones. In this
profile, punishments are attached to bad signals even though players may know these
signals represent no shirking (such as y following ȳ).

The values in each state are given by

V (wEE) = (1− δ)2+ δ{pV (wEE)+ (1− p)V (wSS)} (7.2.6)

and

V (wSS) = (1− δ)× 0+ δ{rV (wEE)+ (1− r)V (wSS)}. (7.2.7)

Solving (7.2.6)–(7.2.7),

[
V (wEE)

V (wSS)

]
= (1− δ)

[
1− δp −δ(1− p)
−δr 1− δ(1− r)

]−1 [
2
0

]

= 1

1− δ(p − r)
[

2(1− δ(1− r))
2δr

]
. (7.2.8)

Notice that V (wEE) and V (wSS) are both independent of q, because q identifies the
signal distribution induced by profiles SE and ES, which do not arise in equilibrium.
We again have limp→1 V (wEE) = 2, so that we approach the perfect monitoring value
as the signals in state EE become arbitrarily precise. For any specification of the
parameters, we have

2(1− δ)
1− δp <

2(1− δ(1− r))
1− δ(p − r) ,

and hence the forgiving strategy of this section yields a higher payoff than the grim
trigger strategy of the previous example.

As with grim trigger, the strategies will be an equilibrium if and only if in each state,
the prescribed actions constitute a Nash equilibrium of the normal-form game induced
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by the current payoffs and continuation values. Hence, the profile is an equilibrium if
and only if

V (wEE) ≥ (1− δ)3+ δ{qV (wEE)+ (1− q)V (wSS)} (7.2.9)

and

V (wSS) ≥ (1− δ)(−1)+ δ{qV (wEE)+ (1− q)V (wSS)}.
Using (7.2.6) to substitute for the equilibrium valueV (wEE) of statewEE , the incentive
constraint (7.2.9) can be rewritten as

(1− δ)2+ δ{pV (wEE)+ (1− p)V (wSS)}
≥ (1− δ)3+ δ{qV (wEE)+ (1− q)V (wSS)},

which simplifies to

δ(p − q){V (wEE)− V (wSS)} ≥ (1− δ). (7.2.10)

From (7.2.8),

V (wEE)− V (wSS) = 2(1− δ)
1− δ(p − r) . (7.2.11)

From (7.2.10), the incentive constraint for state wEE requires

2δ(p − q) ≥ 1− δ(p − r)
or

δ ≥ 1

3p − 2q − r . (7.2.12)

A similar calculation for the incentive constraint in state wSS yields

(1− δ) ≥ δ(q − r){V (wEE)− V (wSS)},
and substituting from (7.2.11) gives

δ ≤ 1

p + 2q − 3r
. (7.2.13)

Conditions (7.2.12) and (7.2.13) are in tension: For the wEE incentive constraint
to be satisfied, players must be sufficiently patient (δ is sufficiently large) and the sig-
nals sufficiently informative (p − q is sufficiently large). This ensures that the myopic
incentive to play S is less than the continuation reward from the more favorable dis-
tribution induced by EE rather than that induced by SE. At the same time, for the wSS

incentive constraint to be satisfied, players must not be too patient (δ is not too large)
relative to the signals. This ensures that the myopic cost from playing E is more than
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the continuation reward from the more favorable distribution induced by ES rather
than that induced by SS. Conditions (7.2.12) and (7.2.13) are consistent as long as

p ≥ 2q − r.
Moreover, (7.2.13) is trivially satisfied if q is sufficiently close to r .7

When (7.2.12) and (7.2.13) are satisfied, the one-period memory profile supports
effort as an equilibrium choice in a period by “promising” players a low continuation
after y, which occurs with higher probability after shirking. It is worth emphasizing
that the specification of S aftery is not a punishment of a player for having deviated or
shirked. For example, in period 0, under the profile, both players play E. Nonetheless,
the players shirk in the next period after observing y. However, if the profile did not
specify such a negative repercussion from generating bad signals, players have no
incentive to exert effort. The role of SS after y is analogous to that of the deductible in
an insurance policy, which encourages due care.

It is also worth observing, that when (7.2.12) and (7.2.13) hold strictly, then the
PPE is strict: Each player finds E a strict best reply after ȳ and S a strict best reply
after y. In this sense, history is coordinating continuation play (as it commonly does
in equilibria of perfect-monitoring games).

Remark

7.2.1
Patient incentives Suppose q is sufficiently close to r that the upper bound on δ,
(7.2.13), is satisfied for all δ. Then, the profile of figure 7.2.3 is a strict PPE for
all δ satisfying (7.2.12) strictly. The outcome path produced by these strategies
can be described by a Markov chain on the state space {wEE, wSS}, with transition
matrix

wEE wSS

wEE p 1− p
wSS r 1− r .

The process is ergodic and the stationary distribution puts probability
r/(1− p + r) on EE and (1− p)/(1− p + r) on SS.8 Because p < 1, some
shirking must occur in equilibrium. When starting in statewEE , the current payoff
is thus higher than the equilibrium payoff, and increasing the discount factor only
makes the relatively low-payoff future more important, decreasing the expected
payoff from the game. When in statewSS , the current payoff is relatively low, and
putting more weight on the future increases expected payoffs.

The myopic incentive to play a stage-game best reply becomes small as players
become patient. At the same time, as in grim trigger and many other strategy pro-
files,9 the size of the penalty from a disadvantageous signal (V (wEE)− V (wSS))
also becomes smaller. In the limit, as the players get arbitrarily patient, expected

7. Note that q = r is inconsistent with the assumption that the stage game payoff u1(a) is the
expectation of ex post payoffs (7.1.1), because q = r would imply u1(SE) = u1(SS) (see also
figure 7.2.1). A similar comment applies if p = q. We assume q = r or p = q in some examples
to ease calculations; the conclusions hold for q − r or p − q close to 0.

8. For grim trigger, the transition matrix effectively has r = 0, so the stationary distribution in that
case puts probability one on wSS .

9. More specifically, this claim holds for profiles that are connected, that is, profiles with the
property that there is a common finite sequence of signals taking any state into a common state
(lemma 13.5.1). We discuss this issue in some detail in section 13.5.
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payoffs are independent of the initial states. For a fixed signal distribution given
by p and r , we have

lim
δ→1

V (wEE) = lim
δ→1

V (wSS) = 2r

1− p + r .

◆

7.2.3 Strongly Symmetric Behavior Implies Inefficiency

We now investigate the most efficient symmetric pure strategy equilibria that the play-
ers can support under imperfect monitoring. More precisely, we focus on strongly
symmetric pure-strategy equilibria, equilibria in which after every history, the same
action is chosen by both players (definition 7.1.2). It turns out that efficiency cannot
typically be attained with a strongly symmetric equilibrium under imperfect monitor-
ing (see proposition 8.2.1). Moreover, for this example, if 2p − q < 1 and q > 2r ,
the best strongly symmetric PPE payoff is strictly smaller than the best symmetric
PPE payoff, which is achieved using SE and ES (see remark 7.7.2 and section 8.4.3).
As we have seen, imperfect monitoring ensures that punishments will occur along
the equilibrium path, whereas symmetry ensures that these punishments reduce the
payoffs of both players, precluding efficiency. We will subsequently see that asym-
metric strategies, in which one player is punished while the other is rewarded, play a
crucial role in achieving nearly efficient payoffs. At the same time, it will be important
that the monitoring is sufficiently “rich” to allow this differential treatment (we return
to this issue for this example in section 8.4.3 and in general in chapter 9).

We assume here that players can publicly correlate (leaving to section 7.7.1 the
analysis without public correlation). As we will see, it suffices to consider strategies
implemented by automata with two states, so thatW = {wEE, wSS}withf (wEE) = EE
and f (wSS) = SS. Letting τ(w, y) be the probability of a transition to statewEE , given
that the current state w ∈ {wEE, wSS} and signal y ∈ {ȳ,y}, calculating the maximum
payoff from a symmetric equilibrium with public correlation is equivalent to finding
the largest φ for which the following transition function supports an equilibrium:

τ(w, y) =




1, if w = wEE and y = ȳ,

φ, if w = wEE and y = y,

0, if w = wSS .

These strategies make use of a public correlating device, because the players perfectly
correlate the random movement to statewSS that follows the bad signal. The automaton
is illustrated in figure 7.2.4.

The most efficient symmetric outcome is permanent EE, yielding both players a
payoff of 2. The imperfection in monitoring precludes this outcome from being an
equilibrium outcome. The “punishment” state of wSS is the worst possible state and
plays a similar role here as in grim trigger of section 7.2.1, which is captured by φ = 0.
For large δ, the incentive constraint in state wEE when φ = 0 (described by (7.2.3))
holds strictly, indicating that the continuation value after y can be slightly increased
without disrupting the incentives players have to play E. Moreover, by increasing
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Figure 7.2.4 The grim trigger profile with public correlation. With
probability φ play remains in wEE after a bad signal, and with probability
1− φ, play transits to the absorbing state wSS .

that continuation valuation, the value in the previous period has been increased.
By appropriately choosing φ, we can maximize the symmetric payoff while still just
satisfying the incentive constraint.10

The value V (wSS) in state wSS equals 0, reflecting the fact that state wSS

corresponds to permanent shirking. The value for state wEE is given by

V (wEE) = (1− δ)2+ δ{pV (wEE)+ (1− p)(φV (wEE)+ (1− φ)V (wSS))}
= (1− δ)2+ δ(p + (1− p)φ)V (wEE),

and solving,

V (wEE) = 2(1− δ)
1− δ(p + (1− p)φ) . (7.2.14)

Incentives for equilibrium behavior in state wSS are trivial because play then
consists of a stage-game Nash equilibrium in every subsequent period. Turning to
state wEE , the incentive constraint is (using V (wSS) = 0):

V (wEE) ≥ (1− δ)3+ δ(q + (1− q)φ)V (wEE).

As explained, we need the largest value of φ for which this constraint holds. Clearly,
such a value must cause the constraint to hold with equality, leading us to solve for

V (wEE) = 3(1− δ)
1− δ(q + (1− q)φ) .

Making the substitution for V (wEE) from (7.2.14), and solving,

φ = δ(3p − 2q)− 1

δ(3p − 2q − 1)
. (7.2.15)

This expression is nonnegative as long as11

δ(3p − 2q) ≥ 1. (7.2.16)

Once again, equilibrium requires that players be sufficiently patient and that p and q
not be too close. It is also worth noting that this condition is the same as (7.2.4), the

10. It is an implication of proposition 7.5.1 that this bang-bang behavior yields the most efficient
symmetric pure strategy profile.

11. The expression could also be positive if both numerator and denominator are negative, but then
it necessarily exceeds 1, a contradiction.
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lower bound ensuring grim trigger is an equilibrium. If (7.2.16) fails, then even making
the punishment as severe as possible, by setting φ = 0, does not create sufficiently
strong incentives to deter shirking. Conditional on being positive, the expression for
φ will necessarily be less than 1. This is simply the observation that one can never
create incentives for effort by setting φ = 1, and hence dispensing with all threat of
punishment.

A value of δ < 1 will exist satisfying inequality (7.2.16) as long as

p > 1
3 + 2

3q.

This is (7.2.5) (the necessary condition for grim trigger to be a PPE) and is implied by the
necessary condition (7.2.12) for the one-period memory strategy profile of section 7.2.2
to be an equilibrium. If δ = 1/(3p − 2q), then we have φ = 0, and hence grim trigger.
In this case, the discount factor is so low as to be just on the boundary of supporting
such strategies as an equilibrium, and sufficient incentives can be obtained only by
having a bad signal trigger a punishment with certainty. On the other hand, φ→ 1 as
δ→ 1. As the future swamps the present, bad signals need only trigger punishments
with an arbitrarily small probability. However, this does not suffice to achieve the
efficient outcome. Substituting the value of φ from (7.2.15) in (7.2.14), we find, for
all δ ∈ (0, 1) satisfying the incentive constraint given by (7.2.16),12

V (wEE) = 3p − 2q − 1

p − q = 2− (1− p)
(p − q) < 2. (7.2.17)

Intuitively, punishments can become less likely as the discount factor climbs, but
incentives will be preserved only if punishments remain sufficiently likely that the
expected value of the game following a bad signal falls sufficiently short of the expected
value following a good signal. Because bad signals occur with positive probability
along the equilibrium path, this suffices to bound payoffs away from their efficient
levels.

It is intuitive that the upper bound for the symmetric equilibrium payoff with
public correlation is also an upper bound without public correlation. We will argue in
section 7.7.1 that the bound of (7.2.17) is in fact tight (even in the absence of public
correlation) for large δ.

7.3 Decomposability and Self-Generation

In this section, we describe a general method (introduced by Abreu, Pearce, and Stac-
chetti 1990) for characterizing E (δ), the set of perfect public equilibrium payoffs. We
have already seen a preview of this work in section 2.5.1. The essence of this approach
is to view a PPE as describing after each history the specified action to be taken after
the history and continuation promises. The continuation promises are themselves of
course required to be equilibrium values. The recursive properties of PPE described in
section 7.1.3 provide the necessary structure for this approach.

12. Notice that the maximum payoff is independent of δ, once δ is large enough to provide the
required incentives.
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The first two definitions are the public monitoring versions of the notions in sec-
tion 2.5.1. Recall that B ⊂∏N

i=1�(Ai) is the set of feasible action profiles when
players i = n+ 1, . . . , N are short-lived. If n = N (there are no short-lived players),
then B =∏n

i=1�(Ai).

Definition

7.3.1
For any W ⊂ Rn, a mixed action profile α ∈ B is enforceable on W if there exists
a mapping γ : Y → W such that, for all i = 1, . . . , n, and a′i ∈ Ai ,

Vi (α, γ ) ≡ (1− δ)ui(α)+ δ
∑
y∈Y

γi(y)ρ(y | α)

≥ (1− δ)ui(a′i , α−i )+ δ
∑
y∈Y

γi(y)ρ(y | a′i , α−i ).
(7.3.1)

The function γ enforces α (on W ).

Remark

7.3.1
Hidden short-lived players The incentive constraints on the short-lived players
are completely captured by the requirement that the action profile be an element
of B. We often treat u(α) as the vector of stage-game payoffs for the long-lived
players, that is, u(α) = (u1(α), . . . , un(α)), rather than the vector of payoffs for
all players—the appropriate interpretation should be clear from context.

◆

Notice that the function V, introduced in definition 7.3.1, is continuous.
Figure 7.3.1 illustrates the relationship between u(α), γ , and V(α, γ ).

We interpret the function γ as describing expected payoffs from future play
(“continuation promises”) as a function of the public signal y. Enforceability is then
essentially an incentive compatibility requirement. The profile α is enforceable if it
is optimal for each player to choose α, given some γ describing the implications of
current signals for future payoffs. Phrased differently, the profile α is enforceable if
it is a Nash equilibrium of the one-shot game gγ (a) ≡ (1− δ)u(a)+ δE[γ (y) | a]
(compare with proposition 7.1.2 and the discussion just before proposition 2.4.1).

Figure 7.3.1 The relationship between u(α), γ , and V(α, γ ). There are three
public signals, Y = {y1, y2, y3}, and E[γ (y) | a] =∑� γ (y�)ρ(y� | a).
Because V(a, γ ) = (1− δ)u(a)+ δE[γ (y) | a], the distance from V(a, γ ) to
E[γ | a] is of order 1− δ.
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Definition

7.3.2
A payoff vector v ∈ Rn is decomposable on W if there exists a mixed action profile
α ∈ B, enforced by γ on W , such that

vi = Vi (α, γ ).

The payoff v is decomposed by the pair (α, γ ) (on W ).

It will be convenient to identify for any set W , the set of payoffs that can be
decomposed on W , as well as to have a function that identifies the action profile
and associated enforcing γ decomposing any value in that set. When there are several
enforceable profiles and enforcing promises for any decomposable payoff, the selection
can be arbitrary.

Definition

7.3.3
For all W ⊂ Rn, let B(W ) ≡ {v ∈ Rn : v = V (α, γ ) for some α enforced by γ
on W }, and define the pair

Q : B(W )→ B and U : B(W )→ W Y

so that Q(v) is enforced by U(v) on W and V(Q(v),U(v)) = v. A payoff v ∈
B(W ) is decomposed by (Q(v),U(v)).

We can think of B(W ) as the set of equilibrium payoffs (for the long-lived play-
ers), given that W is the set of continuation equilibrium payoffs. In particular, B(W )

contains any payoff vector that can be obtained from (decomposed) using an enforce-
able choiceα in the current period and with the linkγ between current signals and future
equilibrium payoffs. Although B(W ) depends on δ, we only make that dependence
explicit when necessary, writing B(W ; δ).

If B(W ) is the set of payoffs that one can support given the set W of continu-
ation payoffs, then a set W for which W ⊂ B(W ) should be of special interest. We
have already seen in proposition 2.5.1 and remark 2.5.1 (where ∪a∈ABa(W ) is the
pure-action version of B(W )) that a similar property is sufficient for the payoffs to
be pure-strategy subgame-perfect equilibrium payoffs in games with perfect monitor-
ing. Because the structure of the game is stationary (for public strategies), the set of
equilibrium payoffs and equilibrium continuation payoffs coincide. The function B

plays an important role in the investigation of equilibria of the repeated game and is
commonly referred to as the generating function for the game. We first need the critical
notion of self-generation:

Definition

7.3.4
A set of payoffs W ⊂ Rn is self-generating if W ⊂ B(W ).

Our interest in self-generation is due to the following result (compare with
proposition 2.5.1).

Proposition

7.3.1
Self-generation For any bounded set W ⊂ Rn, if W is self-generating, B(W ) ⊂
E (δ) (and hence W ⊂ E (δ)).

Note that no explicit feasibility restrictions are imposed on W (in fact, no restrictions
are placed on the set W beyond boundedness).13 As a result, one would think that by

13. The space R
n is trivially self-generating. To generate an arbitrary payoff v ∈ R

n, one need only
couple the current play of a Nash equilibrium of the stage game (thus ensuring enforceability),
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choosing a sufficiently large set W , payoffs infeasible in the repeated game could be
generated. The discipline is imposed by the fact that W must be capable of generating a
superset of itself. Coupled with discounting, the assumption that W is bounded and the
requirement that the first period’s payoffs be given by u(α) for some α ∈ B excludes
infeasible payoffs.

As in the proof of proposition 2.5.1, the idea is to view B(W ) as the set of states
for an automaton, to which we apply proposition 7.1.2. Decomposability allows us
to associate an action profile and a transition function describing continuation values
to each payoff profile in B(W ). Note that although vectors of continuations for the
long-lived players are states for the automaton, the output function specifies actions
for both long- and short-lived players.

Remark

7.3.2
Equilibrium behavior Though self-generation naturally directs attention to the
set of equilibrium payoffs, the proof of proposition 7.3.1 constructs an equilib-
rium profile. In the course of this construction, however, one often has multiple
choices for the decomposing actions and continuations (i.e., Q and U are selec-
tions). The resulting equilibrium can depend importantly on the choices one makes.
Remark 7.7.1 discusses an example, including profiles with Nash reversion and
with bounded recall. Chapter 13 gives one reason why this difference is important,
showing that profiles with permanent punishments are often not robust to the intro-
duction of private monitoring, whereas profiles with bounded recall always are.

◆

Proof For v ∈ B(W ), we construct an automaton yielding the payoff vector v and satis-
fying the condition in proposition 7.1.2, so that the implied strategy profile σ is a
PPE. Consider the collection of automata {(B(W ), v, f, τ ) : v ∈ B(W )}, where
the common set of states is given by B(W ), the common decision function by

f (v) = Q(v)

for all v ∈ B(W ), and the common transition function by

τ(v, y) = U(v)(y)

for all y ∈ Y (recall that for U(v) ∈ W Y , so that U(v)(y) ∈ W ). Because W

is self-generating, the decision and transition functions are well defined for all
v ∈ B(W ). These automata differ only in their initial state v ∈ B(W ).

We need to show that for each v ∈ B(W ), the automaton (B(W ), v, f, τ )

describes a PPE with payoff v. This will be an implication of proposition 7.1.2
and the decomposability of v on W , once we have shown that

vi = Vi(v), i = 1, . . . , n,

where Vi(v) is the value to long-lived player i of being in state v.
For any v ∈ B(W ), we recursively define the implied sequence of continu-

ations {γ t }∞t=0, where γ t : Y t → W , by setting γ 0 = v and γ t (ht−1, yt−1) =

with payoff profile vN , with the function γ (y) = v′ for all y, where (1− δ)vN + δv′ = v. Of
course, the unboundedness of the reals plays a key role in this construction.
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U(γ t−1(ht−1))(yt−1). Let σ be the public strategy profile described by the
automaton (B(W ), γ 0, f, τ ), so that σ(∅) = Q(γ 0), and for any history, ht ,
σ(ht ) = Q(γ t (ht )).

Then, by construction,

v = V(Q(v),U(v)) = V(σ (∅),U(v))

= (1− δ)u(σ (∅))+ δ
∑
y0∈Y

γ 1(y0)ρ(y0 | σ(∅))

= (1− δ)u(σ (∅))+ δ
∑
y0∈Y


(1− δ)u(σ (y0))

+ δ
∑
y1∈Y

γ 2(y0, y1)ρ(y1 | σ(y0))


 ρ(y0 | σ(∅))

= (1− δ)
t−1∑
s=0

δs
∑
hs∈Y s

u(σ (hs))Prσ (h
s)+ δt

∑
ht∈Y t

γ t (ht )Prσ (h
t ),

where Prσ (hs) is the probability that the sequence of public signals hs arises
under σ . Because γ t (ht ) ∈ W and W is bounded,

∑
ht∈Y t γ t (ht )Prσ (ht ) is

bounded. Taking t →∞ yields

v = (1− δ)
∞∑
s=0

δs
∑
hs∈Y s

u(σ (hs))Prσ (h
s),

and so the value of σ is v. Hence, for all v ∈ W and the automaton, (W , v, f, τ ),
v = V (v).

Let gv :∏n
i=1Ai → Rn be given by

gv(a) = (1− δ)u(a)+ δ
∑
y∈Y

U(v)(y)ρ(y | a)

= (1− δ)u(a)+ δ
∑
y∈Y

V (τ(v, y))ρ(y | a),

where a ∈ A is an action profile with long-lived players’ actions unrestricted
and short-lived players’ actions given by (Qn+1(v), . . . ,QN(v)). Because v is
enforced by (Q(v),U(v)), Q(v) ∈ B is a Nash equilibrium of the normal-form
game described by the payoff function gv , and so proposition 7.1.2 applies.

■

Proposition 7.3.1 gives us a criterion for identifying subsets of the set of PPE
payoffs, because any self-generating set is such a subset. We say that a set of payoffs
can be factorized if it is a fixed point of the generating function B. The next proposition
indicates that the set of PPE payoffs can be factorized. From proposition 7.3.1, the set
of PPE payoffs is the largest such fixed point. Abreu, Pearce, and Stacchetti (1990)
refer to the next proposition as factorization.
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Proposition

7.3.2
E (δ) = B(E (δ)).

Proof If E (δ) is self-generating (i.e., E (δ) ⊂ B(E (δ))), then (because E (δ) is clearly
bounded, being a subset of F ∗) by the previous proposition, B(E (δ)) ⊂ E (δ),
and so B(E (δ)) = E (δ). It thus suffices to prove E (δ) ⊂ B(E (δ)).

Suppose v ∈ E (δ) and σ is a PPE with value v = U(σ). Let α ≡ σ(∅) and
γ (y) = U(σ |y).

It is enough to show that α is enforced by γ on E (δ) and V(α, γ ) = v. But,

V(α, γ ) = (1− δ)u(α)+ δ
∑
y

γ (y)ρ(y | α)

= (1− δ)u(α)+ δ
∑
y

U(σ |y)ρ(y | α)

= U(σ) = v.
Because σ is a PPE, σ |y is a also a PPE, and so γ : Y → E (δ). Finally, because
σ is a PPE, there are no profitable one-shot deviations, and so α is enforced by γ
on E (δ), and so v ∈ B(E (δ)).

■

Lemma

7.3.1
B is a monotone operator, that is, W ⊂ W ′ =⇒ B(W ) ⊂ B(W ′).

Proof Suppose v ∈ B(W ). Then, v = V(α, γ ) for some α enforced by γ : Y → W . But
then γ also decomposes v using α on W ′, and hence v ∈ B(W ′).

■

Lemma

7.3.2
If W is compact, B(W ) is closed.

Proof Suppose {vk}k is a sequence in B(W ) converging to v, and (αk, γ k) is the asso-
ciated sequence of enforceable action profiles and enforcing continuations, with
vk = V(αk, γ k). Because (αk, γ k) ∈∏i �(Ai)×W Y and

∏
i �(Ai)×W Y is

compact,14 without loss of generality (taking a subsequence if necessary), we can
assume {(αk, γ k)}k is convergent, with limit (α, γ ). The action profile α is clearly
enforced by γ with respect to W . Moreover, V(α, γ ) = v and so v ∈ B(W ).

■

The set of feasible payoffs F † is clearly compact. Moreover, every payoff that
can be decomposed on the set of feasible payoffs must itself be feasible, that is,
B(F †) ⊂ F †. Because E (δ) is a fixed point of B and B is monotonic,

E (δ) ⊂ Bm(F †) ⊂ F †,∀m.
In fact, {Bm(F †)}m is a decreasing sequence. Let

F
†∞ ≡

⋂
m

Bm(F †).

14. Continuing our discussion from note 3 on page 227 whenAi is a continuum action space for some
i, W Y is not sequentially compact under perfect monitoring. However, we can proceed as in the
second part of the proof of proposition 2.5.2 to nonetheless obtain a convergent subsequence.
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Each Bm(F †) is compact and so F
†∞ is compact and nonempty (because E (δ) ⊂

F
†∞). Therefore, we have

E (δ) ⊂ F
†∞ ⊂ · · · ⊂ B2(F †) ⊂ B(F †) ⊂ F †. (7.3.2)

The following proposition implies that the algorithm of iteratively calculating Bm(F †)

computes the set of PPE payoffs. See Judd, Yeltekin, and Conklin (2003) for an
implementation.

Proposition

7.3.3
F

†∞ is self-generating and so F
†∞ = E (δ).

Proof We need to show F
†∞ ⊂ B(F

†∞). For all v ∈ F
†∞, v ∈ Bm(F †) for all m, and

so there exists (αm, γ m) such that v = V(αm, γ m) and γm(y) ∈ Bm−1(F †) for
all y ∈ Y .

By extracting convergent subsequences if necessary, we can assume the
sequence {(αm, γ m)}m converges to a limit (α∗, γ ∗). It remains to show that α∗
is enforced by γ ∗ on F

†∞ and v = V(α∗, γ ∗). We only verify that γ ∗(y) ∈ F
†∞

for all y ∈ Y (since the other parts are trivial). Suppose then that there is some
y ∈ Y such that γ ∗(y) /∈ F

†∞. As F
†∞ is closed, there is an ε > 0 such that

B̄ε(γ
∗(y)) ∩F

†∞ = ∅,

where B̄ε(v) is the closed ball of radius ε centered at v. But, there exists m′ such
that for any m > m′, γm(y) ∈ B̄ε(γ ∗(y)), which implies

B̄ε(γ
∗(y)) ∩ (∩m≤MBm(F †)) �= ∅, ∀M > m′.

Thus, the collection {B̄ε(γ ∗(y))} ∪ {Bm(F †)}∞m=1 has the finite intersection
property, and so (by the compactness of B̄ε(γ ∗(y)) ∪F †),

B̄ε(γ
∗(y)) ∩F

†∞ �= ∅,

a contradiction. Thus, F
†∞ is self-generating, and because it is bounded, from

proposition 7.3.1 F
†∞ ⊂ E (δ). But from (7.3.2), E (δ) ⊂ F

†∞, completing the
argument.

■

The proposition immediately implies the compactness of E (δ) (which can also be
directly proved along the lines of proposition 2.5.2).

Corollary

7.3.1
The set of perfect public equilibrium payoffs, E (δ), is compact.

We now turn to the monotonicity of PPE payoffs with respect to the discount fac-
tor. Intuitively, as players become more patient, it should be easier to enforce an action
profile because myopic incentives to deviate are now less important. Consequently,
we should be able to adjust continuation promises so that incentive constraints are
still satisfied, and yet players’ total payoffs have not been affected by the change in
weighting between flow and continuation values. However, as we discussed near the
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end of section 2.5.4, there is a discreteness issue: If the set of available continuations is
disconnected, it may not be possible to adjust the continuation value by a sufficiently
small amount that the incentive constraint is not violated. On the other hand, if contin-
uations can be chosen from a convex set, then the above intuition is valid. In particular,
it is often valid for large δ, where the set of available continuations can often be taken
to be convex.15 The available continuations are also convex if players use a public
correlating device.

It will be convenient to denote the set of payoffs that can be decomposed by α
on W , when the discount factor is δ, by B(W ; δ, α).

Proposition

7.3.4
Suppose 0 < δ1 < δ2 < 1, W ⊂ W ′, and W ⊂ B(W ′; δ1, α) for some α. Then
W ⊂ B(co(W ′); δ2, α).

In particular, if W ⊂ W ′ and W ⊂ B(W ′; δ1), then W ⊂ B(co(W ′); δ2).

Proof Fix v ∈ W , and suppose v is decomposed by (α, γ ) on W ′, given δ1. Then define:

γ̄ (y) = (δ2 − δ1)

δ2(1− δ1)
v + δ1(1− δ2)

δ2(1− δ1)
γ (y),

Because v, γ (y) ∈ W ′ for all y, we have γ̄ (y) ∈ co(W ′) for all y.
Moreover,

(1− δ2)ui(ai, α−i )+ δ2

∑
y

γ̄i(y)ρ(y | ai, α−i )

= (1− δ2)ui(ai, α−i )+ (δ2 − δ1)

(1− δ1)
v + δ1(1− δ2)

(1− δ1)

∑
y

γi(y)ρ(y | ai, α−i )

= (δ2 − δ1)

(1− δ1)
v + (1− δ2)

(1− δ1)

{
(1− δ1)ui(ai, α−i )+ δ1

∑
y

γi(y)ρ(y | ai, α−i )
}
.

Because α is enforced by γ and δ1 with respect to W ′, it is also enforced by γ̄
with respect to co(W ′) and δ2. Moreover, evaluating the term in {·} at α yields v,
and so V (α, γ̄ ; δ2) = v. Hence, v ∈ B(co(W ′); δ2, α).

■

Corollary

7.3.2
Suppose 0 < δ1 < δ2 < 1, and W ⊂ B(W ; δ1). If, in addition, W is bounded and
convex, then W ⊂ E (δ2). In particular, if E (δ1) is convex, then for any δ2 > δ1,
E (δ1) ⊂ E (δ2).

Proof W is self-generating, so the result follows from proposition 7.3.1.
■

Remark

7.3.3
Pure strategy restriction Abreu, Pearce, and Stacchetti (1990) restrict attention
to pure strategies but allow for a continuum of signals (see section 7.5). We
use a superscript p to denote relevant expressions when we explicitly restrict
to pure strategies of the long-lived players (we are already implicitly doing so
for continuum action spaces—see remark 7.1.1). In particular, Bp(W ) is the set
of payoffs that can be decomposed on W using profiles in which the long-lived

15. More precisely, for any equilibrium payoff in the interior of E (δ), under a mild condition, the
continuations can be chosen from a convex set (proposition 9.1.2).



7.4 ■ The Impact of Increased Precision 249

players play pure actions, and E p(δ) is the set of PPE payoffs when long-lived
players are required to play pure strategies. Clearly, all the results of this section
apply under this restriction. In particular, E p(δ) is the largest fixed point of Bp

(see also remark 2.5.1).
With only a slight abuse of language, we call E p(δ) the set of pure-strategy

PPE payoffs. We do not require short-lived players to play pure actions, because
the static game played by the short-lived players implied by some long-lived
player action profiles, (a′1, . . . , a′n), may not have a pure strategy Nash equi-
librium.16 In that event, there is no pure action profile a ∈ B with ai = a′i for
i = 1, . . . , n. Allowing the short-lived players to randomize guarantees that for
all long-lived player action profiles, (a′1, . . . , a′n), there exists (αn+1, . . . , αN)

such that (a′1, . . . , a′n, αn+1, . . . , αN) ∈ B.
◆

Proposition 7.3.4 also implies the following important corollary that will play a
central role in the next chapter.

Definition

7.3.5
A set W ⊂ Rn is locally self-generating if for all v ∈ W , there exists δv < 1 and
an open set Uv satisfying

v ∈ Uv ∩W ⊂ B(W ; δv).

Corollary

7.3.3
Suppose W ⊂ Rn is compact, convex, and locally self-generating. There exists
δ′ < 1 such that for δ ∈ (δ′, 1),

W ⊂ B(W ; δ) ⊂ E (δ).

Proof Because W is compact, the open cover {Uv}v∈W has a finite subcover. Let δ′ be
the maximum of the δv’s on this subcover. Proposition 7.3.4 then implies that for
any δ larger than δ′, we have W ⊂ E (δ) for δ > δ′.

■

7.4 The Impact of Increased Precision

In this section, we present a result, due to Kandori (1992b), showing that improving
the precision of the public signals cannot reduce the set of equilibrium payoffs.

A natural ranking of the informativeness of the public signals is provided by
Blackwell’s (1951) partial ordering of experiments. We can view the realized signal y
as the result of an experiment about the underlying space of uncertainty, the space A
of pure-action profiles. Two different public monitoring distributions (with different
signal spaces) can then be viewed as two different experiments. Let R denote the
|A| × |Y |-matrix whose ath row corresponds to the probability distribution over Y
conditional on the action profile a. We can construct a noisier “experiment” from ρ by
assuming that when y is realized under ρ, y is observed with probability 1− ε and a

16. This requires at least two short-lived players, because a single short-lived player always has a
pure best reply.
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uniform draw from Y is observed with probability ε. Denoting this distribution by ρ′
and the corresponding probability matrix R′, we have R′ = RQ, where

Q =



(1− ε)+ ε/|Y | ε/|Y | · · · ε/|Y |

ε/|Y | (1− ε)+ ε/|Y | ...
...

. . . ε/|Y |
ε/|Y | · · · ε/|Y | (1− ε)+ ε/|Y |


 .

Note that Q is a stochastic matrix, a nonnegative matrix whose rows sum to 1.
More generally, we define

Definition

7.4.1
The public monitoring distribution (Y ′, ρ′) is a garbling of (Y, ρ) if there exists a
stochastic matrix Q such that

R′ = RQ.
Note that there is no requirement that the signal spaces Y and Y ′ bear any particular

relationship (in particular, Y ′ may have more or less elements than Y ). The garbling
partial order is not strict. For example, if Q is a permutation matrix, then Y ′ is simply
a relabeling of Y and ρ and ρ′ are garblings of each other (the inverse of a stochastic
matrix is a stochastic matrix if and only if it is a permutation matrix).

It will be convenient to denote the set of payoffs that can be decomposed by
α on W , when the discount factor is δ and the public monitoring distribution is ρ,
by B(W ; δ, ρ, α). Not surprisingly, the set of payoffs that can be decomposed on W ,
when the discount factor is δ and the public monitoring distribution is ρ, will be written
B(W ; δ, ρ).

Proposition

7.4.1
Suppose the public monitoring distribution (Y ′, ρ′) is a garbling of (Y, ρ), and
W ⊂ B(W ′; δ, ρ′, α) for some α. Then W ⊂ B(co (W ′); δ, ρ, α). In particular,
if W ⊂ B(W ′; δ, ρ′), then W ⊂ B(co(W ′); δ, ρ).
For large δ, the set of available continuations can often be taken to be convex

(see note 15 on page 248). The available continuations are also convex if players use a
public correlating device. Hence, the more precise signal y must give at least as large a
set of self-generating payoffs. An immediate corollary is that the set of PPE payoffs is
at least weakly increasing as the monitoring becomes more precise. Much of Kandori
(1992b) is concerned with establishing conditions under which the monotonicity is
strict and characterizing the nature of the increase.

Proof For any γ : Y → Rn, write γi : Y → R as the vector in R|Y | describing player i’s
continuation value under γ after different signals. Fix v ∈ W and suppose v is
decomposed by (α, γ ′) under the public monitoring distribution ρ′. For any action
profile α′, denote the implied vector of probabilities on A also by α′. Player i’s
expected continuation value under ρ′ and γ ′ from any action profile α′, is then

Eρ′ [γ ′i | α′] = α′R′γ ′i .
Because (Y ′, ρ′) is a garbling of (Y, ρ), there exists a stochastic matrix Q so that
R′ = RQ. Defining γi = Qγ ′i , we get

Eρ′ [γ ′i | α′] = α′RQγ ′i = α′Rγi = Eρ[γi | α′].
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In other words, for all action profiles α′, player i’s expected continuation value
under ρ and γ is the same as that under ρ′ and γ ′. Hence, α is enforced by γ
under ρ.

Given the vectors γi ∈ R|Y | for all i, let γ (y) ∈ Rn describe the vector of
continuation values for all the players for y ∈ Y . Since Q is independent of i,

γ (y) =
∑
y′∈Y ′

qyy′γ
′(y′),

where Q = [qyy′ ]. Finally, because Q is a stochastic matrix, implying γ (y) is a
convex combination of the γ ′(y′), γ (y) ∈ co(W ′).

■

7.5 The Bang-Bang Result

The analysis to this point has assumed the set of signals is finite. The results of the
previous sections also hold when there is a continuum of signals, if the signals are
continuously distributed, the spaces of stage-game actions are finite, and we restrict
attention to pure strategies. The statements only change by requiring W to be Borel
and the mapping γ to be measurable (the proofs are significantly complicated by
measurability issues; see Abreu, Pearce, and Stacchetti 1990).

We now present the bang-bang result of Abreu, Pearce, and Stacchetti (1990,
theorem 3). We take Y to be a subset of Rn with positive Lebesgue measure, and
work with Lebesgue measurable functions γ : Y → W . A function has the bang-bang
property if it takes on only extreme points of the set W . The set of extreme points
of W ⊂ Rn is denoted extW ≡ {v ∈ W :� ∃v′, v′′ ∈ coW , λ ∈ (0, 1), v = λv′ +
(1− λ)v′′}. Recall the notation from remark 7.3.3.

Definition

7.5.1
The measurable function γ : Y → W has the bang-bang property if γ (y) ∈ extW
for almost all y ∈ Y . A pure-strategy PPE σ has the bang-bang property if after
almost every public history ht , the value of the continuation profile V (σ |ht ) is in
extE p(δ).

The assumption of a continuum of signals is necessary for the result (see
remark 7.6.3). Under that assumption, we can use Lyapunov’s convexity theorem to
guarantee that the range of the extreme points of enforcing continuations of an action
profile lies in extW . Lyapunov’s theorem plays a similar role in the formulation of the
bang-bang principle of optimal control theory.

Proposition

7.5.1
Suppose A is finite. Suppose the signals are distributed absolutely continuously
with respect to Lebesgue measure on a subset of Rk , for some k. Suppose W ⊂ Rn

is compact and a ∈ A is enforced by γ̂ on the convex hull of W . Then, there exists
a measurable function γ̄ : Y → extW such that a is enforced by γ̄ on W and
V(a, γ̂ ) = V(a, γ̄ ).

Proof Let L∞(Y,Rn) be the space of bounded Lebesgue measurable functions from Y

into Rn (as usual, we identify functions that agree almost everywhere). Define

�̂ = {γ ∈ L∞(Y,Rn) : a is enforced by γ on coW , and V(a, γ ) = V(a, γ̂ )}.



252 Chapter 7 ■ Imperfect Public Monitoring

Because γ̂ ∈ �̂, �̂ is nonempty. It is also immediate that �̂ is convex. If Y were
finite, it would also be immediate that �̂ is compact and so contains its extreme
points (because it is a subset of a finite dimensional Euclidean space). We defer
the proof that �̂ has an extreme point under the current assumptions till the end
of the section (lemma 7.5.1).

Let γ̄ be an extreme point of �̂. For finite Y , there is no expectation that the
range of γ̄ lies in extW (see remark 7.6.3). It is here that the continuum of signals
plays a role, because the finiteness ofA together with an argument due to Aumann
(1965, proposition 6.2) will imply that the range of γ̄ lies in extW .

Suppose, en route to a contradiction, that for a positive measure set of signals,
γ̄ (y) �∈ extW . Then there exists γ ′, γ ′′ ∈ L∞(Y,Rn) taking values in coW such
that γ̄ = 1

2 (γ
′ + γ ′′) and for a positive measure set of signals, γ ′(y) �= γ ′′(y).17

Let γ ∗ ≡ 1
2 (γ

′ − γ ′′), so that γ̄ + γ ∗ = γ ′ and γ̄ − γ ∗ = γ ′′.
We now define a vector-valued measure µ by setting, for any measurable set

Y ′ ⊂ Y ,

µ(Y ′) =
(∫

Y ′
γ ∗i (y)ρ(dy | a′)

)
i=1,...,n;a′∈A

∈ Rn|A|,

where ρ(· | a) is the probability measure on Y implied by a ∈ A. Because γ ∗i is
bounded for all i (as W is compact),µ is a vector-valued finite nonatomic measure.
By Lyapunov’s convexity theorem (Aliprantis and Border 1999, theorem 12.33),
{µ(Y ′) : Y ′ a measurable subset of Y } is convex.18 Hence, there exists Y ′ such
that µ(Y ′) = 1

2µ(Y ), with neither Y ′ nor Y\Y ′ having zero Lebesgue measure.
Now define γ̄ ′, γ̄ ′′ ∈ L∞(Y,Rn) by

γ̄ ′(y) =
{
γ ′(y), y ∈ Y ′,
γ ′′(y), y �∈ Y ′, and γ̄ ′′(y) =

{
γ ′′(y), y ∈ Y ′,
γ ′(y), y �∈ Y ′.

Note that both γ̄ ′i and γ̄ ′′i take values in coW . Because∫
Y

γ̄ ′i (y)ρ(dy | a′)

=
∫
Y ′
γ ′i (y)ρ(dy | a′)+

∫
Y\Y ′

γ ′′i (y)ρ(dy | a′)

=
∫
Y ′
[γ̄i (y)+ γ ∗i (y)]ρ(dy | a′)+

∫
Y\Y ′
[γ̄i (y)− γ ∗i (y)]ρ(dy | a′)

=
∫
Y

γ̄i(y)ρ(dy | a′)+
∫
Y ′
γ ∗i (y)ρ(dy | a′)−

∫
Y\Y ′

γ ∗i (y)ρ(dy | a′)

=
∫
Y

γ̄i(y)ρ(dy | a′)+ 1

2

∫
Y

γ ∗i (y)ρ(dy | a′)− 1

2

∫
Y

γ ∗i (y)ρ(dy | a′)

=
∫
Y

γ̄i(y)ρ(dy | a′),

17. This step requires an appeal to a measurable selection theorem to ensure that γ ′ and γ ′′ can be
chosen measurable, that is, in L∞(Y,Rn).

18. For an elementary proof of Lyapunov’s theorem based on the intermediate value theorem, see
Ross (2005).
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γ̄ ′ ∈ �̂. A similar calculation shows that we also have γ̄ ′′ ∈ �̂. Finally, note that
γ̄ = 1

2 (γ̄
′ + γ̄ ′′) and for a positive measure set of signals, y ∈ Y , γ̄ ′(y) �= γ̄ ′′(y).

But this contradicts γ̄ being an extreme point of �̂.
■

Remark

7.5.1
Adding a public correlating device to a finite public monitoring game with a finite
signal space yields a public monitoring game whose signals satisfy the hypotheses
of proposition 7.5.1. Suppose Y = {y, ȳ} in the finite public monitoring game.
Denoting the realization of the correlating device by ω ∈ [0, 1], a signal is now

ỹ =
{
ω, if y = y,
ω + 1, if y = ȳ.

If the distribution of ω is absolutely continuous on [0, 1], such as for the public
correlating device described in definition 2.1.1, then the distribution of ỹ is
absolutely continuous on [0, 2].

The analysis in section 7.2.3 provides a convenient illustration of the bang-bang
property in a symmetric setting. For δ ≥ 1/(3p − 2q), the two extreme values are
0 and 2− (1− p)/(p − q), and the optimal PPE determines a set of values for ω
(though the set is not unique, its probability is and is given by φ), which leads to
a bang-bang equilibrium with value 2− (1− p)/(p − q).

More generally, any particular equilibrium payoff can be decomposed using a
correlating distribution with finite support (because, from Carathéodory’s theo-
rem [Rockafellar 1970, theorem 17.1], any point in co W can be written as a finite
convex combination of points in ext W ). To ensure that any equilibrium payoff
can be decomposed, however, the correlating device must have a continuum of
values, so that any finite distribution can be constructed.

Even in the absence of a public correlating device, a continuously distributed
public signal (via Lyapunov’s theorem) effectively allows us to construct any finite
support public randomizing device “for free.” For example, if the support of y is
the unit interval, by dividing the interval into small subintervals, and identifying
alternating subintervals with Heads and Tails, we obtain a coin flip.

◆

Corollary

7.5.1
Under the hypotheses of proposition 7.5.1, if W ⊂ Rn is compact, Bp(W ) =
Bp(coW ).

Proof By monotonicity of Bp, we immediately have Bp(W ) ⊂ Bp(coW ). Proposi-
tion 7.5.1 implies Bp(coW ) ⊂ Bp(W ).

■

Corollary

7.5.2
Under the hypotheses of proposition 7.5.1, if 0 < δ1 < δ2 < 1, E p(δ1) ⊂ E p(δ2).

Proof Let W = E p(δ1). From proposition 7.3.4, W ⊂ Bp(coW ; δ2). Because W is
compact, corollary 7.5.1 implies W ⊂ Bp(W ; δ2). Because W is self-generating
(with respect to δ2), proposition 7.3.1 implies W ⊂ E p(δ2).

■
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Remark

7.5.2
Symmetric games Recall that an equilibrium of a symmetric game is strongly
symmetric if all players choose the same action after every public history. Proposi-
tion 7.5.1 applies to strongly symmetric PPE.19 Consequently, strongly symmetric
equilibria have a particulary simple structure in this case, because there are only
two extreme points in the convex hull of the set of strongly symmetric PPE payoffs
(we discuss an example in detail in section 11.1.1). However, proposition 7.5.1
does not immediately imply a similar simple structure for general PPE. As we will
see in chapter 9, we are often interested in self-generating sets that are balls, whose
set of extreme points is a circle with two players and the surface of a sphere with
three players. Restricting continuations to this set is not a major simplification.

◆

We now complete the proof of proposition 7.5.1.

Lemma

7.5.1
Under the hypotheses of proposition 7.5.1,

�̂ = {γ ∈ L∞(Y,Rn) : a is enforced by γ on coW , and V(a, γ ) = V(a, γ̂ )},

has an extreme point.

Proof We denote by L1(Y,Rm) the collection of functions f = (f1, . . . , fm), with
each fi Lebesgue integrable. Writing ei for the ith standard basis vector (i.e.,
the vector whose ith coordinate equals 1 and all other coordinates are 0), any
function f ∈ L1(Y,Rm) can be written as

∑
i fiei , with fi ∈ L1(Y,R). For any

continuous linear functional F on L1(Y,Rm), let Fi be the implied linear func-
tional on L1(Y,R) defined by, for any function h ∈ L1(Y,R), Fi(h) ≡ F(hei).
From the Riesz representation theorem (Royden 1988, theorem 6.13), there exists
gi ∈ L∞(Y,R), such that for all h ∈ L1(Y,R), Fi(h) =

∫
hgi . Then,

F(f ) =
∑

i
F (fiei) =

∑
i
Fi(fi) =

∑
i

∫
figi =

∫
〈f, g〉,

where g = (g1, . . . , gm) ∈ L∞(Y,Rm), and 〈·, ·〉 is the standard inner product
on Rm.

Hence, L∞(Y,Rm) is the dual of L1(Y,Rm), and so the set of functions
‖g‖∞ ≤ 1 (the “unit ball”) is weak-* compact (by Alaoglu’s theorem; Alipran-
tis and Border 1999, theorem 6.25). But this immediately implies the weak-*
compactness of

�̂† ≡ {γ ∈ L∞(Y,Rn) : γ (y) ∈ coW ∀y ∈ Y },

because for some m ≤ n, it is the image of the unit ball in L∞(Y,Rm) under a
continuous function. (Because coW is compact and convex, it is homeomorphic
to {w ∈ Rm : |w| ≤ 1} for some m; let ϕ : {w ∈ Rm : |w| ≤ 1} → coW denote
the homeomorphism. Then, �̂† is the image of the unit ball in L∞(Y,Rm) under
the continuous map J , where J (g) = ϕ ◦ g.)

19. Abreu, Pearce, and Stacchetti (1986) develops the argument for strongly symmetric equilibria.
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We now turn to �̂, and argue that it is a weak-* closed subset of �̂†. Suppose
γ ∈ L∞(Y,Rn) is the weak-* limit of a net {γ β}. Hence,

∫
〈γ β(y), f (y)〉dy →

∫
〈γ (y), f (y)〉dy ∀f ∈ L1(Y,Rn),

and, in particular, for all i,

∫
γ
β
i (y)f (y)dy →

∫
γi(y)f (y)dy ∀f ∈ L1(Y,R).

Because the signals are distributed absolutely continuously with respect to
Lebesgue measure, for each action profile, a′ ∈ A, there is a Radon-Nikodym
derivative dρ(· | a′)/dy ∈ L1(Y,R) with

∫
γ ′i (y)ρ(dy | a′) =

∫
γ ′i (y)

dρ(y | a′)
dy

dy, ∀i, ∀γ ′ ∈ L∞(Y,Rn).

This implies that �̂ is a weak-* closed (and so compact) subset of �̂†, because
the additional constraints on γ that define �̂ only involve expressions of the
form

∫
γi(y)ρ(dy | a′). Finally, the Krein-Milman theorem (Aliprantis and Bor-

der 1999, theorem 5.117) implies that �̂ has an extreme point.
■

7.6 An Example with Short-Lived Players

We revisit the product-choice example of example 2.7.1. The stage game payoffs are
reproduced in figure 7.6.1. We begin with the game on the left, where player 1 is a
long-lived and player 2 a short-lived player. We also begin with perfect monitoring.
For a mixed profile α in the stage game, let αH = α1(H) and αh = α2(h). We denote
a mixed action for player 1 by αH and for player 2 by αh. Then the relevant set of
profiles incorporating the myopic behavior of player 2 is

B = {(αH , �) : αH ≤ 1
2

} ∪ {(αH , h) : αH ≥ 1
2

} ∪ {( 1
2 , α

h) : αh ∈ [0, 1]}.

h �

H 2, 3 0, 2

L 3, 0 1, 1

h �

H 2, 3 1, 2

L 3, 0 0, 1

Figure 7.6.1 The games from figure 2.7.1. The left game is the
product-choice game of figure 1.5.1. Player 1’s action L is a
best reply to 2’s choice of � in the left game, but not in the right.
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Moreover, from section 2.7.2, player 1’s minmax payoff, v1, equals 1, and the upper
bound on his equilibrium payoffs, v̄1, equals 2. In other words, the set of possible PPE
player 1 payoffs is the interval [1, 2].

Because there is only one long-lived player, enforceability and decomposition
occur on subsets of R, and we drop the subscript on player 1 payoffs.

7.6.1 Perfect Monitoring

With perfect monitoring, the set of signals is simply A1 × A2. The simplest candidate
equilibrium in which Hh is played is the grim trigger profile in which play begins with
Hh, and remains there until the first deviation, after which play is perpetual L�. This
profile is described by the doubleton set of payoffs {1, 2}. It is readily verified that this
set is self-generating for δ ≥ 1/2, and so the trigger strategy profile is a PPE, and so a
subgame-perfect equilibrium, for δ ≥ 1/2.

We now ask when the set [1, 2] is self-generating, and begin with the pure profiles
in B, namely, Hh andL�. BecauseL� is a stage-game Nash equilibrium, L� is trivially
enforceable using a constant continuation. Player 1’s payoffs must lie in the interval
[1, 2], so the set of payoffs decomposed by L� on [1, 2], W L�, is given by

v ∈ W L� ⇐⇒ ∃γ ∈ [1, 2] such that v = V(L�, γ ) = (1− δ)+ δγ.

Hence, W L� = [1, 1+ δ].
The enforceability of Hh on [1, 2] is straightforward. The pair of continuations

γ = (γ (Lh), γ (Hh)) enforces Hh if

(1− δ)2+ δγ (Hh) ≥ (1− δ)3+ δγ (Lh),

that is,

γ (Hh) ≥ γ (Lh)+ (1− δ)
δ

. (7.6.1)

Hence, the set of payoffs decomposed by Hh on [1, 2], W Hh, is given by

v ∈ W Hh ⇐⇒ ∃γ (Lh), γ (Hh) ∈ [1, 2] satisfying (7.6.1)

such that v = V(Hh, γ ) = (1− δ)2+ δγ (Hh).

Hence, W Hh = [3− 2δ, 2] if δ ≥ 1/2 (it is empty if δ < 1/2).
The set of possible PPE payoffs [1, 2] is self-generating if W L� ∪W Hh ⊃ [1, 2].

Thus, [1, 2] is self-generating, and so every payoff in [1, 2] is a subgame-perfect
equilibrium payoff, if δ ≥ 2/3. This requirement on δ is tighter than the requirement
(δ ≥ 1/2) for grim trigger to be an equilibrium. Just as in section 2.5.4, we could
describe the equilibrium-outcome path for any v ∈ [1, 2]. Of course, here player 2’s
action is always a myopic best reply to that of player 1.

Although W L� ∪W Hh ⊃ [1, 2] is sufficient for the self-generation of [1, 2], it
is not necessary, as we now illustrate. In fact, the set [1, 2] is self-generating for
δ ∈ [1/2, 2/3) as well as for higher δ once we use mixed strategies. Consider the
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mixed profile α = (1/2, αh) for fixed αh ∈ [0, 1]. Because both actions for player 1
are played with strictly positive probability, the continuations γ must satisfy

v = αh[(1− δ)2+ δγ (Hh)] + (1− αh)[(1− δ)× 0+ δγ (H�)]
= αh[(1− δ)3+ δγ (Lh)] + (1− αh)[(1− δ)+ δγ (L�)],

where the first expression is the expected payoff from H and the second is that from
L. Rearranging, we have the requirement

δαh[γ (Hh)− γ (H�)− (γ (Lh)− γ (L�))] = (1− δ)+ δ(γ (L�)− γ (H�)).

We now try enforcing α with continuations that satisfy γ (Hh) = γ (H�) ≡ γH and
γ (Lh) = γ (L�) ≡ γ L. Imposing this constraint yields

γH = γ L + (1− δ)
δ

. (7.6.2)

Because we can choose γH , γ L ∈ [1, 2] to satisfy this constraint as long as δ ≥ 1/2,
we conclude that α is enforceable on [1, 2]. Moreover, the set of payoffs decomposed
by α = (1/2, αh) on [1, 2], W α , is given by

v ∈ W α ⇐⇒ ∃γ L, γ H ∈ [1, 2] satisfying (7.6.2)

such that v = V(α, γ ) = 2αh(1− δ)+ δγ H .

Hence,

W α = [2αh(1− δ)+ 1, 2αh(1− δ)+ 2δ].

Finally,

∪{α:αh∈[0,1]}W α = [1, 2].

Hence, the set of payoffs [1, 2] is self-generating, and therefore is the maximal set of
subgame-perfect equilibrium payoffs, for all δ ≥ 1/2. The lower bound on δ agrees
with that for the trigger strategy profile to be an equilibrium, and is lower than for
self-generation of [1, 2] under pure strategies. Moreover, we have shown that for any
v ∈ [1, 2], a subgame-perfect equilibrium with that expected payoff has the long-run
player randomizing in every period, putting equal probability onH andL, independent
of history. The randomizations of the short-lived player, on the other hand, do depend
on history.

We now ask whether there is a simple strategy of this form. In particular, is the dou-
bleton set {γ L, γ H } ≡ {γH − (1− δ)/δ, γ H } self-generating, where the value for γ L

was chosen to satisfy (7.6.2)? The payoff γH is decomposed by α = (1/2, αh(H)) on
{γ L, γ H }, with αh(H) = γH/2. The payoff γ L is decomposed by α = (1/2, αh(L))
on {γ L, γ H } if

γ L = αh(L) 2 (1− δ)+ δγ H .
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Figure 7.6.2 The automaton representing the profile with payoffs {γL, γH }.
The associated behavior is f (γH ) = (1/2, αh(H)) and f (γ L) = (1/2, αh(L)).
Building on the intuition of section 7.3, states are labeled with their values.
State transitions only depend on player 1’s realized action and player 1 plays
identically in the two states, whereas player 2 plays differently.

Solving for the implied αh(L) gives

αh(L) = γ L − δγ H
2(1− δ) =

γH (1− δ)δ − (1− δ)
2δ(1− δ)

= δγ H − 1

2δ
= αh(H)− 1

2δ
.

The quantities αh(H) and αh(L) are well-defined probabilities for γH ∈ [1/δ, 2] and
δ ≥ 1/2. Note that the implied range for γ L is [1, 2− (1− δ)/δ]. Hence, we have a
one-dimensional manifold of mixed equilibria. The associated profile is displayed in
figure 7.6.2. Player 1 is indifferent between L, the myopically dominant action, and
H , because a play ofH is rewarded in the next period by hwith probability αH , rather
than with the lower probability αL.

Remark

7.6.1
Because player 1’s behavior in these mixed strategy equilibria is independent of
history, based on such profiles, it is possible to construct nontrivial equilibria when
signals are private, precluding the use of histories to coordinate continuation play.
We construct such an equilibrium in section 12.5.

◆

We turn now to the stage game on the right in figure 7.6.1, maintaining perfect
monitoring and our convention on αH and αh. The relevant set of profiles is still given
by the set B calculated earlier (since player 2’s payoffs are identical in the two games).
Moreover, the bounds on player 1’s equilibrium payoffs are unchanged: Player 1’s
payoffs must lie in the interval [1, 2]. The crucial change is that player 1’s choice L
(facilitating 2’s minmaxing of 1) is no longer a myopic best reply to that action of �.

As before, we begin with the pure profiles in B, namely, Hh andL�. BecauseL� is
not a stage-game Nash equilibrium, the enforceability ofL�must be dealt with similarly
to that of Hh. The enforceability of both L� and Hh on [1, 2] is, as before, immediate;
it is enough that γ (L�)− γ (H�), γ̂ (Hh)− γ̂ (Lh) ≥ (1− δ)/δ, where γ and γ̂ are
the continuation functions for L� and Hh, respectively. Hence, the set of payoffs
decomposed by L� is the interval [1, 2δ], whereas the set of payoffs decomposed by
Hh is the interval [3− 2δ, 2]. Thus, [1, 2] is self-generating for δ ≥ 3/4.

BecauseL� is not a Nash equilibrium of the stage game, there are no pure strategy
equilibria in trigger strategies. However, as we saw in example 2.7.1, there are simple



7.6 ■ An Example with Short-Lived Players 259

Figure 7.6.3 The automaton representing the profile with
payoffs {2δ, 2}. The associated behavior is f (wa) = a.

profiles in which Hh is played. For example, the doubleton set of payoffs {2δ, 2} is
easily seen to be self-generating if δ ≥ 1/2, because in that case 2− 2δ ≥ (1− δ)/δ.
This self-generating set corresponds to the equilibrium described in example 2.7.1,
and illustrated in figure 7.6.3.

We now turn to enforceability of mixed-action profiles, α = (1/2, αh) for fixed
αh ∈ [0, 1]. Similarly to before, the continuations γ must satisfy

v = αh[(1− δ)2+ δγ (Hh)] + (1− αh)[(1− δ)+ δγ (H�)]
= αh[(1− δ)3+ δγ (Lh)] + (1− αh)[(1− δ)× 0+ δγ (L�)].

Rearranging, we have

αh[(1− δ)2+ δ(γ (Lh)− γ (L�)− (γ (Hh)− γ (H�)))]
= (1− δ)+ δ(γ (H�)− γ (L�)). (7.6.3)

We now try enforcing α with continuations that satisfy γ (Hh) = γ (H�) ≡ γH and
γ (Lh) = γ (L�) ≡ γ L. Imposing this constraint, and rearranging, yields

γH = γ L + (2αh − 1)
(1− δ)
δ

. (7.6.4)

Because for δ ≥ 1/2 and any αh ∈ [0, 1]we can choose γH , γ L ∈ [1, 2] to satisfy this
constraint, α is enforceable on [1, 2]. Note that, unlike for the product choice game,
here the continuations depend on the current randomizing behavior of player 2. This
is a result of player 1’s myopic incentive to play L depending on the current play of
player 2. An alternative would be to choose continuations so that the coefficient of
αh equaled 0 in (7.6.3), in which case continuations depend on the realized action of
player 2.

The set of payoffs decomposed by α = (1/2, αh) on [1, 2], W α , is given by

v ∈ W α ⇐⇒ ∃γ L, γ H ∈ [1, 2] satisfying (7.6.4)

such that v = 3αh(1− δ)+ δγ L.
Hence, for αh ≥ 1/2,

W α = [3αh(1− δ)+ δ, αh(1− δ)+ 1+ δ],
and for αh ≤ 1/2,

W α = [αh(1− δ)+ 1, 3αh(1− δ)+ 2δ].



260 Chapter 7 ■ Imperfect Public Monitoring

Finally,
∪{α:αh∈[0,1]}W α = [1, 2].

Hence, the set of payoffs [1, 2] is self-generating for δ ≥ 1/2. Consequently, every
payoff in [1, 2] is a subgame-perfect equilibrium payoff for δ ≥ 1/2.

7.6.2 Imperfect Public Monitoring of the Long-Lived Player

We now discuss the impact of public monitoring on the product-choice game (the left
game in figure 7.6.1). The actions of the long-lived player are now not public, but there
is a public signal y1 ∈ {y, ȳ} of his action. We interpret ȳ as high quality and y as low
quality. The actions of the short-lived player remain public, and so the space of public
signals is Y ≡ {y, ȳ} × A2.20 The distribution of y1 is given by

ρ1(ȳ | a) =
{
p, if a1 = H ,

q, if a1 = L,
(7.6.5)

with 0 < q < p < 1. The joint distribution ρ over Y is given by ρ(y1y2 | a) = ρ1(y1 |
a) if y2 = a2, and 0 otherwise.

The relevant set of profiles continues to be given by the set B calculated earlier.
Moreover, the bounds on player 1’s equilibrium payoffs are still valid: Player 1’s
payoffs must lie in the interval [1, 2]. Denote player 1’s maximum PPE payoff by
v∗ ≥ 1 (recall that because there is only one long-lived player, we drop the subscript
on player 1’s payoff).

As before, we begin with the pure profiles in B, namely, Hh and L�. Because
L� is a stage-game Nash equilibrium, L� is trivially enforceable using a constant
continuation. Moreover, we consider first only continuations implemented by pure
strategy PPE. Let v∗p denote the maximum pure strategy PPE player 1 payoff. Player
1’s payoffs must lie in the interval [1, v∗p], so the set of payoffs decomposed by L�
on [1, v∗p], W L�, is given by

v ∈ W L� ⇐⇒ ∃γ ∈ [1, v∗p] such that v = (1− δ)+ δγ.
Hence,

W L� = [1, 1+ δ(v∗p − 1)].
It is worth noting that if v∗p > 1, then v∗p �∈ W L�.

The continuations γ : {y, ȳ} × A2 → [1, v∗p] enforce Hh if

2(1− δ)+ δ{pγ (ȳh)+ (1− p)γ (yh)} ≥ 3(1− δ)+ δ{qγ (ȳh)+ (1− q)γ (yh)},
that is,

γ (ȳh) ≥ γ (yh)+ (1− δ)
δ(p − q) . (7.6.6)

Hence, the payoff following the good signal ȳ must exceed that of the bad signal y
by the difference (1− δ)/[δ(p − q)]. This payoff difference shrinks as the discount

20. It is worth noting that the analysis is unchanged when the short-lived players’ actions are not
public. This corresponds to taking {y, ȳ} as the space of public signals.
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factor increases, and hence the temptation of a current deviation diminishes, and as
p − q increases, and hence signals become more responsive to actions.

Let W Hh denote the set of payoffs that can be decomposed by Hh on [1, v∗p].
Then,

v ∈ W Hh ⇐⇒ ∃γ (yh), γ (ȳh) ∈ [1, v∗p] satisfying (7.6.6) such that

v = V(Hh, γ ) = (1− δ)2+ δ{pγ (ȳh)+ (1− p)γ (yh)}.

The maximum value of W Hh is obtained by setting γ (ȳh) = v∗p and having (7.6.6)
hold with equality. We thus have (if v∗p > 1)

v∗p = max W Hh = (1− δ)2− (1− δ)(1− p)
(p − q) + δv∗p,

and solving for v∗p gives

v∗p = 2− (1− p)
(p − q) < 2 = v̄.

We need to verify that v∗p > 1, which is equivalent to (1− p) < (p − q), that is,
2p − q > 1. If 2p − q ≤ 1, then the only pure strategy PPE is L� in every period.

Remark

7.6.2
Inefficiency due to binding moral hazard Player 1 is subject to binding moral
hazard (definition 8.3.1). As a result, all PPE are inefficient (proposition 8.3.1). We
have just shown that the maximum pure strategy PPE player 1 payoff is strictly less
than 2. We next demonstrate that for large δ, all PPE in this example are bounded
away from efficiency (we return to the general case in section 8.3.2). This is in
contrast to both the perfect monitoring version of this example (where we have
already seen that for a sufficiently patient long-lived player, there are efficient
PPE), and the general case of only long-lived players (where, under appropriate
regularity conditions and for patient players, there are approximately efficient
PPE, proposition 9.2.1).

Intuitively, the imperfection in the monitoring implies that on the equilibrium
path player 1 must face low continuations with positive probability. Because
player 2 is short-lived, it is impossible to use intertemporal transfers of payoffs to
maintain efficiency while still providing incentives.

◆

The minimum value of W Hh is obtained by setting γ (yh) = 1 and having (7.6.6)
hold with equality. We thus have

min W Hh = 1+ (1− δ)(2p − q)
(p − q) .

The set of payoffs [1, v∗p] is self-generating using pure strategies if W L� ∪
W Hh ⊃ [1, v∗p], which is implied by

min W Hh ≤ max W L�.
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Substituting and solving for the bound on δ gives

(2p − q)
(4p − 2q − 1)

≤ δ. (7.6.7)

The bound 2p − q > 1 implies the left side is less than 1.
When W L� ∪W Hh ⊃ [1, v∗p], v∗p can be achieved in a pure strategy equilibrium,

because the continuation promises γ (yh) and γ (ȳh) decomposing v∗p using Hh are
elements of W L� ∪W Hh, and the continuation promises supporting γ (yh) and γ (ȳh)
are themselves in W L� ∪W Hh, and so on.

A strategy profile that achieves the payoff v∗p can be constructed as follows.
First, set γ (v) = (v − (1− δ))/δ (the constant continuation decomposing v usingL�),
and let γ ȳ, γy : [0, v∗p] → R be the functions solving v = V(Hh, (γ ȳ(v), γy(v)))
when (7.6.6) holds with equality:

γ ȳ = v

δ
− 2(1− δ)

δ
+ (1− p)(1− δ)

δ(p − q) ,

and γy = v

δ
− 2(1− δ)

δ
− p(1− δ)
δ(p − q) .

Now, define ζ :H → [1, v∗p] as follows: ζ(∅) = v∗p and for ht ∈H t ,

ζ(ht , y1a2) =



γ ȳ(ζ(ht )), if y1 = ȳ and ζ(ht ) ∈ W Hh,

γy(ζ(ht )), if y1 = y and ζ(ht ) ∈ W Hh,

γ (ζ(ht )), if ζ(ht ) ∈ W L�\W Hh.

The strategies are then given by

σ1(∅) = H, σ2(∅) = h,

σ1(h
t ) =

{
H, if ζ(ht ) ∈ W Hh,

L, if ζ(ht ) ∈ W L�\W Hh,

and

σ2(h
t ) =

{
h, if ζ(ht ) ∈ W Hh,

�, if ζ(ht ) ∈ W L�\W Hh.

We thus associate with every history of signals ht a continuation payoff ζ(ht ).
This continuation payoff allows us to associate an action with the history, either Hh or
L�, depending on whether the continuation payoff lies in the set W Hh or W L�\W Hh.
We then associate with the signals continuation payoffs that decompose the current
continuation payoff into the payoff of the currently prescribed action and a new con-
tinuation payoff. If the currently prescribed action is L�, this decomposition is trivial,
as the current payoff is 1 and there are no incentives to be created. We can then take the
continuation payoff to be simply (ζ(ht )− (1− δ))/δ. When the currently prescribed
action is Hh, we assign continuation payoffs according to the functions γ ȳ and γy that
allow us to enforce payoffs in the set W Hh.

There is still the possibility that mixing by the players will allow player 1 to achieve
a higher PPE payoff or achieve additional PPE payoffs for lower δ. In what follows,
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recall that v∗ is the maximum player 1 PPE payoff, allowing for mixed strategies, and
so v∗ ≥ v∗p. Consider the mixed profile α = (1/2, αh) for fixed αh ∈ [0, 1]. Because
both actions for player 1 are played with strictly positive probability, the continuations
γ must satisfy

v = αh[(1− δ)2+ δ{pγ (ȳh)+ (1− p)γ (yh)}]
+ (1− αh)[(1− δ)× 0+ δ{pγ (ȳ�)+ (1− p)γ (y�)}]

= αh[(1− δ)3+ δ{qγ (ȳh)+ (1− q)γ (yh)}]
+ (1− αh)[(1− δ)+ δ{qγ (ȳ�)+ (1− q)γ (y�)}],

where the first expression is the expected payoff fromH and the second is that fromL.
Rearranging, the continuations must satisfy the requirement

δ(p − q)[αhγ (ȳh)+ (1− αh)γ (ȳ�)− {αhγ (yh)+ (1− αh)γ (y�)}] = (1− δ).
(7.6.8)

Letting
γ ȳ(αh) = αhγ (ȳh)+ (1− αh)γ (ȳ�)

and
γy(αh) = αhγ (yh)+ (1− αh)γ (y�),

requirement (7.6.8) can be rewritten as

γ ȳ(αh) = γy(αh)+ (1− δ)
δ(p − q) . (7.6.9)

If we can choose γ (y1a2) ∈ [1, v∗] to satisfy this constraint, then α is enforceable on
[1, v∗]. A sufficient condition to do so is

(1− δ)
δ(p − q) ≤ v

∗p − 1

because v∗p ≤ v∗. The above inequality is implied by

1

(2p − q) ≤ δ. (7.6.10)

If α is enforceable on [1, v∗], the set of payoffs decomposed by α = (1/2, αh) on
[1, v∗], W α , is given by

v ∈ W α ⇐⇒ ∃γ (y1a2) ∈ [1, v∗] satisfying (7.6.9)

such that v = V(α, γ )

= 2αh(1− δ)+ δ{pγ ȳ(αh)+ (1− p)γy(αh)}.
Hence,

W α =
[

2αh(1− δ)+ δ + p(1− δ)
(p − q) , 2αh(1− δ)+ δv∗ − (1− p)(1− δ)

(p − q)
]
,

which is nonempty if (7.6.10) holds.
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We can now determine v∗: Because v∗ = supα max W α , and the supremum is
achieved by αh = 1, it is straightforward to verify v∗ = v∗p. Hence, under (7.6.10),

∪{α:αh∈[0,1]}W α = [1, v∗] = [1, v∗p],
and the set of payoffs [1, v∗] is self-generating, and so is the maximal set of PPE
payoffs, for all δ satisfying (7.6.10). Moreover, this lower bound on δ is lower than
that in (7.6.7), the bound for self-generation of [1, v∗] under pure strategies.

Remark

7.6.3
Failure of bang-bang The payoff v∗ can only be decomposed by (Hh, γ̂ ) on
[1, v∗], where γ̂ (ȳ) = v∗ and γ̂ (y) solves (7.6.6) with equality. Consequently, the
set �̂ in the proof of proposition 7.5.1 is the singleton {γ̂ }, and so (trivially) γ̂ is
an extreme point of �̂. Because ext[1, v∗] = {1, v∗}, γ̂ (y) �∈ ext[1, v∗], and the
bang-bang property fails. The problem is that after the signal y, decomposability
of v∗ requires a lower payoff than v∗, but not as low as 1. If there was a public
correlating device, then the bang-bang property could trivially be achieved by
specifying a public correlation over continuations in {1, v∗}whose expected value
equaled γ̂ (y).

◆

7.7 The Repeated Prisoners’ Dilemma Redux

7.7.1 Symmetric Inefficiency Revisited

Let γ̄ be the largest payoff in any strongly symmetric pure-strategy PPE of the repeated
prisoners’ dilemma from section 7.2. From (7.2.17), we know

γ̄ ≤ 2− (1− p)
(p − q) . (7.7.1)

We now show that this upper bound can be achieved without the correlating device
used in section 7.2.3. The strategy profile in section 7.2.3 used grim trigger, with
a bad signal triggering permanent SS with a probability smaller than 1 (using public
correlation). Here we show that by appropriately keeping track of the history of signals,
we can effectively do the same thing without public correlation. We are interested in
strongly symmetric pure-strategy equilibria, so we need only be concerned with the
enforceability of EE and SS, and we will be enforcing on diagonal subsets of R2, that
is, subsets where γ1 = γ2. We treat such subsets as subsets of R.

We are interested in constructing a profile similar to grim trigger, but where the
first observation of y need not trigger the switch to SS. (Two examples of such profiles
are displayed in figures 13.4.1 and 13.4.2.) We show that a set W ≡ {0} ∪ [γ, γ̄ ],
with γ > 0, is self-generating. Note that W is not an interval. Observe first that 0 is
trivially decomposed on this set by SS, because SS is a Nash equilibrium of the stage
game and no intertemporal considerations are needed to enforce SS. Hence a constant
continuation payoff of 0 suffices.

We decompose the other payoffs using EE, with two different specifications of
continuations. Let W ′ be the set of payoffs that can be decomposed using EE on W

and imposing the continuation value γy = 0, whereas W ′′ will be the set of payoffs
that can be decomposed using EE on [γ, γ̄ ] (so that γy > 0).
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The pair of values γ = (γy, γ ȳ) enforces EE if

(1− δ)2+ δ{pγ ȳ + (1− p)γy} ≥ (1− δ)3+ δ{qγ ȳ + (1− q)γy},
that is,

γ ȳ ≥ γy + (1− δ)
δ(p − q) ≡ γ

y +�. (7.7.2)

The set of payoffs that can be decomposed using EE on W and imposing the
continuation value γy = 0 is given by

v ∈ W ′ ⇐⇒ ∃γ ȳ ∈ [γ, γ̄ ] satisfying (7.7.2) such that

v = V(EE, γ ) = (1− δ)2+ δpγ ȳ .
Observe that if W is self-generating, then the minimum of W ′ must equal γ . To find
that value, we set γ ȳ = γ , and solve

γ = (1− δ)2+ δpγ
to obtain

γ = (1− δ)2
1− δp .

To decompose γ in this way, (7.7.2) must be feasible, that is,

γ ≥ (1− δ)
δ(p − q) ,

or

δ ≥ 1

(3p − 2q)
≡ δ0. (7.7.3)

When this condition holds, the two-point set {0, γ } is self-generating (and corresponds
to grim trigger), whereas the set W ′ is empty if (7.7.3) fails. The bound (7.7.3) is
the same as that for grim trigger to be an equilibrium without (see (7.2.4)) or with
(see (7.2.16)) public correlation.

The maximum value of W ′, γ̄ ′ is obtained by setting γ ȳ = γ̄ , and so we have

W ′ = [γ, γ̄ ′] =
[
(1− δ)2
1− δp , 2(1− δ)+ δpγ̄

]
.

We now consider W ′′. To find the maximum v ∈ W ′′, we set v = γ̄ = γ ȳ and
suppose (7.7.2) holds with equality:

γ̄ = (1− δ)2+ δ
{
pγ̄ + (1− p)

(
γ̄ − (1− δ)

δ(p − q)
)}

= 2(1− δ)+ δγ̄ − (1− p)(1− δ)
(p − q) ,

so that

γ̄ = 2− (1− p)
(p − q) ,
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matching the value in (7.7.1). If condition (7.7.3) holds with equality, then γ = γ̄ .
We must also verify that (7.7.2) is consistent with decomposing γ̄ on [γ, γ̄ ], which
requires

γ ≤ γ̄ −� = γ̄ − (1− δ)
δ(p − q) . (7.7.4)

Because γ̄ is independent of δ, and both� and γ converge to 0 as δ→ 1, there exists
a δ1 < 1 such that for δ > δ1, (7.7.4) is satisfied. Moreover, because γ = γ̄ for δ = δ0

(the lower bound in (7.7.3)), δ1 > δ0. This implies that for δ ∈ [δ0, δ1), W ′′ is empty.
To find the minimum value γ ′′ ≡ min W ′′, we set γy = γ and again sup-

pose (7.7.2) holds with equality. We thus have

W ′′ = [γ ′′, γ̄ ] =
[

2(1− δ)+ δγ + δp�, 2− (1− p)
(p − q)

]
.

For self-generation, we need

W = {0} ∪W ′ ∪W ′′,

which is implied by γ ′′ ≤ γ̄ ′. This is equivalent to

γ ≤ p(γ̄ −�).
Similarly to (7.7.4), there exists δ2 > δ1 such that the above inequality holds for all
larger δ. If δ ≥ δ2, the upper bound γ̄ can be achieved in a pure strategy symmetric
equilibrium. The implied strategy profile has a structure similar to grim trigger with
public correlation. For all strictly positive continuation values, the players continue
to exert effort, but the first time a continuation γy equals 0, SS is played permanently
thereafter.

Remark

7.7.1
Multiple self-generating sets We could instead have determined the conditions
under which the entire interval [0, γ̄ ] is self-generating. Because the analysis for
that case is very similar to that in section 7.6.2, we simply observe that [0, γ̄ ] is
indeed self-generating if

δ ≥ 3p − 2q

2(3p − 2q)− 1
. (7.7.5)

Notice that the bound δ2 and the bound given by (7.7.5) exceed the bound (7.2.16)
for obtaining γ̄ with public correlation.

The self-generating sets [0, γ̄ ] and {0} ∪ [γ, γ̄ ] allow Nash reversion (because
both include the payoff 0). Because PPE need not rely on Nash reversion (for exam-
ple, the profile in section 7.2.2 has one-period recall), there are self-generating
sets that exclude 0 and indeed that exclude a neighborhood of 0. For example, it
is easily verified that if q < 2r , the set [1, γ̄ ] is self-generating for sufficiently
large δ. Finally, the set of continuation values generated by a strongly symmetric
PPE with bounded recall (see definition 13.3.1) is a finite self-generating set and,
if EE can be played, excludes 0.

◆
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As p − q → 0, the bounds on δ implied by (7.7.3)–(7.7.5) become increasingly
severe and the maximum strongly symmetric PPE payoff converges to 0. This is not
surprising, because if p − q is small, it is very difficult to detect a deviation when the
opponent is choosing E. In particular, if p − q is sufficiently close to 0 that (7.7.2) is
violated, even for γ ȳ = 2 and γy = 0, the pure-action profile EE cannot be enforced.
On the other hand, if q − r is large, then the distribution over signals under ES is
very different than under SS. Thus, if player i is playing S with positive probability,
then E may now be enforceable. (This possibility also underlies the superiority of
the private strategy examples of sections 10.2 and 10.4.) Consequently, there may be
strongly symmetric mixed equilibria with a payoff strictly larger than 0, a possibility
we explore in section 7.7.2. The observation that even though a pure-action profile a
is unenforceable, a mixed-action profile that assigns positive probability to a may be
enforceable, is more general.

Remark

7.7.2
Symmetric payoffs from asymmetric profiles If q > 2r , it is possible to achieve
the symmetric payoff of (1, 1) using the asymmetric action profiles ES and SE. For
sufficiently large δ, familiar calculations verify that the largest set of pure-strategy
PPE payoffs in which only ES and SE are played in each period is W = {(v ∈ R2 :
v1 + v2 = 2, vi ≥ r/(q − r), i = 1, 2} (i.e., W is the largest self-generating set
using only ES and SE). Because q > 2r , we have r/(q − r) < 1 < 2− r/(q − r),
and there is an asymmetric pure-strategy PPE in which each player has payoff 1.
Hence, for p sufficiently close to q, although (1, 1) cannot be achieved in a
strongly symmetric PPE, it can be achieved in an asymmetric PPE. Finally, there
is an asymmetric equilibrium in which EE is never played, and player 2’s payoff is
strictly larger than 2− r/(q − r) (this PPE uses SS to relax incentive constraints,
see note 6 on page 289).

◆

7.7.2 Enforcing a Mixed-Action Profile

Let α denote a completely mixed symmetric action profile in the prisoners’ dilemma.
We first argue that α can in some situations be enforced even when EE cannot. When q
is close top, player 1 still has a (weak) incentive to playEwhen player 2 is randomizing
because with positive probability (the probability that 2 plays S) a change from E to
S will substantially change the distribution over signals. To conserve on notation, we
denote the probability that each player assigns to E in the symmetric profile by α. Let
γy, γ ȳ ∈ F † be the continuations after y and ȳ. The payoff to player 1 from E when
player 2 is randomizing with probability α on E is

g
γ

1 (E, α) = α
{
2(1− δ)+ δ[pγ ȳ1 + (1− p)γy1 ]}
+ (1− α){(−1)(1− δ)+ δ[qγ ȳ1 + (1− q)γy1 ]}

= (1− δ)(3α − 1)+ δ[α(pγ ȳ1 + (1− p)γy1 )
+ (1− α)(qγ ȳ1 + (1− q)γy1 )].
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The payoff from S is

g
γ

1 (S, α) = α
{
3(1− δ)+ δ[qγ ȳ1 + (1− q)γy1 ]}

+ (1− α){δ[rγ ȳ1 + (1− r)γy1 ]}.
For player 1 to be willing to randomize, we need gγ1 (E, α) = gγ1 (S, α), that is,

(
γ
ȳ

1 − γ
y

1

) = (1− δ)
δ[α(p − q)+ (1− α)(q − r)] . (7.7.6)

We now investigate when there exists a value of α and feasible continuations
solving (7.7.6). Let f (α, γ ȳ1 ) be the payoff to player 1 when player 2 puts α weight on
E and (7.7.6) is satisfied:

f (α, γ
ȳ

1 ) = (1− δ)(3α − 1)− (α(1− p)+ (1− α)(1− q))(1− δ)
(α(p − q)+ (1− α)(q − r)) + δγ ȳ1 .

Self-generation suggests solving γ̄ (α) = f (α, γ̄ (α)), yielding

γ̄ (α) = (3α − 1)− (α(1− p)+ (1− α)(1− q))
(α(p − q)+ (1− α)(q − r)) . (7.7.7)

We need to know if there is a value of α ∈ [0, 1] for which γ̄ (α) is sufficiently
large that (7.7.6) can be satisfied with γ ȳ1 = γ̄ (α) for some α and γ

y

1 ≥ 0.
To simplify calculations, we first consider p = q.21 In this case, the function γ̄ (α)

is maximized at

ᾱ = 1−
√
(1− q)
3(q − r)

with a value

γ̄ (ᾱ) = 2− 2

√
3(1− q)
(q − r) .

From (7.7.6), α is enforceable if

γ̄ (ᾱ)(1− ᾱ) ≥ (1− δ)
δ(q − r) . (7.7.8)

Inequality (7.7.8) is satisfied for δ sufficiently close to 1, if γ̄ (ᾱ)(1− ᾱ) > 0. The
payoff γ̄ (ᾱ) is strictly positive if

3+ r < 4q, (7.7.9)

and this inequality also implies ᾱ ∈ (2/3, 1). Given q and r satisfying (7.7.9), let δ be
a lower bound on δ so that (7.7.8) holds.

21. As we discuss in note 7 on page 238, assuming p = q is inconsistent with the representation of
stage-game payoffs as expected ex post payoffs. We relax the assumption p = q at the end of
the example.
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Suppose (7.7.9) holds and δ ∈ (δ, 1). Because γ̄ (α)(1− α) is a continuous
function of α, with γ̄ (0) < 0, there exists α(δ) such that

γ̄ (α(δ))(1− α(δ)) = (1− δ)
δ(q − r) .

Hence, the set of payoffs {(0, 0), (γ̄ (α(δ)), γ̄ (α(δ)))} is self-generating for δ ∈ (δ, 1).
The associated PPE is strongly symmetric and begins with each player randomizing
with probability α(δ) on E, and continually playing this mixed action until the first
observation of y. After the first observation of y, play switches to permanent S.

Indeed, for sufficiently high δ, the symmetric set of payoffs described by the inter-
val [0, γ̄ (ᾱ)] is self-generating: Every payoff in the interval [0, δγ̄ (ᾱ)] can be decom-
posed by SS and some constant continuation in [0, γ̄ (ᾱ)]. The function f is increasing
in γ ȳ1 for fixed α, as well as in α for fixed γ ȳ1 . Moreover, consistent with γ

y

1 ≥ 0

and recalling the role of (7.7.6) in the definition of f , f is minimized at (α, γ ȳ1 ) =
(0, (1− δ)/[δ(q − r)]) with a value (1− δ)r/(q − r). Hence, every payoff in [(1−
δ)r/(q − r), γ̄ (ᾱ)] can be decomposed by some α and continuations in [0, γ̄ (ᾱ)].22

We now return to the case p > q. By continuity, for p sufficiently close to q, γ̄ (α)
will be maximized at some α̃ ∈ (0, 1), with γ̄ (α̃) > 0. Hence for δ sufficiently close
to 1, the set [0, γ̄ (α̃)] is self-generating.

7.8 Anonymous Players

In section 2.7, we argued that short-lived players can be interpreted as a continuum
of small, anonymous, long-lived players when histories include only aggregate out-
comes. Because a small and anonymous player, though long-lived, has no effect on the
aggregate outcome and hence on future play, he should choose a myopic best response.
As we discussed in remark 2.7.1, this interpretation opens a potentially troubling dis-
continuity: Equilibrium behavior with a large but finite number of small players may
be very different under perfect monitoring than with small anonymous players.

Under imperfect monitoring, this discontinuity disappears. Consider, for example,
a version of the prisoners’dilemma with a single long-lived player 1 and a finite number
N − 1 of long-lived players in the role of player 2. Player 1’s actions are perfectly
monitored, whereas the actions of the other players are only imperfectly monitored. For
each player i, i = 2, . . . , N , there are two signals ei and si , independently distributed
according to

ρi(ei | ai) =
{

1− ε, ai = E,
ε, ai = S,

where ε < 1/2. Player 1’s stage game payoff is the average of the payoff from the play
with each player i ∈ {2, . . . , N}. Figure 7.8.1 gives the ex post payoffs from a single
interaction as a function of player 1’s action E or S and the signal e and s generated

22. For some parameter values (p ≈ q and 13q − r > 12), the best strongly symmetric mixed-
strategy profile achieves a higher symmetric payoff than the asymmetric profile of remark 7.7.2,
which in turn achieves a higher symmetric payoff than any pure-strategy strongly symmetric PPE.
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ei si

E 2−ε
1−2ε ,

2−5ε
1−2ε − (1+ε)1−2ε ,

3−5ε
1−2ε

S 3−3ε
1−2ε ,− (1−ε)1−2ε − 3ε

1−2ε ,
ε

1−2ε

E S

E 2, 2 −1, 3

S 3,−1 0, 0

Figure 7.8.1 Ex post payoffs from a single interaction between player 1 and a
player i ∈ {2, . . . , N} (left panel) as a function of player 1’s action E or S and the
signal ei or si , and the ex ante payoffs (right panel), the payoffs in figure 7.2.1.

by player 2’s action, as well as the ex ante payoff (which agrees with our standard
prisoners’ dilemma payoff matrix, figure 7.2.1).

We consider a class of automata with two states and public correlation:23 Given
a public signal y ∈ {E, S} ×∏i≥2{ei, si}, we define #(y) = |{i ≥ 2 : yi = si}|, that
is, #(y) is the number of “shirk” signals in y (apart from player 1, who is perfectly
monitored). The set of states is W = {wE,wS}, the initial state isw0 = wE , the output
function is fi(wE) = E and fi(wS) = S for i = 1, . . . , N , and the transition function
τ is given by, where τ(w, y) is the probability of a transition to state wE ,

τ(w, y) =




1, if w = wE , y1 = E and #(y) ≤ κ ,

φ, if w = wE , y1 = E and #(y) > κ ,

0, otherwise.

Any deviation by player 1 (which is detected for sure) triggers immediate per-
manent shirking, and more than κ signals of si for the other players only randomly
triggers permanent shirking. Consequently, whenever the incentive constraints for a
player i, i = 2, . . . , N , are satisfied, so are player 1’s, and so we focus on player i.

The analysis of this profile is identical to that of the profile in section 7.2.3, once
we set p equal to the probability of the event that #(y) ≤ κ when no player deviates
and q equal to the probability of that event when exactly one player deviates. Thus,

p = Pr{#(y) ≤ κ | ai = E, i = 1, . . . , N}

=
κ∑
τ=0

(N − 1)!
τ !(N − 1− τ)!ε

τ (1− ε)N−1−τ

and

q = Pr{#(y) ≤ κ | aN = S, ai = E, i = 1, . . . , N − 1}

= (1− ε)
κ−1∑
τ=0

(N − 2)!
τ !(N − 2− τ)!ε

τ (1− ε)N−2−τ

+ ε
κ∑
τ=0

(N − 2)!
τ !(N − 2− τ)!ε

τ (1− ε)N−2−τ ,

23. In sections 7.6.2 and 7.7.1, we saw that public correlation serves only to simplify the calculation
of upper bounds on payoffs.
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where the first sum in the expression for q equals 0 if κ = 0. Because all players play
identically under the profile, the payoff to player 1 under the profile equals that of any
player i, i = 2, . . . , N .

If (7.2.16) is satisfied, the profile describes a PPE, and the payoff in state wE is,
from (7.2.17),

V (wE) = 2− 1− p
(p − q) . (7.8.1)

Suppose we first fixN . Then, for sufficiently small ε, (7.2.16) is only satisfied for
κ = 0 (if κ ≥ 1, limε→0 q = 1) and limε→0 V (wE) = 2. In other words, irrespective
of the number of players, for arbitrarily accurate monitoring all players essentially
receive a payoff of 2 under this profile.

Suppose we now fix ε > 0, and consider increasingN . Observe first that if κ = 0,
then for large N it is too easy to “fail the test,” that is, limN→∞ p = 0. From (7.8.1),
we immediately get an upper bound less than 1. By appropriately increasing κ as N
increases, one could hope to keep p not too small. However, although that is certainly
possible, it turns out that irrespective of how κ is determined, p − q will go to 0. For
fixed κ and player i, we have

p − q =
κ−1∑
τ=1

{
(N − 1)

(N − 1− τ) − 1

}
(N − 2)!

τ !(N − 2− τ)!ε
τ (1− ε)N−1−τ

−
κ+1∑
τ=1

(N − 2)!
(τ − 1)!(N − 1− τ)!ε

τ (1− ε)N−1−τ

= (N − 2)!
κ!(N − 2− κ)!ε

κ(1− ε)N−2−κ(1− 2ε)

= Pr(player i is pivotal)(1− 2ε).

Observe that Pr(player i is pivotal) is the probability b(κ,N − 2, ε) that there are
exactly κ successes under a binomial distribution with N − 2 draws. It is bounded
above by maxk b(k,N − 2, ε), and therefore for fixed ε, p − q → 0 as N →∞.

Consequently, for sufficiently largeN , (7.2.16) fails and the only symmetric equi-
librium (of the type considered here) for largeN has players choosing S in every period
(as predicted by the model with small anonymous players, see remark 2.7.1). Given
the imperfection in monitoring, with a large population, even though there is a separate
signal for each player, the chance that any single player will be pivotal in determining
the transition to permanent shirking is small, and so each imperfectly monitored player
can effectively ignore the future and myopically optimizes.

We restricted attention to strongly symmetric PPE, but a similar result holds in
general. We can thus view short-lived players as a continuum of small, anonymous,
long-lived players, recognizing that this is an approximation of a world in which such
players are relatively plentiful relative to the imperfection in the monitoring. A more
complete discussion can be found in Al-Najjar and Smorodinsky (2001); Fudenberg,
Levine, and Pesendorfer (1998); Levine and Pesendorfer (1995); Green (1980); and
Sabourian (1990).
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8 Bounding Perfect Public
Equilibrium Payoffs

The observation that the set of perfect public equilibrium payoffs E (δ) is the largest
self-generating set does not provide a simple technique for characterizing the set.
We now describe a technique that allows us to bound, and for large δ completely
characterize, the set of PPE payoffs.1

8.1 Decomposing on Half-Spaces

It is helpful to begin with figure 8.1.1. We have seen in section 7.3 that every payoff
v ∈ E (δ) is decomposed by some action profile α (such as the pure-action profile a in
the figure) and continuation payoffs γ (y) ∈ E (δ). Recall from remark 7.3.1 that u(α)
will often denote the vector of stage-game payoffs for long-lived players, a practice
we follow in this chapter.

To bound E (δ), we are clearly interested in the boundary points of E (δ) (unlike
the v in the figure). Consider a boundary point v′ ∈ E (δ) decomposed by a non–stage-
game Nash equilibrium action profile (such as a in the figure). Moreover, for simplicity,
suppose that v′ is in fact a boundary point of the convex hull of E (δ), coE (δ). Then,
the continuations (some of which must differ from v′) lie in a convex set (coE (δ)) that
can be separated from both v′ and u(a) by the supporting hyperplane to v′ on coE (δ).
That is, the continuations lie in a half-space whose boundary is given by the supporting
hyperplane.

Because F † is the convex hull of F , a compact set, it is the intersection of the
closed half-spaces containing F (Rockafellar 1970, corollary 11.5.1 or theorem 18.8).
Now, for any direction λ ∈ Rn \ {0}, the smallest half-space containing F † is given by
{v′ : λ · v′ ≤ maxα∈B λ · u(α)}. In other words, because E (δ) ⊂ F †, E (δ) is contained
in the intersection over λ of the half-spaces {v′ : λ · v′ ≤ maxα∈B λ · u(α)}.

This bound on E (δ) ignores decomposability constraints. The set of payoffs
decomposable on a general set W (such as E (δ)) is complicated to describe (as we
discuss just before proposition 7.3.4, even the weak property of monotonicity of E (δ) is
not guaranteed). On the other hand, the set of payoffs decomposable on a half-space has
a particularly simple dependence on δ, allowing us to describe the smallest half-space
respecting the decomposability constraints independently of δ.

1. The essentials of the characterization are due to Fudenberg, Levine, and Maskin (1994) and
Fudenberg and Levine (1994), with a refinement by Kandori and Matsushima (1998). Some
similar ideas appear in Matsushima (1989).
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E

Figure 8.1.1 The payoff v ∈ E (δ) is decomposable by a on E (δ). There are
three public signals, Y = {y1, y2, y3}, and E[γ (y) | a] =∑� γ (y�)ρ(y� | a).
Note that u(a) �∈ E (δ), and so a is not a Nash equilibrium of the stage game.

Given a direction λ ∈ Rn and constant k ∈ R,H(λ, k) denotes the half-space {v ∈
Rn : λ · v ≤ k}. In figure 8.1.2, we have chosen a direction λ so that v is decomposable
on the half-spaceH(λ, λ · v) using the equilibrium continuations from figure 8.1.1. In
general, of course, when a payoff is decomposed on a half-space there is no guarantee
that the continuations are equilibrium, or even feasible, continuations.

Recall that B(W ; δ, α) is the set of payoffs that can be decomposed by α on W ,
when the discount factor is δ. For fixed λ and α, let2

k∗(α, λ, δ) = maxv λ · v
subject to v ∈ B(H(λ, λ · v); δ, α). (8.1.1)

The pair (v, γ ) illustrated in figure 8.1.2 does not solve this linear program for the
indicated λ and α = a, because moving all quantities toward u(a)would increase λ · v
while not losing enforceability. Intuitively, v’s in the interior of E (δ) cannot solve this
problem. We will see in section 9.1, in the limit (as δ→ 1), boundary points of E (δ)

do solve this problem in many cases.
The linear programming nature of (8.1.1) can be seen most clearly by noting that

the constraint v ∈ B(H(λ, λ · v); δ, α) is equivalent to the existence of γ : Y → Rn

satisfying

vi = (1− δ)ui(α)+ δE[γi(y) | α], ∀i,
vi ≥ (1− δ)ui(ai, α−i )+ δE[γi(y) | (ai, α−i )], ∀ai ∈ Ai, ∀i,

and
λ · v ≥ λ · γ (y), ∀y ∈ Y.

2. As usual, if the constraint set is empty, the value is −∞. It is clear from the characterization
of B(H(λ, λ · v); δ, α) given by (8.1.2)–(8.1.4) that both B(H(λ, λ · v); δ, α) is closed and
{λ · v : v ∈ B(H(λ, λ · v); δ, α)} is bounded above, ensuring the maximum exists.
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Figure 8.1.2 Illustration of decomposability on half-spaces. The payoff
v ∈ E (δ) is decomposable with respect to a and the half space H(λ, λ · v).

By setting xi(y)=δ(γi(y)−vi)/(1−δ), we can characterize B(H(λ, λ · v); δ, α)
independently of the discount factor δ, that is, v ∈ B(H(λ, λ · v); δ, α) if and only if
there exists x : Y → Rn satisfying

vi = ui(α)+ E[xi(y) | α], ∀i (8.1.2)

vi ≥ ui(ai, α−i )+ E[xi(y) | (ai, α−i )], ∀ai ∈ Ai, ∀i, (8.1.3)

and

0 ≥ λ · x(y), ∀y ∈ Y. (8.1.4)

We call x : Y → Rn the normalized continuations. If x satisfies (8.1.2) and (8.1.3)
for some v, we say x enforces α, and if, in addition, (8.1.4) is satisfied for some λ, we
say x enforces α in the direction λ. If x satisfies (8.1.2)–(8.1.4) with λ · x(y) = 0 for
all y, we say x orthogonally enforces α (in the direction λ). Suppose λi > 0 for all i
and α is orthogonally enforced by x. Then for each y, xi(y) cannot be the same sign
for all i; if xi(y) > 0, so that i is “rewarded” after signal y, then there must be some
other player j who is “punished,” xj (y) < 0. In other words, orthogonal enforceability
typically involves a transfer of continuations from some players to other players, with
λ determining the “transfer price.”

The unnormalized continuations are given by

γi(y) = vi + xi(y)(1− δ)/δ, ∀y ∈ Y, (8.1.5)

where v = u(α)+ E[x | α]. If x enforces α in the direction λ, then the associated γ
from (8.1.5) enforces α with respect to the hyperplane H(λ, λ · v).

Recall that ej denotes the j th standard basis vector. A direction λ is a coordinate
direction if λ = λiei for some constant λi �= 0 and some i. A direction λ is ij -pairwise
if there are two players, i �= j , such that λ = λiei + λj ej , λi �= 0, λj �= 0; denote
such a direction by λij.
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Lemma

8.1.1
1. k∗(α, λ, δ) is independent of δ, and so can be written as k∗(α, λ).
2. k∗(α, λ) ≤ λ · u(α), so that u(α) �∈ intH(λ, k∗(α, λ)); and
3. k∗(α, λ) = λ · u(α) if α is orthogonally enforced in the direction λ. Moreover,

when ρ(y | α) > 0 for all y ∈ Y , this sufficient condition is also necessary.
4. If, for all pairwise directions λij , α is orthogonally enforceable in the direction
λij , then α is orthogonally enforceable in all noncoordinate directions.

Proof 1. Immediate from the equivalence of the constraint in (8.1.1) and (8.1.2)–(8.1.4).
2. Let v∗ solve (8.1.1). Then, k∗(α, λ) = λ · v∗ = λ · (u(α)+ E[x∗(y) | α]),

where x∗ satisfies (8.1.2)–(8.1.4), so that in particular, λ · x∗(y) ≤ 0.
3. Sufficiency is immediate. For necessity, observe that if k∗(α, λ) = λ · u(α),

then E[λ · x∗(y) | α] = 0, where x∗ is an enforcing normalized continuation
solving (8.1.2)–(8.1.4). Necessity then follows from (8.1.4) and ρ(y | α) > 0
for all y ∈ Y .

4. Consider first a direction λwith four nonzero coordinates, {i, j, k, �}. Let λij ≡
λiei + λj ej be the pairwise direction reflecting the i − j coordinates, and λk�

the pairwise direction reflecting the k − � coordinates. Let xij and xk� be the
enforcing normalized continuations for the pairwise directions λij and λk�.
By assumption, λij · xij = 0 and λk� · xk� = 0. Let x denote the normalized
continuation,

xm(y) =



x

ij
m, if m = i, j ,

xk�m , if m = k, �,
x

ij
m, otherwise.

Then, (8.1.2) and (8.1.3) are satisfied, and λ · x = (λij + λk�) · x = 0. This
argument can clearly be extended to cover an even number of nonzero
coordinates.

Suppose now the direction λ has three nonzero coordinates, {i, j, k}. Now let
λij = λiei + 1

2λj ej and λjk = 1
2λj ej + λkek . Let xij and xjk be the enforcing

normalized continuations for the pairwise directions λij and λjk . In this case,
we let x denote the normalized continuation,

xm(y) =




x
ij
i , if m = i,

1
2 (x

ij
j + xjk

j ), if m = j ,

x
jk
k , if m = k,

x
ij
m, otherwise.

Then, we again have (8.1.2) and (8.1.3) satisfied andλ · x = (λij + λjk) · x = 0.
For a general odd number of nonzero coordinates, we apply this argument for
three nonzero coordinates, and the previous argument to the remaining even
number of nonzero coordinates.

■

Intuitively, we would like to approximate E (δ) by the half-spacesH(λ, k∗(α, λ)).
However, as is clear from figure 8.1.2, we need to choose α appropriately. In particular,
we can only move v toward u(a) (and so include more of E (δ)) because u(a) is
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separated from the half-space containing the enforcing continuations γ . The action
profile a′ does not yield an appropriate approximating half-space for the displayed
choice of λ, because by lemma 8.1.1(2), the enforcing continuations need to lie in a
lower half-space, excluding much of E (δ). Accordingly, for each direction, we use
the action profile that maximizes k∗(α, λ), that is, set k∗(λ) ≡ supα∈B k

∗(α, λ) and
H ∗(λ) ≡ H(λ, k∗(λ)).3 We refer toH ∗(λ) as the maximal half-space in the directionλ.

The coordinate direction λ = −ej corresponds to minimizing player j ’s payoff,
because−ej · v = −vj . The next lemma shows that any payoff profile in the half-space
H ∗(−ej ) is weakly individually rational for player j . Note thatvj is the minmax payoff
of (2.7.1).

Lemma

8.1.2
For all j ,

k∗(−ej ) ≤ −vj = −minα∈B maxaj uj
(
aj , α−j

)
.

Proof For λ = −ej , constraint (8.1.4) becomes xj (y) ≥ 0 for all y ∈ Y . Constraint
(8.1.3) then implies vj ≥ uj (aj , α−j ) for all aj , and so vj ≥ maxaj uj (aj , α−j ).
In other words, v ∈ B(H(−ej ,−vj ); δ, α) implies vj ≥ maxaj uj (aj , α−j ).
Then,

k∗(−ej ) = supα∈B k
∗(α,−ej )

= supα∈B maxv{−vj : v ∈ B(H(−ej ,−vj ); δ, α)}
≤ −minα∈B maxaj uj (ai, α−i )
= −vj .

■

Proposition

8.1.1
For all δ,

E (δ) ⊂ ∩λH ∗(λ) ≡M ⊂ F ∗.

Proof Suppose the first inclusion fails. Then there exists a half-spaceH(λ, k∗(λ)) and a
pointv′ ∈ E (δ)withλ · v′ > k∗(λ). Letv∗maximizeλ · v overv ∈ E (δ). Because
λ · v ≤ λ · v∗ for all v ∈ E (δ), v∗ is decomposable on H(λ, λ · v∗), implying
k∗(λ) ≥ λ · v∗, a contradiction.

It is a standard result from convex analysis that the convex hull of a compact set
is the intersection of the closed half-spaces containing the set (Rockafellar 1970,
corollary 11.5.1 or theorem 18.8). The inclusion of M in F ∗, the set of feasible
and weakly individually rational payoffs, is then an immediate implication of
lemmas 8.1.1 and 8.1.2, because k∗(λ) ≡ supα∈B k

∗(α, λ) ≤ supα∈B λ · u(α).
■

Each half-space is convex and the arbitrary intersection of convex sets is convex,
so M also bounds the convex hull of E (δ). The bound M is crude for small δ, because it
is independent of δ. However, as we will see in section 9.1, provided M has non-empty
interior, limδ→1 E (δ) =M .

3. As half-spaces are not compact, it is not obvious that k∗(α, λ) is upper semicontinuous in α. Note
that k∗(λ) > −∞, and so H ∗(λ) �= ∅ for all λ: let v∗ maximize λ · v over v ∈ E (δ). Because
λ · v ≤ λ · v∗ for all v ∈ E (δ), v∗ is decomposable on H(λ, λ · v∗).
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Remark

8.1.1
Interpretation of k∗(λ) For a direction λ, we can interpret λ · u as the “average”
utility of all players in the directionλ. Given lemma 8.1.1, we can interpret k∗(λ) as
a bound on the “average” utility consistent with providing each player appropriate
incentives (and section 9.1 shows that this bound is typically achieved for patient
players). If k∗(λ) = k∗(α, λ) for some α orthogonally enforceable in the direction
λ, then it is costless to provide the appropriate incentives in aggregate, in the
sense that λ · x(y) = 0 for all y (lemma 8.1.1). That is, it is possible to simultane-
ously provide incentives to all players by appropriately transferring continuations
without lowering average utility below λ · u(α). On the other hand, if there is no
α orthogonally enforceable in the direction λ for which k∗(λ) = k∗(α, λ), then
it is costly to provide the appropriate incentives in aggregate, in the sense that
λ · x(y) < 0 for some y. Moreover, if y has positive probability under α, this cost
has an impact in that it is impossible to simultaneously provide incentives to all
players without lowering average utility below λ · u(α).

◆

Remark

8.1.2
Pure strategy PPE Recall that E p(δ) is the set of pure strategy PPE payoffs
(remark 7.3.3). The analysis in this section applies to pure strategy PPE. In par-
ticular, we immediately have the following pure strategy version of lemma 8.1.2
and proposition 8.1.1.

Proposition

8.1.2
Let k∗p(λ) ≡ sup{k∗(α, λ) : αi is pure for i = 1, . . . , n}andH ∗p ≡ H(λ, k∗p(λ)).
Then,

k∗p(−ej ) ≤ −vpi
and, for all δ,

E p(δ) ⊂ ∩λH ∗p(λ) ≡M p.

◆

8.2 The Inefficiency of Strongly Symmetric Equilibria

The bound in proposition 8.1.1 immediately implies the pervasive inefficiency of
strongly symmetric equilibria in symmetric games with full-support public monitoring.

Definition

8.2.1
Suppose there are no short-lived players. The stage game is symmetric if all
players have the same action space and same ex post payoff function (Ai = Aj
and u∗i = u∗j for all i, j ), and the distribution ρ over the public signal is unaffected
by permutation of player indices.

From (7.1.1), ex ante payoffs in a symmetric game are also appropriately symmetric.
Recall from definition 7.1.2 that an equilibrium is strongly symmetric if after every
public history, each player chooses the same action.

In a strongly symmetric PPE, xi(y) = xj (y) for all y ∈ Y . For the remainder of this
subsection, we restrict attention to such symmetric normalized continuations. Lemma
8.1.1 and proposition 8.1.1 hold under this restriction (E (δ) is now the set of strongly
symmetric PPE payoffs). Because the continuations are symmetric, without loss of
generality, we can restrict attention to directions 1 and−1, where 1 is an n-vector with
1 in each coordinate.
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Let ū ≡ maxα1 u1(α11) denote the maximum symmetric payoff.

Proposition

8.2.1
Suppose there are no short-lived players, the stage game is finite and symmetric,
ρ has full support, and ū is not a Nash equilibrium payoff of the ex ante stage
game. The maximum strongly symmetric PPE payoff, v̄(δ), is bounded away from
ū, independently of δ (i.e., ∃ε > 0 such that ∀δ ∈ [0, 1), v̄(δ)+ ε < ū).

The inefficiency of strongly symmetric equilibria should not be surprising: If ū
is not a stage-game equilibrium payoff, for any ᾱ satisfying ū = u(ᾱ), each player i
needs an incentive to play ᾱi , which requires a lower continuation after some signal.
But strong symmetry implies that every player must be punished at the same time, and
full support that the punishment occurs on the equilibrium path, so inefficiency arises.

A little more formally, suppose k∗(ᾱ11, 1) = nū for some ᾱ1. Inequality (8.1.4)
and strong symmetry imply xi(y) ≤ 0 for all y. The definition of ū then implies
E[xi(y) | ᾱ11] = 0. Full support of ρ finally implies xi(y) = 0 for all y, implying
ᾱ1 is a best reply to ᾱ11, contradicting the hypothesis that ū is not a Nash equilibrium
payoff of the ex ante stage game.

The argument just given, though intuitive, relies on supα1
k∗(α11, 1)being attained

by some α1. The proof must deal with the general possibility that the supremum is not
attained (see note 3 on page 277).

Proof We now suppose the supremum in the definition of k∗ is not achieved, and derive
a contradiction to k∗(1) = nū. Because k∗(1) = supα1

k∗(α11, 1), for all � ∈ N,
there exists α�1 such that k∗(α�11, 1) ≥ nū− n/�. We write α� = α�11. Because
A1 is finite, by extracting a subsequence if necessary, without loss of gener-
ality we can assume {α�1}� is a convergent sequence with limit α∞1 . Let a1 be
an action minimizing u1(a

′
1, α

∞−1) over a′1 ∈ supp(α∞1 ). By the definition of ū,
u1(a1, α

∞−1) ≤ u1(α
∞
1 1) ≤ ū. For sufficiently large �, supp(α∞1 ) ⊂ supp(α�1), so

we can also assume a1 is in the support α�1. Finally, by extracting a subsequence
and renumbering if necessary, u1(a1, α

�
−1) ≤ u1(a1, α

∞−1)+ 1/�.
Because α�1(a1) > 0,

ū− 1

�
≤ 1

n
k∗(α�11, 1) = u1(a1, α

�
−1)+ E[x�1(y) | (a1, α

�
−1)], (8.2.1)

where x� is the normalized enforcing continuation in the direction 1 (so that
x�1(y) ≤ 0 for all y). Then, for all �,

−2

�
≤ E[x�1(y) | (a1, α

�
−1)] ≤ 0. (8.2.2)

For fixed �, (8.1.3) is

u1(a1, α
�
−1)+ E[x�1(y) | (a1, α

�
−1)]

≥ u1(a
′
1, α

�
−1)+ E[x�1(y) | (a′1, α�−1)], ∀a′1 ∈ A1. (8.2.3)

Inequality (8.2.2) implies lim� E[x�1(y) | (a1, α
�
−1)] = 0 and (using x�1(y) ≤ 0),

for all �,

−2

�
≤ x�1(y)

∑
a−1

ρ(y | (a1, a−1))α
�
−1(a−1) ≤ 0.



280 Chapter 8 ■ Bounding Equilibrium Payoffs

As ρ has full support (by hypothesis), and ρ ≡ miny,a{ρ(y | a)} > 0 (by the
finiteness of Y and A), we thus have for all � and all a′1 ∈ A1,

− 2

�ρ
≤ x�1(y)

∑
a−1

ρ(y | (a′1, a−1))α
�
−1(a−1) ≤ 0.

Hence, lim� E[x�1(y) | (a′1, α�−1)] = 0 for all a′1 ∈ A1, and so taking �→∞ in
(8.2.1) and (8.2.3) yields

ū = u1(a1, α
∞−1) ≥ u1(a

′
1, α

∞−1), ∀a′1 ∈ A1.

Consequently, α∞1 1 is a Nash equilibrium of the stage game, and so ū is a Nash
equilibrium payoff, contradiction.

■

8.3 Short-Lived Players

8.3.1 The Upper Bound on Payoffs

The techniques of this chapter provide an alternative proof of proposition 2.7.2.

Lemma

8.3.1
For j = 1, . . . , n,

k∗(ej ) ≤ v̄j ≡ maxα∈B minaj∈supp(αj ) uj (aj , α−j ).

Proof Forλ = ej , constraint (8.1.4) becomes xj (y) ≤ 0 for all y ∈ Y . Constraints (8.1.2)
and (8.1.3) imply, for all aj ∈ supp(αj ),

vj = uj (aj , α−j )+ E[xj (y) | (aj , α−j )],
and so

vj ≤ uj (aj , α−j ).
Hence,

k∗(ej ) = sup
α∈B

k∗(α, ej ) = sup
α∈B

max{vj : v ∈ B(H(ej , vj ); δ, α)}

≤ sup
α∈B

min
aj∈supp(αj )

uj (aj , α−j ) = max
α∈B

min
aj∈supp(αj )

uj (aj , α−j ).

■

Note that in the absence of short-lived players, B =∏i�(Ai) and k∗(ej ) =
maxα∈∏i �(Ai)

minaj∈supp(αj ) uj (aj , α−j ) = maxα∈∏i �(Ai)
uj (α).

Lemma 8.3.1, with proposition 8.1.1 (implying that every PPE equilibrium payoff
for a long-lived player j is bounded above by k∗(ej )), implies proposition 2.7.2:
Because E (δ) ⊂ H ∗(ej ), in every PPE no long-run player can earn a payoff greater
than v̄j . Moreover, in the presence of imperfect public monitoring, the bound v̄i
may not be tight. It is straightforward to show for the example of section 7.6.2, that
k∗(e1) = v∗ < v̄1, an instance of the next section’s result.

It is worth emphasizing that with short-lived players, the case of one long-lived
player is interesting and the analysis of this chapter (and the next) applies. In that case,
of course, the only directions to be considered are e1 and −e1.
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8.3.2 Binding Moral Hazard

From lemma 8.3.1, the presence of short-lived players constrains the set of long-
lived players’ payoffs that can be achieved in equilibrium. Moreover, as we saw in
section 7.6.2, for the product-choice game with a short-lived player 2 and imperfect
public monitoring, the imperfection in the monitoring necessarily further reduced the
maximum equilibrium payoff that player 1 could receive. This phenomenon is not
special to that example but arises more broadly and for reasons similar to those leading
to the inefficiency of strongly symmetric equilibria (proposition 8.2.1).

We provide a simple sufficient condition implying that player i’s maximum equi-
librium payoff for all δ is bounded away from v̄i , the upper bound from lemma 8.3.1.

Definition

8.3.1
Player i is subject to binding moral hazard if for all a−i , for all ai ,a′i ,
suppρ(y | (ai, a−i )) = suppρ(y | (a′i , a−i )), and for any α ∈ B satisfying
ui(α) = v̄i , αi is not a best reply to α−i .

The first condition implies there is no signal that unambiguously indicates that
player i has deviated. The second condition then guarantees that player i’s incentive
constraint due to moral hazard is binding. Fudenberg and Levine (1994) say a game
with short-lived players is a moral-hazard mixing game if it has a product structure
(see section 9.5) and all long-lived players are subject to binding moral hazard.

Proposition

8.3.1
Suppose a long-lived player i is subject to binding moral hazard, and A is finite.
Then, k∗(ei) < v̄i . Consequently, there exists κ > 0 such that for all δ and all
v ∈ E (δ), vi ≤ v̄i − κ .

Proof Though the result is intuitive, the proof must deal with the general possibility that
supα k

∗(α, ei) is not attained by any α (see note 3 on page 277). We assume here
the supremum is attained; the proof for the more general case is a straightforward
modification of the proof of proposition 8.2.1.

So, we suppose k∗(ᾱ, ei) = v̄i for some ᾱ ∈ B. Let ai minimize ui(a′i , ᾱ−i )
over a′i ∈ supp(ᾱi). Then, by the definition of v̄i , v̄i ≥ ui(ai, ᾱ−i ). Because ᾱ is
enforced in the direction ei by some x, xi(y) ≤ 0 for all y and

v̄i = k∗(ᾱ, ei) = ui(ai, ᾱ−i )+ E[xi(y) | (ai, ᾱ−i )]
≤ ui(ai, ᾱ−i ) ≤ v̄i .

Hence, xi(y) = 0 for all y ∈ suppρ(· | (ai, ᾱ−i )). Because suppρ(· | (a′i , ᾱ−i )) is
independent ofa′i ∈ Ai , ᾱi must be a best reply to ᾱ−i , contradicting the hypothesis
that player i is subject to binding moral hazard.

■

The inefficiency due to binding moral hazard arises for similar reasons to the
inefficiency of strongly symmetric PPE (indeed, the proofs are very similar). In both
cases, in the “target” action profile ᾱ, player i’s action is not a best reply to ᾱ−i , and
achieving the target payoff requires orthogonal enforceability of the target profile in
the relevant direction, a contradiction.

Remark

8.3.1
Role of short-lived players In the absence of short-lived players, B =∏i�(Ai),
and v̄i = maxa∈A ui(a), so that player i can never be subject to binding moral
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Figure 8.4.1 The prisoners’ dilemma from figure 2.5.1,
where b > 2, c > 0, and 0 < b − c < 4.

hazard. If player i is subject to binding moral hazard, the payoff v̄i can only
be achieved if player i is not playing a best reply to the behavior of the other
players, and so incentives must be provided. But this involves a lower normalized
continuation with positive probability, and so player i’s payoffs in any PPE are
bounded away from v̄i .

◆

8.4 The Prisoners’ Dilemma

8.4.1 Bounds on Efficiency: Pure Actions

Our first application of these tools is to investigate the potential inefficiency of PPE in
the repeated prisoners’ dilemma. We return to the prisoners’ dilemma from figure 2.5.1
(reproduced in figure 8.4.1) and the monitoring distribution (7.2.1),

ρ(ȳ | a) =


p, if a = EE,
q, if a = SE or ES,
r, if a = SS,

where 0 < q < p < 1 and 0 < r < p. An indication of the potential inefficiency of
PPE can be obtained by consideringH ∗(λ) for λi ≥ 0. From proposition 8.1.1,H ∗(λ)
is a bound on E (δ), and in particular, for all v ∈ E (δ), λ · v ≤ k∗(λ). In particular, for
λ̂ = (1, 1), if k∗(λ̂) < 4, then all PPE are bounded away from the maximum aggregate
payoff. Moreover, if k∗(λ̂) < 2(b + c)/(2+ c), then all PPE are necessarily inefficient,
and are bounded away from efficiency for all δ (see figure 8.4.2).

We first consider the pure action profile ES. Equations (8.1.2) and (8.1.3) reduce to

x1(ȳ) ≥ x1(y)+ c

q − r
and

x2(ȳ) ≤ x2(y)+ b − 2

p − q .

Settingx1(ȳ) = c/[2(q − r)] andx1(y) = −c/[2(q − r)], withx2(y) = −λ1x1(y)/λ2

for y = y, ȳ, yields normalized continuations that orthogonally enforce ES. Hence,
k∗(ES, λ) = λ2b − λ1c. Symmetrically, we also have k∗(SE, λ) = λ1b − λ2c.
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Figure 8.4.2 The set of feasible payoffs for the prisoners’
dilemma of figure 8.4.1. If v1 + v2 < 2(b + c)/(2+ c),
then v is in the shaded region and is necessarily inefficient.

For EE, (8.1.2) and (8.1.3) imply xi(ȳ)− xi(y) ≥ (b − 2)/(p − q), and conse-
quently, the profile cannot be orthogonally enforced. Then,

λ · (u(EE)+ E[x | EE]) = (λ1 + λ2)2+ λ · (px(ȳ)+ (1− p)x(y))
= (λ1 + λ2)2+ λ · (x(ȳ)− (1− p)(x(ȳ)− x(y)))
≤ (λ1 + λ2)2− (1− p)λ · (x(ȳ)− x(y))
≤ (λ1 + λ2)

{
2− (1− p)(b − 2)

(p − q)
}

≡ (λ1 + λ2)v̄. (8.4.1)

Setting xi(ȳ) = 0 and xi(y) = −(b − 2)/(p − q) for i = 1, 2 enforces EE and
achieves the upper bound just calculated. Hence, k∗(EE, λ) = (λ1 + λ2)v̄.

We are now in a position to study the inefficiency of pure-strategy PPE. From
proposition 8.1.2, for all pure strategy PPE payoffs v,

λ · v ≤ k∗p(λ) = max{k∗(EE, λ), k∗(ES, λ), k∗(SE, λ)}

(we omit the action profile SS, because k∗(SS, λ) = 0 and this is clearly less than one
of the other three expressions for λi > 0).

Because k∗(ES, λ) ≥ k∗(SE, λ) if and only if λ2 ≥ λ1, we restrict our analysis
to λ2 ≥ λ1 and the comparison of k∗(ES, λ) with k∗(EE, λ) (with symmetry covering
the other case). If

b − c
2
≥ v̄, (8.4.2)

then for all λ2 ≥ λ1, k∗(ES, λ) ≥ k∗(EE, λ), and all pure strategy PPE payoffs must
fall into that part of the shaded region below the line connecting (−c, b) and (b,−c),
in figure 8.4.2.
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Figure 8.4.3 A bounding set for E p(δ) when (8.4.2) does not hold. Every
pure strategy PPE payoff vector must fall into the shaded region.

On the other hand, if (8.4.2) does not hold, then k∗(ES, λ̂) < k∗(EE, λ̂) for some
λ̂. Because k∗(ES, λ) > k∗(EE, λ) for λ1 close to 0, there is a direction λ′ such that
k∗(ES, λ′) = k∗(EE, λ′), and so all pure strategy PPE must fall into the shaded region
in figure 8.4.3.

Clearly, independently of (8.4.2), pure strategy PPE payoffs are bounded away
from the Pareto frontier and so are necessarily inefficient. The reason for the failure is
intuitive: Note first that efficiency requires EE be played. With only two signals and a
symmetric monitoring structure, it is impossible to distinguish between a deviation to
S by player 1 from that of player 2, leading to a failure of orthogonal enforceability.
Hence when providing incentives when the target action profile is EE, the continuations
are necessarily inefficient.

The pure strategy folk theorems for repeated games with public monitoring exclude
this example (as they must) by assuming there are sufficient signals to distinguish
between deviations of different players. We illustrate this in section 8.4.4.

8.4.2 Bounds on Efficiency: Mixed Actions

We now consider mixed-action profiles and, for tractability, focus on the direction λ̂ =
(1, 1). Just like EE, many (but not necessarily all) mixed profiles fail to be orthogonally
enforceable. The critical feature is whether action choices by 1 can be distinguished
from those by 2. Given a mixed action αj for player j , player i’s choice of S implies

ρ(ȳ | Sαj ) = αjq + (1− αj )r,
and i’s choice of E implies

ρ(ȳ | Eαj ) = αjp + (1− αj )q.
Thus, ifρ(ȳ | Sαj ) < ρ(ȳ | Eαj ), theny is a signal that player i had playedS. Suppose
that for some αi , we also have ρ(ȳ | Sαi) > ρ(ȳ | Eαi) (this is only possible if q < r).
Then, y is not also a signal that j had played S, and so it should be possible at α =
(αi, αj ) to separately provide incentives for i and j (similar to the discussion for ES).
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Let A be the set of mixed-action profiles α that have full support and under which
the signals distinguish between the players, that is,

ρ(ȳ | Sαi) < ρ(ȳ | Eαi) and ρ(ȳ | Sαj ) > ρ(ȳ | Eαj ), i �= j. (8.4.3)

The action profiles in A are asymmetric: The asymmetry in the interpretation of
signals, captured by (8.4.3), requires asymmetry in the underlying behavior. The set
A is nonempty if and only if q < r .

We now argue that some (but not all) α ∈ A can be orthogonally enforced in
the direction λ̂. Because α has full support, (8.1.2) and (8.1.3) imply the equations
i, j = 1, 2, j �= i,
αj (b − 2)+ (1− αj )c = [ρ(ȳ | Eαj )− ρ(ȳ | Sαj )](xi(ȳ)− xi(y))

= [αj (p − q)+ (1− αj )(q − r)](xi(ȳ)− xi(y)). (8.4.4)

The left side is necessarily positive, so the right side must also be positive. Orthogo-
nality implies that xi(y) and xj (y) are either both 0 or of opposite sign. When (8.4.3)
holds, it is also possible to choose the normalized continuations so that the sign of
xi(ȳ)− xi(y) is the reverse of [ρ(ȳ | Eαj )− ρ(ȳ | Sαj )] for both players.

Orthogonal enforceability in the direction λ̂ requires more than a sign reversal,
because it requires x2(y) = −x1(y), or

α1(b − 2)+ (1− α1)c

α1(p − q)+ (1− α1)(q − r) = −
α2(b − 2)+ (1− α2)c

α2(p − q)+ (1− α2)(q − r) . (8.4.5)

Let g(αi) be the reciprocal of the term on the left side, that is,

g(αi) = αi(p − q)+ (1− αi)(q − r)
αi(b − 2)+ (1− αi)c . (8.4.6)

From (8.4.3), q < r , and so g(0) < 0 and g(1) > 0. Therefore there is some value
of αi , say α̂i , for which g(α̂i) = 0. Because the denominator is always positive, and
the numerator is affine in αi , there is a function h(αi), h(α̂i) = α̂i , such that for a
range of values of αi containing α̂i , g(h(αi)) = −g(αi). Hence, (8.4.5) holds for all
α ∈ A ∗ ≡ {α ∈ A : h(αi) = αj }, and so for such α,

k∗(α, λ̂) = u1(α)+ u2(α).

Therefore if A �= ∅, A ∗ �= ∅ and

k∗(λ̂) ≥ sup
α∈A ∗

u1(α)+ u2(α).

Section 8.4.5 illustrates the use of this lower bound. On the other hand, we trivially
have the upper bound,

k∗(α, λ̂) ≤ u1(α)+ u2(α).

For later reference, we define

κ∗ = sup
α∈A

u1(α)+ u2(α), (8.4.7)

where (as usual) κ∗ = −∞ if A is empty.
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Example

8.4.1
Suppose b = 3 and c = 2, and p − q = r − q > 0. It is easy to calculate that
A = {(α1, α2) :

( 1
2 − α1

)( 1
2 − α2

)
< 0

}
, α̂i = 1

2 ,

h(αi) = 4− 5αi
5− 4αi

,

and A ∗ = {α ∈ A : αj = h(αi)}. While (1/2, 1/2) �∈ A , limαi→1/2 h(αi) =
1/2, and we have

sup
α∈A ∗

u1(α)+ u2(α) = u1
( 1

2 ,
1
2

)+ u2
( 1

2 ,
1
2

) = 3
2 .

Note that if (8.4.2) holds, then the lower bound on k∗(λ̂) from asymmetric mixing
in A ∗ is larger than the bound from any pure action profile.

●

Finally, we consider mixed-action profiles not in A . In this case, signals do not
distinguish between players, and so intuitively it is impossible to separately provide
incentives. More formally, it is not possible to orthogonally enforce such profiles (this
is immediate from the discussion following (8.4.4)). Letting �xi ≡ xi(ȳ)− xi(y),
where j �= i, we have∑

i

{ui(α)+ E[xi | α]} =
∑
i

{ui(α)+ αi[αj (p − q)+ (1− αj )(q − r)]�xi

+ (αjq + (1− αj )r)�xi + xi(y)}.
From (8.4.4), we thus have for full support α,

k∗(α, λ̂) =
∑
i

{ui(α)+ αi[αj (b − 2)+ (1− αj )c]

+ (αjq + (1− αj )r)�xi + xi(y)}
=
∑
i

{αjb + (αjq + (1− αj )r)�xi + xi(y)}

≤
∑
i

{αjb − (1− αjq − (1− αj )r)�xi},

where we used the inequality
∑
i xi(y) =

∑
i{xi(ȳ)−�xi} ≤ −

∑
i �xi . Because

xi(ȳ) = 0 is a feasible choice for the normalized continuations and (8.4.4) then
determines xi(y), the inequality is an equality, and we have

k∗(α, λ̂) =
∑
j

{
αjb − (1− αjq − (1− αj )r)(αj (b − 2)+ (1− αj )c)

αj (p − q)+ (1− αj )(q − r)
}
.

Observe that the expression is separable in α1 and α2, so that maximizing k∗(α, λ̂)
over α �∈ A is equivalent to maximizing the expression,

αjb − (1− αjq − (1− αj )r)(αj (b − 2)+ (1− αj )c)
αj (p − q)+ (1− αj )(q − r) ,

which yields the maximum strongly symmetric payoff. For the case b = 3 and c = 1,
this expression reduces to the function γ̄ given in (7.7.7). Let vSSE denote the maximum
strongly symmetric payoff,
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vSSE = sup
αj

αjb − (1− αjq − (1− αj )r)(αj (b − 2)+ (1− αj )c)
αj (p − q)+ (1− αj )(q − r) .

Evaluating the expression at αj = 1 yields v̄ of (8.4.1), and so k∗(EE, λ̂) = 2v̄ ≤
2vSSE. Section 7.7.2 discusses an example where vSSE > v̄.

Summarizing the foregoing discussion, if v is a PPE payoff, then4

v1 + v2 ≤ max
{
b − c, κ∗, 2vSSE}, (8.4.8)

where κ∗ is defined in (8.4.7).

8.4.3 A Characterization with Two Signals

We return to the prisoners’ dilemma of figure 7.2.1 (i.e., b = 3 and c = 1) with imper-
fect public monitoring. We now characterize M for the special case p − q = q − r
of the monitoring distribution (7.2.1). As we saw in section 8.4.2, mixed actions can
play a role in the determination of M . For the special case under study, however, the
myopic incentives to shirk are independent of the actions of the other player. Moreover,
because p − q = q − r , the impact on the distribution of signals is also independent
of the actions of the other player. In terms of the analysis of the previous section,
the expression determining vSSE is affine in αi , so the best strongly symmetric equi-
librium payoff is achieved in pure actions. In addition, A is empty because q > r .
Consequently, we can restrict attention to pure-action profiles.

Each player’s minmax value is 0, so lemma 8.1.2 implies that k∗(−ei) ≤ 0. More-
over, because (S, S) is a Nash equilibrium of the stage game, (0, 0) satisfies the
constraint in (8.1.1) for α = SS and λ. Consequently, k∗(−ei) = 0, and so M ⊂ R2+.
By a similar argument, the maximal half-spaces in directions with λ1, λ2 ≤ 0 impose
no further restriction on M .

We now consider directions λ with λ2 > 0 > λ1. If −λ1 ≤ λ2, the action profile
ES can be orthogonally enforced and so, by the third claim in lemma 8.1.1, k∗(λ) =
λ · (−1, 3) = 3λ2 − λ1. To obtain the normalized continuations satisfying (8.1.2)–
(8.1.4), we first solve (8.1.2) and (8.1.3) for player 1 as an equality withE[x1 | ES] = 0,
giving

x1(ȳ) = (1− q)
(q − r) , and x1(y) = −q

(q − r) .

We then set

x2(ȳ) = −λ1

λ2
x1(ȳ) and x2(y) = −λ1

λ2
x1(y).

4. We have not discussed asymmetric profiles in which only one player is randomizing. Observe,
however, κ∗ also bounds any such profiles in the closure of A . For any such profiles not in the
closure of A , 2vSSE is still the relevant bound.



288 Chapter 8 ■ Bounding Equilibrium Payoffs

By construction, λ · x(y) = 0. Finally,

(p − q)[x2(ȳ)− x2(y)] = (p − q)
(−λ1

λ2

)
[x1(ȳ)− x1(y)]

≤ (q − r)[x1(ȳ)− x1(y)] = 1,

(using p − q = q − r and −λ1 ≤ λ2), and so (8.1.3) holds for player 2.
On the other hand, if −λ1 > λ2, the action profile ES cannot be orthogonally

enforced. In this case, k∗(ES, λ) is the maximum value of λ1v1 + λ2v2 for v with the
property that there exists x satisfying

v1 = −1+ qx1(ȳ)+ (1− q)x1(y) ≥ 0+ rx1(ȳ)+ (1− r)x1(y),

v2 = 3+ qx2(ȳ)+ (1− q)x2(y) ≥ 2+ px2(ȳ)+ (1− p)x2(y),

and

0 ≥ λ1x1(y)+ λ2x2(y) for y = ȳ,y.
The first two constraints imply, because λ1 < 0 and using p − q = q − r ,

λ1x1(ȳ)+ λ2x2(ȳ) ≤ λ1x1(y)+ λ2x2(y)+ (λ1 + λ2)/(q − r),
so the last constraint implies

k∗(ES, λ) ≤ −λ1 + 3λ2 + q(λ1 + λ2)/(q − r). (8.4.9)

The continuations x1(y) = x2(y) = 0 and x1(ȳ) = x2(ȳ) = 1/(q − r) satisfy the
constraints, so the inequality in (8.4.9) is an equality. Because q/(q − r) > 1,
k∗(ES, λ) < 0 for large |λ1|, so k∗(ES, λ) < k∗(SS, λ) = 0. Consequently,5

k∗(λ) = max{k∗(ES, λ), k∗(SS, λ), k∗(EE, λ), k∗(SE, λ)}

=




3λ2 − λ1, if 0 < −λ1 ≤ λ2,

3λ2 − λ1 + q(λ1 + λ2)/(q − r), if 0 < λ2 < −λ1 and

3λ2− λ1+ q(λ1+ λ2)/(q − r)> 0,

0, otherwise.

Hence, the upper left boundary of M is given by the line through (0, 0) perpendicular
to the normal λ satisfying 3λ2 − λ1 + q(λ1 + λ2)/(q − r) = 0, that is, given by x2 =
[(4q − 3r)/r]x1 = [(2p − r)/r]x1 (the last equality uses p − q = q − r).

Symmetrically, for 0 < −λ2 ≤ λ1 we also have

k∗(λ) =




3λ1 − λ2, if 0 < −λ2 ≤ λ1,

3λ1 − λ2 + q(λ2 + λ1)/(q − r), if 0 < λ1 < −λ2 and

3λ1− λ2+ q(λ1+ λ2)/(q − r) > 0,

0, otherwise.

5. It is immediate that k∗(EE, λ) ≤ 2(λ1 + λ2) < 0 and k∗(SE, λ) ≤ 3λ1 − λ2 < 0.
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Figure 8.4.4 The bounding set M when 2p − q ≤ 1.

It remains to solve for k∗(λ)when λ1, λ2 ≥ 0. We apply the analysis from section
8.4.1. Condition (8.4.2) in the current setting reduces to 2p − q ≤ 1, and the maximal
half-spaces can then always be obtained by using either ES or SE, that is, k∗(λ) =
max{3λ2 − λ1, 3λ1 − λ2} for all λ. The bounding set M is illustrated in figure 8.4.4.6

On the other hand, if 2p − q > 1, then some maximal half-spaces (in particular,
those with λ1 and λ2 close) require EE. For example, k∗(λ) = 2[2− (1− p)/(p −
q)], when λ1 = λ2 = 1. This possibility is illustrated in figure 8.4.5. Observe that
the symmetric upper bound we obtained here, 2− (1− p)/(p − q) on a player’s
payoff, agrees with our earlier calculation yielding (7.7.1) in section 7.7.1, as it should.
Moreover, for p and q satisfying 2p − q < 1, the best strongly symmetric PPE payoff
is strictly smaller than the best symmetric PPE payoff (which is 1) for δ large (applying
theorem 9.1.1).

8.4.4 Efficiency with Three Signals

We now consider a modification of the monitoring structure that does not preclude
efficiency and (as an implication of theorem 9.1.1), yields all feasible and strictly
individually rational payoffs as PPE payoffs for sufficiently large δ.

The new monitoring structure has three signals y, y′, and ȳ, whose distribution is
given by

ρ(ȳ | a) =



p, if a = EE,

q, if a = SE or ES,

r, if a = SS,

ρ(y′ | a) =




p′, if a = EE,

q ′1, if a = SE,

q ′2, if a = ES,

r ′, if a = SS,

with y receiving the complementary probability.
We proceed as for the previous monitoring distribution to calculate M . As before,

for λ with λ1, λ2 ≤ 0, we obtain the restriction M ⊂ R2+. Consider now directions λ

6. Proposition 9.1.1 implies that any v ∈M is a PPE payoff for sufficiently high δ. It is worth
observing that maxv∈M v2 exceeds 2− r/(q − r), the maximum payoff player 2 could receive
in any PPE in which only ES and SE are played (a similar comment applies to player 1, of course).
This is most easily seen by considering the normal λ determining the upper left boundary of M .
For such a direction, it is immediate that maxv∈W λ · v = 3λ2 − λ1 + q(λ1 − λ2)/(q − r) < 0,
where W is the set defined in remark 7.7.2. This is an illustration of the general phenomenon
that the option of using inefficient actions, such as SS, relaxes incentive constraints.
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with λ2 > 0 > λ1. If −λ1 ≤ λ2, ES can be orthogonally enforced by setting xi(y′) =
xi(y) for i = 1, 2, and arguing as in the previous case. Hence, for such a direction λ,
k∗(λ) = 3λ2 − λ1.

Consider now directions λ with −λ1 ≥ λ2 (recall that it was not possible to
orthogonally enforce ES in these directions under the public monitoring described
by (7.2.1)). As above, k∗(λ) = 3λ2 − λ1 if ES can be orthogonally enforced. The
orthogonal enforceability of ES requires, from equations (8.1.2) and (8.1.3),

−1 = −1+ qx1(ȳ)+ q ′2x1(y
′)+ (1− q − q ′2)x1(y) (8.4.10)

≥ rx1(ȳ)+ r ′x1(y
′)+ (1− r − r ′)x1(y)

and

3 = 3+ qx2(ȳ)+ q ′2x2(y
′)+ (1− q − q ′2)x2(y) (8.4.11)

≥ 2+ px2(ȳ)+ p′x2(y
′)+ (1− p − p′)x2(y). (8.4.12)

Using λ · x = 0 to eliminate x2 from (8.4.11) and (8.4.12), and writing the inequalities
as equalities ((8.4.11) is an implication of (8.4.10) and λ · x = 0), we obtain the matrix
equation 

q q ′2 1− q − q ′2
r r ′ 1− r − r ′
p p′ 1− p − p′




x1(ȳ)

x1(y
′)

x1(y)


 =


 0
−1
−λ2/λ1


 .

Hence if the matrix of stacked distributions is invertible, then ES is orthogonally
enforceable in the direction λ, so k∗(EE, λ) = 3λ2 − λ1. A similar argument shows
that k∗(SE, λ) = 3λ1 − λ2.

For λ1, λ2 ≥ 0, both ES and SE can be orthogonally enforced by setting xi(y′) =
xi(y) for i = 1, 2 and arguing as in the previous case. Hence, for such λ, k∗(ES, λ) =
3λ2 − λ1 and k∗(SE, λ) = 3λ1 − λ2.

Finally, we show that invertibility of another matrix of stacked distributions is
sufficient for EE to be orthogonally enforced in any direction λ with λ1, λ2 ≥ 0.
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The orthogonal enforceability of EE requires, from equations (8.1.2) and (8.1.3), for
i = 1, 2,

2 = 2+ pxi(ȳ)+ p′xi(y′)+ (1− p − p′)xi(y)
≥ 3+ qxi(ȳ)+ q ′ixi(y′)+ (1− q − q ′i )xi(y). (8.4.13)

Using λ · x = 0 as above to eliminate x2 from (8.4.13) and writing the inequalities for
i = 1, 2 as equalities, we obtain the matrix equation

p p′ 1− p − p′
q q ′1 1− q − q ′1
q q ′2 1− q − q ′2




x1(ȳ)

x1(y
′)

x1(y)


 =


 0
−1
λ2/λ1


 .

Hence if the matrix of stacked distributions is invertible, then EE is orthogonally
enforceable in the direction λ, and so k∗(EE, λ) = (λ1 + λ2)2.

Thus,

k∗(λ) =




3λ2 − λ1, if 3λ1 ≤ λ2,

(λ1 + λ2)2, if λ2/3 < λ1 < 3λ2,

3λ1 − λ2, if λ1 ≥ 3λ2,

and so M = F ∗ (note that the slope of the line connecting u(E, S) and u(E,E)
is −1/3).

The requirement that the matrix of stacked distributions be invertible is an example
of the property of pairwise full rank, which we explore in section 9.2.

8.4.5 Efficient Asymmetry

This section presents an example, based on Kandori and Obara (2003), in which
players exploit the asymmetric mixed actions in A (described in section 8.4.2) to
attach asymmetric continuations to the public signals. Paradoxically, if the monitoring
technology is sufficiently noisy, the set of PPE payoffs for patient players is very close
to F ∗.7

We return to the prisoners’ dilemma of figure 8.4.1 with public monitoring dis-
tribution (7.2.1). Fix a closed set C ⊂ intF ∗, and 1 > r > q ∈ (0, 1). We will show
that for sufficiently small ε > 0, if q < p < q + ε, then C ⊂M . From proposition
9.1.2, the set of PPE payoffs then contains C for sufficiently large δ. This is not a folk
theorem result, because we first fix the set C , then choose a monitoring distribution,
and then allow δ to approach 1.

We first dispense with some preliminaries. Suppose p, r satisfy p, r > q and

r − q
p − q >

c

b − 2
(8.4.14)

(for fixed q and r , (8.4.14) is always satisfied forp sufficiently close to q). It is straight-
forward to check that SS is orthogonally enforced in all directions, SE is orthogonally

7. This result is not inconsistent with section 7.4, because the increased noisiness does not come
in the form of a less informative signal in the sense of Blackwell.
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enforced in all directions λ such that λ1 > 0 and λ1 ≥ λ2, and ES is orthogonally
enforced in all directions λ such that λ2 > 0 and λ2 ≥ λ1. Consequently, M contains
D ≡ co{(0, 0), (b,−c), (−c, b)}.

Let λ1 be the direction orthogonal to the line connecting (2, 2) and (b,−c),
and λ2 the direction orthogonal to the line connecting (2, 2) and (−c, b). Let
�∗ ≡ {λ : λi > 0, λ1

2/λ
1
1 ≤ λ2/λ1 ≤ λ2

2/λ
2
1} be the set (cone) of directions “between”

λ1 and λ2. It is immediate that for any direction not in �∗, k∗(λ) = k∗(a, λ)
for some a ∈ {SS, SE,ES}. Consequently, if M is larger than D , it is because
k∗(λ) > maxa∈{SS,SE,ES} k∗(a, λ) for λ ∈ �∗.

It remains to argue that for p sufficiently close to q, M contains any closed set in
the interior of the convex hull of (2, 2) and D . This is an implication of the following
lemma.

Lemma

8.4.1
There exists ε > 0 such that if q < p < q + ε, then for all directions λ ∈ �∗
and all η > 0, there is an asymmetric mixed profile α η-close to EE that can be
orthogonally enforced in the direction λ.

Proof Fix a direction λ ∈ �∗. We begin by observing that, as for the direction λ̂ in
section 8.4.2, orthogonal enforceability in the direction λ requires, from (8.4.4)
and (8.4.6),

λ2g(α2) = −λ1g(α1). (8.4.15)

Just as in section 8.4.2, this equation implies a relationship between α1 and α2

for α orthogonally enforceable in the direction λ. In particular, if for α1 = 1, the
implied value of α2 from (8.4.15) is a probability, then (1, α2) is orthogonally
enforced in the direction λ. Setting α1 = 1 in (8.4.15) and solving for α2 gives

α2 = λ2(r − q)(b − 2)− λ1(p − q)c
λ2(p − q − (q − r))(b − 2)+ λ1(p − q)(b − 2− c) .

Becauseλ2/λ1 is bounded forλ ∈ �∗, there exists ε > 0 such that 1− η < α2 < 1
if p < q + ε, which is what we were required to prove.

■



9 The Folk Theoremwith Imperfect
Public Monitoring

The previous chapters showed that intertemporal incentives can be constructed even
when there is imperfect monitoring. In particular, nonmyopically optimal behavior
can be supported as equilibrium behavior by appropriately specifying continuation
play, so that a deviation by a player adversely changes the probability distribution over
continuation values.

This chapter shows that the set M , from proposition 8.1.1, completely describes
the set of limit PPE payoffs, and explores conditions under which M is appropriately
“large.” As we saw in section 8.4, the nature of the dependence of the signal distribution
on actions determines the size of M and so plays a crucial role in obtaining nearly
efficient payoffs as PPE payoffs.

This analysis leads to several folk theorems. Folk theorems can (and have) given
rise to a variety of interpretations. We refer to section 3.2.1 for a discussion.

9.1 Characterizing the Limit Set of PPE Payoffs

In section 8.1, we introduced the notion of decomposability with respect to half-spaces
and defined the maximal half-space in the direction λ,H ∗(λ). Recall that the maximal
half-space H ∗(λ) is the largest H(λ, k) half-space with the property that a boundary
point of the half-space can be decomposed with respect to that half-space. In section 8.1,
we showed that the set of PPE payoffs is contained in M , the intersection of all the
maximal half-spaces, ∩λH ∗(λ). In this section, we show that for large δ, the set of
PPE payoffs is typically well approximated by M .

Proposition

9.1.1
Suppose the stage game satisfies assumption 7.1.1. If M ⊂ Rn has nonempty
interior (and so dimension n), then for all v ∈ intM , there exists δ < 1 such that
for all δ ∈ (δ, 1), v ∈ E (δ), that is, there is a PPE with value v. Hence,1

lim
δ→1

E (δ) =M .

This proposition is an implication of proposition 9.1.2, stated independently for
ease of reference.

Definition

9.1.1
A subset W ⊂ Rn is smooth if it is closed and has nonempty interior with respect
to Rn and the boundary of W is a C 2-submanifold of Rn.

1. More precisely, the Hausdorff distance between E (δ) and M converges to 0 as δ→ 1.

293
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The set M is a compact convex set. If it has nonempty interior, it can be approxi-
mated arbitrarily closely by a smooth convex set W contained in its interior.2 Moreover,
for any fixed v ∈ intM , W can be chosen to contain v. Proposition 9.1.1 is proven
once we have shown W ⊂ E (δ) for sufficiently large δ.

Proposition

9.1.2
Suppose the stage game satisfies assumption 7.1.1. Suppose W is a smooth convex
subset of the interior of M . There exists δ < 1 such that for all δ ∈ (δ, 1),

W ⊂ B(W ; δ) ⊂ E (δ).

There are two key insights behind this result. The first we have already seen: The
quantity k∗(λ)measures the maximum “average” utility of all the players in the direc-
tion λ consistent with providing each player with appropriate incentives (remark 8.1.1).
The second is that because W is smooth, locally its boundary is sufficiently flat that
the unnormalized continuations γ required to enforce any action profile can be kept
inside W by making players patient (thereby making the variation in continuations
arbitrarily small, see (8.1.5)).

Proof From corollary 7.3.3, it is enough to show that W is locally self-generating, that
is, for all v ∈ W , there exists δv < 1 and an open set Uv such that

v ∈ Uv ∩W ⊂ B(W ; δv).
We begin with a payoff vector v ∈ intW . Because v is interior, there exists an

open set Uv s.t. v ∈ Uv ⊂ Uv ⊂ intW . Let α̃ be a Nash equilibrium of the stage
game. Consequently, there exists a discount factor δv such that for any v′ ∈ Uv ,
there is a payoff v′′ ∈ W such that

v′ = (1− δv)u(α̃)+ δvv′′. (9.1.1)

Because α̃ is an equilibrium of the stage game, the pair (α̃, γ ′) decomposes v′
with respect to W , where γ ′(y) = v′′ for all y ∈ Y .

The interior of W presents a potentially misleading picture of the situation.
The argument just presented decomposes payoffs using the myopic Nash equilib-
rium of the stage game. Consequently, no intertemporal incentives were needed.
However, it would be incorrect to conclude from this that nontrivial intertempo-
ral incentives are only required for a negligible set of payoffs. The value of δv
satisfying (9.1.1) approaches 1 as v approaches bdW , the boundary of W . Local
decomposability on the boundary of W , which requires intertemporal incentives,
guarantees that δ can be chosen strictly less than 1. The strategy implicitly con-
structed through an appeal to corollary 7.3.3 uses intertemporal incentives for
payoffs in a neighborhood of the boundary.

We turn to the heart of the argument, decomposability of points on the boundary
of W , bdW . We now suppress the dependence of the set U and the discount factor
δ on v. Fix a point v on the boundary of W . Because W is smooth and convex,
there is a unique supporting hyperplane to W at v, with normal λ. Let k = λ · v.
Because W ⊂ intH ∗(λ), k < k∗(λ). Moreover, for all ṽ ∈ W , λ · ṽ ≤ k < k∗(λ).

2. More precisely, for any ε, there exists a smooth convex W ⊂ intM whose Hausdorff distance
from M is less than ε.
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Figure 9.1.1 The hyperspaces H(λ, k) and H(λ, k − ε(1− δ)/δ).

Let α ∈ B be an action profile that decomposes a point v∗ ∈ bdH ∗(λ) on
H ∗(λ), so that k < λ · v∗ = k∗(λ).3 Let x∗ denote the associated normalized
continuations satisfying (8.1.2)–(8.1.4) for α and v∗. In general, all we know
is that λ · x∗(y) ≤ 0, and it will be useful to decompose points using normal-
ized continuations with a strictly negative value under λ. Accordingly, let v′
satisfy k = λ · v < λ · v′ < λ · v∗, and let x′(y) = x∗(y)− v∗ + v′. Because x′
is x∗ translated by a constant independent of y, v′ is decomposed by (α, γ ′),
where γ ′ = v′ + x′(1− δ)/δ. Moreover, λ · x′ = λ · x∗(y)− k∗(λ)+ λ · v′ =
λ · x∗(y)− ε ≤ −ε for all y, where ε = k∗(λ)− λ · v′ > 0.

Any ṽ ∈ W can be decomposed by (α, γ̃ ), where

γ̃ (y) = ṽ + [x′(y)− v′ + ṽ] (1− δ)
δ

, ∀y ∈ Y. (9.1.2)

Because λ · ṽ ≤ k < λ · v′, λ · γ̃ (y) ≤ k − ε(1− δ)/δ (see figure 9.1.1). For ṽ =
v, the decomposing continuation is denoted by γ .

It remains to show that there exists η > 0 and δ < 1 such that for all ṽ ∈
Bη(v) ∩W , we have γ̃ (y) ∈ W , for all y.

Now,

|γ̃ (y)− Eγ | ≤ |γ̃ (y)− Eγ̃ | + |Eγ̃ − Eγ |
= |x′(y)− Ex′| (1− δ)

δ
+ |ṽ − v|1

δ
.

In other words, by making η small, and δ sufficiently close to 1, we can make γ̃ (y)
arbitrarily close to E[γ | α]. From lemma 8.1.1(2), for δ sufficiently close to 1,
E[γ | α] ∈ W . However, at the same time, E[γ | α] approaches the boundary

3. This assumes there exists an α for which k∗(λ) = k∗(α, λ). If there is no such α (see note 3 on
page 277), the remainder of the proof in the text continues to hold with α and v∗ chosen such
that k∗(α, λ) is sufficiently close to k∗(λ), which we can do because k∗(λ) = supα∈B k

∗(α, λ).
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Figure 9.1.2 Figure 9.1.1 with the new coordinate system. The vector
λ′ is λ in the new system. Note that Bη(v) is now an ellipse. The disc
centered at γ̄ is the ball of radius β ′ mentioned in the proof.

of W . There is therefore no immediate guarantee that points close to E[γ | α]
will also be in W . However, as we now argue, the guarantee is an implication of
the smoothness of the boundary of W .

By construction, all continuations are no closer than ε(1− δ)/δ to the sup-
porting hyperplane of W at v, that is, the boundary of H(λ, k). We now change
bases to {fi : 1 ≤ i ≤ n}, where {fi : 1 ≤ i ≤ n− 1} is a set of spanning vec-
tors for bdH(λ, k) and fn = u(α)− v. This change of basis allows us to apply
a Pythagorean identity. Let F : Rn→ Rn denote the linear change-of-basis map,
and | · |1 denote the norm on Rn that makesF an isometry, that is, for allx, x′ ∈ Rn,
|x − x′|1 = |Fx − Fx′|, where |x| is the Euclidean norm. The two norms | · |1
and | · | are equivalent, that is, there exist two constants κ1, κ2 > 0, so that for all
x ∈ Rn, κ1|x| ≤ |x|1 ≤ κ2|x|. The image of the boundary of W under F is still
a C 2-submanifold. Hence, for some β ′, the ball of | · |1-radius β ′ centered at a
point γ̄ on the fn-axis is contained in W and contains v (this is the reason for the
new basis—see figure 9.1.2).

Let γ δ denote the convex combination of the vectors v and γ̄ satisfying
γ δ ∈ bdH(λ, k − ε(1− δ)/δ), so that |γ δ − v| = ε(1− δ)/δ (this is well defined
for δ close to 1). Then, |γ̄ − γ δ|1 ≤ β ′ − κ1ε(1− δ)/(δ|λ|).4 For any point
γ̂ ∈ bdH(λ, k − ε(1− δ)/δ) satisfying |γ̂ − γ δ|1 = κ

√
1− δ (where κ > 0 is

to be determined), we have,5

|γ̄ − γ̂ |21 = |γ̄ − γ δ|21 + |γ̂ − γ δ|21
≤ (β ′ − κ1ε(1− δ)/(δ|λ|))2 + κ2(1− δ)
= (β ′)2 − (1− δ)

[
κ1ε

δ|λ|
(

2β ′ − κ1ε(1− δ)
δ|λ|

)
− κ2

]
.

4. Letting w= γ δ − v, we have by the definition of γ δ , ε(1− δ)/δ= λ ·w. Setting η= λ ·w/λ · λ,
we have |w|1 ≥ κ1|w| ≥ κ1η|λ| = κ1ε(1− δ)/(δ|λ|). Finally, |γ̄ − γ δ |1 = |γ̄ − v|1 − |w|1.

5. The first equality, a Pythagorean identity, follows from F(γ̄ − γ δ) · F(γ − γ δ) = 0.
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Figure 9.1.3 A “zoom-in” of figure 9.1.2 including the critical set
{γ̃ : |γ̃ − γ δ |1 < κ

√
1− δ} ∩H(λ, k − ε(1− δ)/δ) ⊂ W .

There exists a value for κ and a bound δ′, such that for all δ > δ′, the term in
square brackets is strictly positive,6 and so

{
γ̃ : |γ̃ − γ δ|1 < κ

√
1− δ} ∩H(λ, k − ε(1− δ)/δ) ⊂ W . (9.1.3)

This is illustrated in figure 9.1.3. Note that if W had empty interior, (9.1.3) must
fail.

From (9.1.2), we already know that γ̃ (y) ∈ H(λ, k − ε(1− δ)/δ). Now,

|γ̃ (y)− γ δ|1 ≤ |γ̃ (y)− Eγ |1 + |Eγ − v|1 + |γ δ − v|1
≤ |x′(y)− Ex′|κ2

(1− δ)
δ

+ |ṽ − v|κ2
1

δ

+ |Ex′ − v′ + v|1 (1− δ)
δ

+ εκ2
(1− δ)
δ

.

There exists κ ′ and δ′′ such that, for δ > δ′′, the above is bounded above by

κ ′(1− δ)+ 2κ2|ṽ − v|.
Choose δ > max{δ′, δ′′} so that 2κ ′(1− δ) < κ

√
1− δ (this inequality is

clearly satisfied for δ sufficiently close to 1). Finally, let η < (κ/4κ2)
√

1− δ.
Then, for all ṽ ∈ Bη(v), the implied γ̃ satisfy

|γ̃ (y)− γ δ|1 < κ
√

1− δ,
and so, from (9.1.3), v is locally decomposed, completing the proof.

■

6. As we will see soon, we need the radius of the ball centered at γ δ to be of order strictly greater
than O(1− δ) so that γ̃ will, for large δ, be in the ball. At the same time, if the ball had radius
strictly greater than O(

√
1− δ), then we could not ensure |γ̄ − γ |1 < β ′ for large δ.
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Remark

9.1.1
Pure strategy PPE The above analysis also applies to the case where long-lived
players are restricted to pure strategies. Recalling the notation of remarks 7.3.3
and 8.1.2, we have the following result.

Proposition

9.1.3
Suppose the game satisfies assumption 7.1.1. Suppose M p has nonempty interior,
and W is a smooth convex subset of the interior of M p. Then, there exists δ < 1
such that for all δ ∈ (δ, 1),

W ⊂ Bp(W ; δ) ⊂ E p(δ).

Hence, for all v ∈ intM p, there exists δ < 1 such that for all δ ∈ (δ, 1),
v ∈ E p(δ).

Proof The argument is almost identical to that of the proof of proposition 9.1.2, because
every payoff in W can be decomposed using a pure action profile. This is obvious
for points on the boundary of W , and for interior points if the stage game has a
pure strategy Nash equilibrium. If the stage game does not have a pure strategy
Nash equilibrium, decompose points in the interior with respect to some pure
action profile and then argue as for the boundary points.

■

◆

9.2 The Rank Conditions and a Public Monitoring Folk Theorem

When all players are long-lived and M has full dimension, from proposition 9.1.1,
a folk theorem for games with imperfect public monitoring holds if M = F ∗. From
lemma 8.1.1(3), this would occur if various pure action profiles (such as efficient
profiles) are orthogonally enforced. Fudenberg, Levine, and Maskin’s (1994) rank
conditions deliver the requisite orthogonal enforceability. We assume action spaces
are finite for the rest of this chapter.

If an action profile α is to be enforceable, and it is not an equilibrium of the
stage game, then deviations must lead to different expected continuations. That is, the
distribution over signals should be different if a player deviates. Asufficient condition is
that the distribution over signals induced byα be different from the distribution induced
by any profile (α′i , α−i ) with α′i �= αi . This is clearly implied by the following.

Definition

9.2.1
Suppose A is finite. The profile α has individual full rank for player i if the
|Ai | × |Y | matrix Ri(α−i ) with elements [Ri(α−i )]aiy ≡ ρ(y | ai, α−i ) has full
row rank (i.e., the collection of probability distributions {ρ(· | ai, α−i ) : ai ∈ Ai}
is linearly independent). If this holds for all players i, then α has individual full
rank.

Individual full rank requires |Y | ≥ maxi |Ai |, and ensures that the signals gener-
ated by any (possibly mixed) action αi are statistically distinguishable from those of
any other mixture α′i . Because both αi and α′i are convex combinations of pure actions,
it would suffice that each ρ(y | α) is a unique convex combination of the distributions
in {ρ(y | ai, α−i )}ai∈Ai (such a condition is discussed in Kandori and Matsushima
1998).
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If an action profile α has individual full rank, then for arbitrary v, the equations
obtained from (8.1.2) and imposing equality in (8.1.3),

vi = ui(ai, α−i )+ E[xi(y) | (ai, α−i )], ∀i,∀ai ∈ Ai (9.2.1)

can be solved for enforcing normalized continuations x. Writing equation (9.2.1) in
matrix form as, for each i,

Ri(α−i )xi = [(vi − ui(ai, α−i ))ai∈Ai ],
the coefficient matrix Ri(α−i ) has full row rank, so the equation can be solved for
xi (Gale 1960, theorem 2.5). In other words, we choose x so that each player has no
incentive to deviate from α. Although each player also has no strict incentive to play
α (a necessary property when α is mixed), there are many situations in which strict
incentives can be given (see proposition 9.2.2).

Without further assumptions, there is no guarantee the enforcing x enforces α
in any direction. For example, in the prisoners’ dilemma example of section 8.4.3,
α = EE has individual full rank for both players and is enforced by any x satisfying
xi(ȳ)− xi(y) ≥ 1/(p − q). However, any x satisfying λ · x(ȳ) > 0 > λ · x(y) fails
to enforce α in the direction λ. Moreover, if 0 = λ · E[x(y) | α], then necessarily
λ · x(ȳ) > 0 > λ · x(y). Therefore, α = EE cannot be orthogonally enforced in any
direction (as we saw in section 8.4.3).

The coordinate directions, λ = ei and −ei for some i, impose the least restric-
tion on the continuations, in that xj is unconstrained for j �= i. At the same time,
λ · x(y) = 0 implies xi(y) = 0, for all y. In other words, only profiles in which player
i is playing a static (or myopic) best reply to α−i can be orthogonally enforced in the
directions −ei or ei . On the other hand, if all players are playing a static best reply
(i.e., α is a static Nash equilibrium), xi(y) = 0 for all i and y trivially satisfies (8.1.2)–
(8.1.4), with vi = ui(α) and (8.1.4) holding with equality for any λ. This discussion
implies the following lemma.

Lemma

9.2.1
1. If α has individual full rank, then it is enforceable.
2. If α is a static Nash equilibrium, then it can be orthogonally enforced in any

direction.
3. If and only if α is enforceable and αi maximizes ui(ai, α−i ) over Ai , then α is

orthogonally enforceable in the directions ei and −ei .
We turn now to the general conditions that allow orthogonal enforceability in

noncoordinate directions. From lemma 8.1.1(4), it will be enough to obtain orthogonal
enforceability in all pairwise directions, λij . We begin with a strengthening of the
individual full rank condition.

Definition

9.2.2
Suppose A is finite. The profile α has pairwise full rank for players i and j if the
(|Ai | + |Aj |)× |Y | matrix

Rij (α) =
[
Ri(α−i )
Rj (α−j )

]

has rank |Ai | + |Aj | − 1.
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Note that |Ai | + |Aj | − 1 is the maximum feasible rank for Rij (α) because
αiRi(α−i ) = [ρ(y | α)y∈Y ] = αjRj (α−j ). Moreover, pairwise full rank for i and j
implies individual full rank for i and j .

Lemma

9.2.2
If α has pairwise full rank for players i and j and individual full rank, then it is
orthogonally enforceable in any ij -pairwise direction.

Proof Fix an ij -pairwise direction λij and choose v satisfying λij · v = λij · u(α) (a neces-

sary condition for orthogonal enforceability from lemma 8.1.1). Because λijj �= 0,

the constraint λij · x(y) = 0 for all y can be written as xj (y) = −λiji xi(y)/λijj
for all y ∈ Y . Imposing this equality, the equations obtained from (8.1.2) and
imposing equality in (8.1.3) for i and j can be written as

Rij (α)xi =

 (vi − ui(ai, α−i ))ai∈Ai(
−λ

ij
j

λ
ij
i

{vj − uj (aj , α−j )}
)
aj∈Aj


 . (9.2.2)

Because αiRi(α−i ) = αjRj (α−j ) and Rij (α) has rank |Ai | + |Aj | − 1, this
system can be solved for x if (Gale 1960, theorem 2.4)

αi[(vi − ui(ai, α−i ))ai∈Ai ] = −
λ
ij
j

λ
ij
i

αj [(vj − uj (aj , α−j ))aj∈Aj ]. (9.2.3)

The left side equals vi − ui(α), and the right side equals −λ
ij
j

λ
ij
i

(vj − uj (α)), so

(9.2.3) is implied by λij · v = λij · u(α).
Finally, individual full rank for k �= i, j implies

Rk(α−k)xk = [(vk − uk(ak, α−k))ak∈Ak ],
can be solved for xk .

■

Recall from proposition 8.1.1 that ∩λH ∗(λ) ⊂ F ∗ ⊂ F †.

Corollary

9.2.1
Suppose there are no short-lived players and all the pure action profiles yielding
the extreme points of F †, the set of feasible payoffs, have pairwise full rank for
all pairs of players. Then, if �n denotes the set of noncoordinate directions,

F † ⊂ ∩λ∈�nH ∗(λ).
Proof Because F † is convex, for any noncoordinate direction λ, there is an extreme

point u(aλ) of F † such that λ · v ≤ λ · u(aλ) for all v ∈ F †. The extreme points
are orthogonally enforceable in all noncoordinate directions (lemmas 8.1.1 and
9.2.2), so k∗(λ) = λ · u(aλ) ≥ λ · v for all v ∈ F †, that is, F † ⊂ H ∗(λ).

■

Because F † is the intersection of the closed half-spaces with normals in �n, the
inclusion in corollary 9.2.1 can be strengthened to equality.
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The characterization ofM is completed by considering coordinate directions. Pair-
wise full rank implies individual full rank, for all i, so we have k∗(ei) = maxa ui(a),
and ei does not further restrict the intersection.7 The coordinate directions −ei can
impose new restrictions, despite being in the closure of the set of noncoordinate
directions, �n, because different constraints are involved: If player i is not best
responding to α−i , then as λijj → 0 (so that λij approaches an i-coordinate direction),
the normalized continuations for player j can become arbitrarily large in magnitude
(because xj (y) = −λiji xi(y)/λijj ). Enforceability in the coordinate directions implies
the normalized continuations used in all directions can be taken from a bounded set.

Proposition

9.2.1
The public monitoring folk theorem Suppose there are no short-lived players, A
is finite, F † ⊂ Rn has nonempty interior, and all the pure action profiles yielding
the extreme points of F †, the set of feasible payoffs, have pairwise full rank for
all pairs of players.

1. If α̃ is an inefficient Nash equilibrium, then for all v ∈ int{v′ ∈ F † : v′i ≥
ui(α̃) for all i}, there exists δ < 1 such that for all δ ∈ (δ, 1), v ∈ E (δ).

2. If v = (v1, . . . ,vn) is inefficient and each player’s minmax profile α̂i has indi-
vidual full rank, then, for all v ∈ intF ∗, there exists δ < 1 such that for all
δ ∈ (δ, 1), v ∈ E (δ).

Proof 1. Because α̃ is a Nash equilibrium, it is orthogonally enforced in all directions,
and so k∗(−ei) ≥ k∗(α̃,−ei) = −ui(α̃). Consequently, for any v satisfying
vi ≥ ui(α̃) for all i, we have −vi ≤ −ui(α̃) ≤ k∗(−ei), and so v ∈ H ∗(−ei).
Because F † ⊂ Rn has nonempty interior, it has full dimension, and the
inefficiency of u(α̃) implies the same for M , and the result follows from
proposition 9.1.1.

2. Each player’s minmax profile α̂i has individual full rank, so from lemma 9.2.1,
for all i, k∗(−ei) = −vi , and so M = F ∗. The inefficiency of v implies the
full dimensionality of M , and the result again follows from proposition 9.1.1.

■

The conditions given in proposition 9.2.1 are stronger than necessary. Consider
first the assumption that all pure-action profiles yielding the extreme points of F †

have pairwise full rank for all players. Many games of interest fail such a condition. In
particular, in symmetric games (definition 8.2.1) such as the oligopoly game of Green
and Porter (1984), the distribution over public signals depends only on the number
of players choosing different actions, not which players. Consequently, any profile in
which all players choose the same action cannot have pairwise full rank: All profiles
where a single player deviates to the same action induce the same distribution over
signals. However, because k∗(λ) = supα k

∗(α, λ), it would clearly be enough to have a
dense set of actions within F †, each of which has pairwise full rank. (See section 8.4.5
for an illustration.) Perhaps surprisingly, this seemingly very strong condition is an
implication of the existence for each pair of players of just one profile with pairwise
full rank for that pair (Fudenberg, Levine, and Maskin 1994, lemma 6.2). Similarly, the
assumption that each players’ minmax profile has individual full rank can be replaced

7. As we saw in lemma 8.3.1, and return to section 9.3, this is not true in the presence of short-lived
players.
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by the assumption that all pure strategy profiles have individual full rank (Fudenberg,
Levine, and Maskin 1994, lemma 6.3).

Remark

9.2.1
Identifiability and informativeness It is worth emphasizing that the conditions in
proposition 9.2.1 concern the statistical identifiability of deviations and make no
mention of the informativeness of the signals. Pairwise full rank of a for players
i and j asserts simply that the matrix Rij (a) has an invertible square submatrix
with |Ai | × |Aj | − 1 rows; there is no bound on how close to singular the matrix
can be. For example, consider a sequence of monitoring distributions {ρ�}�, with
all a having pairwise full rank under each ρ� and with ρ�(y | a)→ 1/|Y |, the
uniform distribution. In the limit, the public monitoring distribution is uniform
on Y for all a, and under that monitoring distribution, all PPE are trivial. On the
other hand, for each �, proposition 9.2.1 holds. However, the relevant bound on δ
becomes increasingly severe (i.e., the bound converges to 1 as �→∞): Because
the determinant of any full row rank submatrix of Rij in (9.2.2) converges to 0,
the normalized continuations become arbitrarily large (as �→∞) and so in the
proof of proposition 9.1.2, the necessary bound on δ to ensure the unnormalized
continuations γ are in the appropriate set becomes increasingly severe.

◆

The equilibria implicitly constructed in proposition 9.2.1 are weak: All players
are indifferent over all actions. However, for a pure profile a, observe that (8.1.2) and
(8.1.3) are implied by, for all i,

vi = ui(a)+ E[xi(y) | a]
= ui(a′i , a−i )+ E[xi(y) | (a′i , a−i )] − 1, ∀a′i ∈ Ai, a′i �= ai.

(9.2.4)

As with (9.2.1), if a has individual full rank, (9.2.4) can be solved for x. A similar
modification to (9.2.2) yields, when a has pairwise full rank, continuations with strict
incentives. This then gives us the following strengthening of proposition 9.2.1. Let
E s(δ) be the set of strict PPE payoffs.

Proposition

9.2.2
The public monitoring folk theorem in strict PPE Suppose there are no short-lived
players, A is finite, and ρ(y | a) > 0 for all y ∈ Y and a ∈ A. Suppose F † ⊂ Rn

has nonempty interior and all the pure-action profiles yielding the extreme points
of F † have pairwise full rank for all pairs of players. If each player’s pure-action
minmax profile âi has individual full rank and vp = (vp1 , . . . ,vpn ) is inefficient,
then

lim
δ→1

E s(δ) = F ∗p.

Proof Because strict PPE equilibria are necessarily in pure strategies, we begin, as in
proposition 9.1.3, with a smooth convex set W ⊂ intM p. We argue that W ⊂
E s(δ) for sufficiently large δ (the argument is then completed as before). Moreover,
observe that if we have local decomposability using continuations that imply strict
incentives, then the resulting equilibrium will be strict (corollary 7.1.1). Note first
that for the case of a point on the boundary of W , the relevant part of the proof of
proposition 9.1.2 carries through (with the new definitions), with the normalized
continuations x∗ chosen so that (9.2.4) holds (this is possible because each pure
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action profile has individual full rank). Turning to points in the interior of W , if
the stage game has a strict Nash equilibrium, then the obvious decomposition of
(9.1.1) will give strict incentives, and the argument is completed. If, on the other
hand, the stage game does not have a strict Nash equilibrium, we then decompose
the point in the interior with respect to some pure-action profile and then argue as
for boundary points.

■

9.3 Perfect Monitoring Characterizations

9.3.1 The Folk Theorem with Long-Lived Players

Proposition 9.2.1 also implies the mixed-action minmax folk theorem for perfect mon-
itoring repeated games with unobservable randomization. The condition that F † have
nonempty interior is called the full-dimensionality condition and is stronger than the
assumption of pure-action player-specific punishments of proposition 3.4.1.

Proposition

9.3.1
The perfect monitoring folk theorem Suppose there are no short-lived players,A
is finite, F † has nonempty interior, and v = (v1, . . . ,vn) is inefficient. For every
v ∈ intF ∗, there exists δ < 1 such that for all δ ∈ (δ, 1), there exists a subgame-
perfect equilibrium of the repeated game with perfect monitoring with value v.
Moreover, if vi > v

p
i for all i, v is a pure strategy subgame-perfect equilibrium

payoff.

Proof For perfect-monitoring games, Y = A andρ(a′ | a) = 1 if a′ = a and 0 otherwise.
Hence, every pure action profile has pairwise full rank for all pairs of players, and
every action profile has individual full rank.8

The first claim then follows from proposition 9.2.1. The second claim follows
from lemma 8.1.1(4) and proposition 9.1.3.

■

9.3.2 Long-Lived and Short-Lived Players

We can also now easily characterize the set of subgame-perfect equilibrium payoffs
of the perfect monitoring game with many patient long-lived players and one or more
short-lived players. Recall from section 3.6 that for such games, F † denotes the pay-
offs in the convex hull of {(u1(α), . . . , un(α)) ∈ Rn : α ∈ B}. Even with this change,
corollary 9.2.1 does not hold in the presence of short-lived players, because some
of the extreme points of F † may involve randomization by a long-lived player (see
example 3.6.1). However, under perfect monitoring, all action profiles have pairwise
full rank for all pairs of long-lived players:

Lemma

9.3.1
Suppose A is finite and there is perfect monitoring (i.e., Y = A and ρ(a′ | a) = 1
if a′ = a and 0 otherwise). Then, all action profiles have pairwise full rank for all
pairs of long-lived players.

8. Indeed, under perfect monitoring, all action profiles have pairwise full rank (lemma 9.3.1), but
we need only the weaker statement here.
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Proof Fix a mixed profile α, and consider the matrixRij (α). Every column of this matrix
corresponds to an action profile a and has no, one, or two, nonzero entries:

1. if the action profile a satisfies α(a) > 0, then the entries corresponding to the ai
and aj rows are α−i (a−i ) and α−j (a−j ) respectively, with every other entry 0;

2. if a satisfies α−k(a−k) > 0 and αk(ak) = 0 (k = i or j ), then the entry
corresponding to the ak-row is α−k(a−k), with every other entry 0; and

3. if a satisfies αi(ai) = 0 and αj (aj ) = 0, or α−ij (a−ij ) = 0, then every
entry is 0.

Deleting one row corresponding to an action taken with positive probability by
player i, say, a′i , yields a (|Ai | + |Aj | − 1)× |A|matrix, R′. We claimR′ has full
row rank. Observe that for any a−i ∈ supp(α−i ), the column in R′ corresponding
to a′ia−i has exactly one nonzero term (corresponding to aj ). Moreover, every
column ofR′ corresponding to a satisfyingα−j (a−j ) > 0 andαj (aj ) = 0 also has
exactly one nonzero term. Hence for any β ∈ R|Ai |+|Aj |−1 with βR′ = 0, every
entry corresponding to an action for player j equals 0. But this implies β = 0.

■

We now proceed as in the proof of corollary 9.2.1. For any pairwise directionλij , let
α′ maximize λij · u(α) over α ∈ extF †. Then, k∗(λij ) = λij · u(α′), and lemmas 9.2.2
and 8.1.1 imply

∩λ∈�nH ∗(λ) = F †.

We now consider the coordinate directions, ej and −ej . Unlike the case of
only long-lived players, the direction ej does further restrict the intersection. From
lemma 8.3.1 we have for long-lived player j ,

k∗(ej ) ≤ v̄j ≡ maxα∈B minaj∈supp(αj ) uj (aj , α−j ).

We now argue that we have equality. Fix α ∈ B, and set, for i = 1, . . . , n, vi =
minai∈supp(αi ) ui(ai, α−i ). Let x be the normalized continuations given by

xi(ai, a−i ) =
{
vi − ui(ai, α−i ), if αi(ai) > 0,

−2 maxα |ui(α)|, if αi(ai) = 0.

Then, for all j = 1, . . . , n, the normalized continuations x, with v, satisfy (8.1.2)–
(8.1.4). So,

k∗(α, ej ) ≥ vj = minaj∈supp(αj ) uj (aj , α−j ),

and therefore

k∗(ej ) = supα∈B k
∗(α, ej ) ≥ supα∈B minaj∈supp(αj ) uj (aj , α−j ).

Finally, we need to argue that k∗(−ej ) = −vj . From lemma 8.1.2, k∗(−ej ) ≤
−vj . We cannot apply lemma 9.2.1, because α̂jj need not be a best reply to α̂j−j ,
the profile minmaxing j . Fix a long-lived player j and for i = 1, . . . , n, set vi =
maxai∈Ai ui(ai, α̂

j
−i ). Let x be the normalized continuations given by, for all a ∈ A,
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xi(a) = vi − ui(ai, α̂j−i ).
Then, the normalized continuations x, with v, satisfy (8.1.2)–(8.1.4). So,

k∗(α̂j ,−ej ) = −ej · v = − max
aj∈Aj

uj (aj , α̂
j
−j ),

and therefore

k∗(−ej ) = supα∈B k
∗(α,−ej ) ≥ k∗(α̂j ,−ej ) = −vj .

Summarizing this discussion, we have the following characterization.

Proposition

9.3.2
SupposeA is finite and F † has nonempty interior. For every v ∈ intF ∗ satisfying
vi < v̄i for i = 1, . . . , n, there exists δ such that for all δ ∈ (δ, 1), there exists a
subgame-perfect equilibrium of the repeated game with perfect monitoring with
value v.

Because intertemporal incentives need be provided for long-lived players only, it is
sufficient that their actions be perfectly monitored. In particular, the foregoing analysis
applies if the long-lived players’action spaces are finite, and the signal structure is given
by Y =∏n

i=1Ai × Y ′, for some finite Y ′, and ρ((a′1, . . . , a′n, y′) | a) = 0 if for some
i = 1, . . . , n, a′i �= ai .

As suggested by the development of the folk theorem for long-lived players in
section 3.5, there is scope for weakening the requirement of a nonempty interior.

9.4 Enforceability and Identifiability

Individual full rank, which requires |Y | > |Ai |, is violated in some important games.
For example, in repeated adverse selection, discussed in section 11.2, the inequality is
necessarily reversed. Nonetheless, strongly efficient action profiles can still be enforced
(lemma 9.4.1)—though not necessarily orthogonally enforced (for example, EE in the
prisoners’ dilemma of section 8.4.3).

The presence of short-lived players constrains strong efficiency in a natural man-
ner: α ∈ B is constrained strongly efficient if, for all α′ ∈ B satisfying ui(α) < ui(α

′)
for some i = 1, . . . , n, there is some � = 1, . . . , n, for which u�(α) > u�(α

′). In the
absence of short-lived players, the notions of constrained strongly efficient and strongly
efficient coincide.

The enforceability of constrained strongly efficient actions is an implication of the
assumption that player i’s ex ante payoff is the expected value of his ex post payoffs
(see (7.1.1)), which only depend on the realized signal and his own action. Intuitively,
enforceability of a profile α fails if for some player i, there is another action α′i such
that α and (α′i , α−i ) induce the same distribution over signals with (α′i , α−i ) yielding
higher stage-game payoffs. But the form of ex ante payoffs in (7.1.1) implies that the
other players are then indifferent between α and (α′i , α−i ), and so α is not constrained
strongly efficient.
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Lemma

9.4.1
Suppose ui is given by (7.1.1) for some u∗i , i = 1, . . . , n. Any constrained strongly
efficient profile is enforceable in some direction.

Proof If α′ is constrained strongly efficient, then there is a vector λ ∈ Rn, with λi > 0 for
all i, such that α′ ∈ argmaxα∈Bλ · u(α). For all i ≤ n, letMi = maxy,ai u

∗
i (y, ai)

and set

xi(y) ≡
∑

j=1,...,n,
j �=i

λju
∗
j (y, α

′
j )/λi − (n− 1)Mi, i = 1, . . . , n.

Then, λ · x(y) =∑i=1,...,n
∑
j �=i λju∗j (y, α′j )− (n− 1)

∑
i λiMi ≤ 0. More-

over, for any αi ,

ui(αi, α
′−i )+ E[xi(y) | (αi, α′−i )] (9.4.1)

= 1

λi


λiui(αi, α

′−i )+
∑
y

∑
j=1,...,n,
j �=i

λju
∗
j (y, α

′
j )ρ(y | αi, α′−i )


− (n− 1)Mi

= 1

λi

{
λiui(αi, α

′−i )+
∑
j �=i

λjuj (αi, α
′−i )
}
− (n− 1)Mi

= 1

λi
λ · u(αi, α′−i )− (n− 1)Mi.

Because α′ ∈ argmaxα∈Bλ · u(α), α′i maximizes (9.4.1), and so α′ is enforceable
in the direction λ.

■

We now turn to Fudenberg, Levine, and Maskin’s (1994) weakening of pairwise
full rank to allow for enforceable profiles that fail individual full rank.

Definition

9.4.1
A profile α is pairwise identifiable for players i and j if

rankRij (α) = rankRi(α−i )+ rankRj (α−j )− 1,

where rankR denotes the rank of the matrix R.

Note that pairwise full rank is simply individual full rank plus pairwise
identifiability.

Lemma

9.4.2
If an action profile with pure long-lived player actions is enforceable and pairwise
identifiable for long-lived players i and j , then it is orthogonally enforceable in
all ij -pairwise directions, λij .

Proof Suppose α† is an action profile with pure long-lived player actions, that is,

α† = (a†
1, . . . , a

†
n, α

†
SL) for some a†

i ∈ Ai , i = 1, . . . , n. For all ai ∈ Ai , let

ri(ai) denote the vector of probabilities [ρ(y | (ai, α†
−i )]y∈Y and set u†

i (ai) ≡
ui(ai, α

†
−i ). Say that the action ai is subordinate to a set A′i ⊂ Ai if there exists

subordinating scalars {βi(a′i )}a′i∈A′i with βi(ai) = 0 such that
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∑
a′i∈A′i

βi(a
′
i )ri(a

′
i ) = ri(ai) (9.4.2)

and

∑
a′i∈A′i

βi(a
′
i )u

†
i (a
′
i ) ≥ u†

i (ai). (9.4.3)

From (9.4.2), 1 =∑y ρ(y | (ai, a†
−i )) =

∑
y

∑
a′i∈A′i βi(a

′
i )ρ(y | (a′i , a†

−i )) =∑
a′i∈A′i βi(a

′
i ).

Claim

9.4.1
Suppose the set {ri(a′i )}a′i∈A′i is linearly dependent for a set of actions A′i . Then,
there exists an action ai ∈ A′i subordinate to A′i .

Proof The linear dependence of {ri(a′i )}a′i∈A′i implies the existence of scalars {ζi(a′i )}, not
all 0, such that

∑
a′i∈A′i ζi(a

′
i )ri(a

′
i ) = 0. Let ai be an action for which ζi(ai) �= 0.

Then,

∑
a′i∈A′i\{ai }

[−ζi(a′i )/ζi(ai)]ri(a′i ) = ri(ai). (9.4.4)

Suppose

∑
a′i∈A′i\{ai }

[−ζi(a′i )/ζi(ai)]u†
i (a
′
i ) < u

†
i (ai). (9.4.5)

Because all elements of the vectors ri(a′i ) are nonnegative, −ζi(a′i )/ζi(ai) > 0
for at least one a′i ∈ A′i\{ai}; let a′′i denote such an action. Multiplying (9.4.4) and
(9.4.5) by the term ζi(ai)/ζi(a

′′
i ), and rearranging, shows that a′′i is subordinate

to A′i .
On the other hand, if the inequality in (9.4.5) fails, then ai is subordinate toA′i .

�

Claim

9.4.2
If ai ∈ A′i is subordinate to A′i and (ai, a

†
−i ) is enforceable, then there exists

a′′i �= ai , a′′i ∈ A′i , subordinate to A′i .

Proof Because ai ∈ A′i is subordinate to A′i , there are subordinating scalars {βi(a′i )}
with βi(ai) = 0 satisfying (9.4.2) and (9.4.3). Suppose (9.4.3) holds strictly. If
βi(a

′
i ) ≥ 0 for all a′i ∈ A′i , then {βi(a′i )} corresponds to a mixture over A′i (recall

that
∑
a′i∈A′i βi(a

′
i ) = 1). Given a†

−i , this mixture is both statistically indistin-

guishable from ai and yields a higher payoff than ai , so the profile (ai, a
†
−i )

cannot be enforceable. Hence, there is some a′′i ∈ A′i for which βi(a′′i ) < 0.
Dividing both (9.4.2) and (9.4.3) by βi(a′′i ) < 0 and rearranging shows that a′′i is
subordinate to A′i .

Suppose now that (9.4.3) holds as an equality. Let a′′i ∈ A′i be an action with
βi(a

′′
i ) �= 0. Afamiliar rearrangement, after dividing (9.4.2) and (9.4.3) by βi(a′′i ),

shows that a′′i is subordinate to A′i .
�
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Claim

9.4.3
If ai is subordinate to A′i and a′′i is subordinate to A′i\{ai}, then ai is subordinate
to A′i\{a′′i }.

Proof Let {βi(a′i )} be the scalars subordinating ai to A′i , and {β ′′i (a′i )} be the scalars

subordinating a′′i to A′i\{ai}. It is straightforward to verify that {β̃i (a′i )} given by

β̃i (a
′
i ) =

{
βi(a

′
i )+ βi(a′′i )β ′′i (a′i ), if a′i �= ai and a′i �= a′′i ,

0, otherwise,

subordinates ai to A′i\{a′′i }.
�

We claim that there is a set A†
i ⊂ Ai containing a†

i such that {ri(a′i )}a′i∈A†
i

is

linearly independent and each a′′i �∈ A†
i is subordinate to A†

i : If {ri(a′i )}a′i∈Ai is

linearly dependent (i.e., Ri(a
†
−i ) does not have full row rank), then claim 9.4.1

implies there is an action a1
i ∈ Ai subordinate to Ai . By claim 9.4.2, we can

assume a1
i �= a†

i . Trivially, a1
i is subordinate to A1

i ≡ Ai\{a1
i }. If {ri(a′i )}a′i∈A1

i
is

linearly independent, then A1
i is the desired set of actions. If not, then claim 9.4.1

again implies there is an action a2
i ∈ A1

i subordinate to A1
i . By claim 9.4.2, we

can assume a2
i �= a†

i . By claim 9.4.3, a1
i is subordinate to A2

i ≡ A1
i \{a2

i }, and
trivially, a2

i is subordinate to A2
i . If {ri(a′i )}a′i∈A2

i
is linearly independent, then A2

i

is the desired set of actions. If not, then we apply the same argument. Because Ai
is finite, we must eventually obtain the desired set A†

i .

Let R†
i (α

†
−i ) denote the corresponding matrix of probability distributions

{ri(a′i )}a′i∈A†
i

. Note that R†
i (α

†
−i ) has (full row) rank of rankRi(α

†
−i ), and because

every a′′i �∈ A†
i is subordinate to A†

i , ri(a
′′
i ) is a linear combination of the vectors

{ri(a′i )}a′i∈A†
i

.

By the same argument, there is a corresponding setA†
j and matrix of probability

distributions R†
j (α

†
−j ) for player j . Pairwise identifiability thus implies that the

matrix [
R

†
i (α

†
−i )

R
†
j (α

†
−j )

]

has rank equal to rankRij (α†). Hence, for all ij -pairwise directions λij , there
exists normalized continuations x satisfying λij · x = 0 and, for k = i, j ,

vk ≡ uk(α†)+ E[xk(y) | α†]
= uk(a′k, α†

−k)+ E[xk(y) | (a′k, α†
−k)], ∀a′k ∈ A†

k, (9.4.6)

(by the same argument as in the proof of lemma 9.2.2), as well as for k �= i, j ,
k ≤ n,

uk(α
†)+ E[xk(y) | α†] ≥ uk(a′k, α†

−k)+ E[xk(y) | (a′k, α†
−k)], ∀a′k ∈ Ak

(because α† is enforceable, and λijk = 0 for k �= i, j implies that our choice of xk
is unrestricted).
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It remains to show that for k = i, j , and a′′k �∈ A†
k ,

vk ≥ uk(a′′k , α†
−k)+ E[xk(y) | (a′′k , α†

−k)].
Let {βk(a′k)} denote the scalars subordinating a′′k �∈ A†

k toA†
k . Then we have, using∑

a′k∈A†
k

βk(a
′
k) = 1 and (9.4.6),

vk =
∑

a′k∈A†
k

βk(a
′
k)vk

=
∑

a′k∈A†
k

βk(a
′
k)uk(a

′
k, α

†
−k)+

∑
a′k∈A†

k

βk(a
′
k)E[xk(y) | (a′k, α†

−k)]
=
∑

a′k∈A†
k

βk(a
′
k)u

†
k(a
′
k)+

∑
a′k∈A†

k

βk(a
′
k)xk · rk(a′k)

≥ u†
k(a
′′
k )+ xk · rk(a′′k ) = uk(a′′k , α†

−k)+ E[xk(y) | (a′′k , α†
−k)].

■

Pairwise identifiability allows us to easily weaken pairwise full rank in the “Nash-
threat” folk theorem as follows.

Proposition

9.4.1
A weaker Nash-threat folk theorem Suppose there are no short-lived players, A
is finite, every pure-action strongly efficient profile is pairwise identifiable for all
players, and F † has nonempty interior. Let F̃ denote the convex hull of u(α̃),
where α̃ is an inefficient Nash equilibrium, and the set of pure-action strongly
efficient profiles. Then, for all v ∈ int{v′ ∈ F̃ : v′i ≥ ui(α̃)}, there exists δ < 1
such that for all δ ∈ (δ, 1), v ∈ E (δ).

Proof By lemma 9.2.1(2), α̃ is orthogonally enforceable in any direction, and from
lemmas 9.4.1, 9.4.2, and 8.1.1(4), the pure-action strongly efficient profiles are
orthogonally enforceable in all noncoordinate directions. Suppose v ∈ int{v′ ∈
F̃ : v′i ≥ ui(α̃)}. Because v is in the convex hull F̃ , for any noncoordinate direc-
tion λ, there is an extreme point u(a) of F̃ such that λ · v ≤ λ · u(a). Because
the extreme points are orthogonally enforceable in noncoordinate directions,
λ · v ≤ k∗(λ), that is, v ∈ H ∗(λ). The coordinate direction ei does not impose
any further restriction, because at least one action profile maximizing ui(a) is
strongly efficient, and so enforceable, implying k∗(ei) = maxa ui(a). Finally, for
the coordinate direction−ei ,−vi ≤ −ui(α̃) ≤ k∗(−ei), so v ∈ H ∗(−ei). There-
fore, intF̃ ⊂M and the proof is then completed by an appeal to proposition 9.1.1.

■

This is a Nash-threat folk theorem, because the equilibrium profiles that are implic-
itly constructed through the appeal to self-generation have the property that every
continuation equilibrium has payoffs that dominate the payoffs in the Nash equilib-
rium α̃ (see proposition 9.1.2). Fudenberg, Levine, and Maskin (1994) discuss minmax
versions of the folk theorem under pairwise identifiability.

9.5 Games with a Product Structure

In many games of interest (such as games with repeated adverse selection), there is a
separate independent public signal for each long-lived player.
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Definition

9.5.1
A game has a product structure if its space of public signals Y can be written as∏n
i=1 Yi × YSL, and

ρ(y | a) = ρ((y1, . . . , yn, ySL) | (a1, . . . , aN))

= ρSL(ySL | an+1, . . . , aN)

n∏
i=1

ρi(yi | ai, an+1, . . . , aN),

where ρSL is the marginal distribution of the short-lived player’ signal ySL and
ρi is the marginal distribution of long-lived player i’s signal yi .

As we discuss in section 10.1, every sequential equilibrium payoff of a game with
a product structure is also a PPE payoff (proposition 10.1.1).

The distribution determining the long-lived player i’s public signal depends only
on player i’s action (and the actions of the short-lived players), so it is easy to distinguish
between deviations by player i and player j .

Lemma

9.5.1
If the game has a product structure, every action profile with pure long-lived
player actions is pairwise identifiable for all pairs of long-lived players.

Proof Suppose α† is an action profile with pure long-lived player actions, that is, α† =
(a

†
1, . . . , a

†
n, α

†
SL) for some a†

i ∈ Ai , i = 1, . . . , n. Fix a pair of long-lived players

i and j . For each k = i, j , there is a set of actions,A†
k = {ak(1), . . . , ak(�k)} ⊂ Ak

such that ak(�k) = a†
k , |A†

k| = �k = rankRk(a
†
−k) and the collection of distri-

butions {ρ(· | ak(h), α†
−k) : h = 1, . . . , �k} is linearly independent. We need to

argue that the collection {ρ(· | ai(h), α†
−i ) : h = 1, . . . , �i} ∪ {ρ(· | aj (h), α†

−j ) :
h = 1, . . . , �j − 1} is linearly independent, because this implies rankRij (α†) =
�i + �j − 1 = rankRi(α

†
−i )+ rankRj (α

†
−j )− 1. The rank of Rij (α†) cannot be

larger, because the collections of distributions corresponding toA†
i andA†

j contain

the common distribution, ρ(· | α†).
We argue to a contradiction. Suppose there are scalars {βk(h)} such that for all

y,
∑�i
h=1 βi(h)ρ(y | ai(h), α†

−i )+
∑�j−1
h=1 βj (h)ρ(y | aj (h), α†

−j ) = 0. Because
the collections of distributions for each player are linearly independent, at least
one βi(h) and one βj (h) are nonzero. The game has a product structure, so we can
sum over y−ij to get, for all yi and yj (where we have suppressed the common
αSL term in ρi and ρj ),

�i∑
h=1

βi(h)ρi(yi | ai(h))ρj (yj | a†
j )+

�j−1∑
h=1

βj (h)ρi(yi | a†
i )ρj (yj | aj (h)) = 0.

(9.5.1)

For any pair of signals yi and yj with ρi(yi | a†
i )ρj (yj | a†

j ) > 0, dividing by that
product gives

�i∑
h=1

βi(h)
ρi(yi | ai(h))
ρi(yi | a†

i )
+
�j−1∑
h=1

βj (h)
ρj (yj | aj (h))
ρj (yj | a†

j )
= 0.
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If the second summation depends on yj , then we have a contradiction because the
first does not. So, suppose the second summation is independent of yj , that is,

�j−1∑
h=1

βj (h)ρj (yj | aj (h)) = cρj (yj | a†
j )

for some c, for all yj receiving positive probability under a†. Moreover, for yj
receiving zero probability under a†, (9.5.1) implies

∑�j−1
h=1 βj (h)ρj (yj | aj (h))

= 0, and so {ρ(· | aj (h), α†
−j ) : h = 1, . . . , �j } is linearly dependent, a

contradiction.
■

As an immediate implication of proposition 9.4.1, we thus have the following folk
theorem.

Proposition

9.5.1
Suppose there are no short-lived players, A is finite, the game has a product
structure, and F † has nonempty interior. Let F̃ denote the convex hull of u(α̃),
where α̃ is an inefficient Nash equilibrium, and the set of pure-action strongly
efficient profiles. Then, for all v ∈ int{v′ ∈ F̃ : v′i ≥ ui(α̃)}, there exists δ < 1
such that for all δ ∈ (δ, 1), v ∈ E (δ).

9.6 Repeated Extensive-Form Games

We now consider repeated extensive-form games. In this section, there are no short-
lived players. The stage game � is a finite extensive-form game with no moves of
nature. We denote the infinite repetition of � by �∞. Because the public signal of
play within the stage game is the terminal node reached, the set of terminal nodes is
denoted Y with typical element y. An action for player i specifies a move for player i
at every information set owned by that player. Given an action profile a, because
there are no moves of nature, a unique terminal node y(a) is reached under the moves
implied by a. The ex post payoff u∗i (y, ai) depends only on y (payoffs are assigned
to terminal nodes of the extensive form), and ui(a) = u∗i (y(a)) ≡ u∗i (y(a), ai). A
sequence of action profiles (a0, a1, . . . , at−1) induces a public history of terminal
nodes ht = (y(a0), y(a1), . . . , y(at−1)).

As we discuss in section 5.4, there are additional incentive constraints that must
be satisfied when the stage game is an extensive-form game, arising from behavior
at unreached subgames. In particular, a PPE profile need not be a subgame-perfect
equilibrium of the repeated extensive-form game.

It is immediate that the approach in sections 3.4.2 and 3.7 can be used to prove a folk
theorem for repeated extensive-form games.9 Here we modify the tools from chapters 7

9. For example, one modifies the construction in proposition 3.4.1 by prescribing an equilibrium
outcome path featuring a stage-game action profile a0 that attains the desired payoff from F∗,
with play entering a player i punishment path in any period in which player i was the last player
to deviate from equilibrium actions (given the appropriate history) in the previous period’s
(extensive-form) stage game. Wen (2002) presents a folk theorem for multistage games with
observable actions, replacing the full dimensionality condition with a generalization of NEU.
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and 8 to accommodate the additional incentive constraints raised by extensive-form
stage games. There are only minor modifications to these tools, so we proceed quickly.

Let � be the collection of initial nodes of the subgames of the extensive form,
with ξ0 being the initial node of the extensive form. We denote the subgame of � with
initial node ξ ∈ � by �ξ ; note that �ξ0 = �. If the extensive form has no nontrivial
subgames, then � = {ξ0}. Given a node ξ ∈ �, ui(a | ξ) is i’s payoff in �ξ given
the moves in �ξ implied by a. The terminal node reached by a conditional on ξ is
denoted y(a | ξ) (this is a terminal node of �ξ ), so that ui(a | ξ) = u∗i (y(a | ξ)) and
ui(a | ξ0) = ui(a).

Every subgame of �∞ is reached by some public history of past terminal nodes,
h ∈H (i.e., h ∈ Y t for some t), and a sequence of moves within � that reach some
node ξ ∈ �. For such a history (h, ξ), the subgame reached is strategically equivalent
to the infinite horizon game that begins with �ξ , followed by �∞; we denote this
game by �∞(ξ). Note that �∞(ξ0) = �∞, the game strategically equivalent to the
subgames that are the focus of chapters 2 and 3. Denote the strategy profile induced
by σ on �∞(ξ) by σ |(h,ξ).

Definition

9.6.1
A strategy profile σ is a subgame-perfect equilibrium if for every public history
h ∈H and every node ξ ∈ �, the profile σ |(h,ξ) is a Nash equilibrium of �∞(ξ).

We then have the following analog of propositions 2.2.1 and 7.1.1 (the proof is
essentially identical, mutatis mutandis).

Proposition

9.6.1
Suppose there are no short-lived players. A strategy profile is a subgame-perfect
equilibrium if and only if for all histories (h, ξ), σ(h) is a Nash equilibrium of
the normal-form game with payoffs

g(a) = (1− δ)u(a | ξ)+ δU(σ |(h,y(a|ξ))).

We now modify definitions 7.3.1 and 7.3.2.

Definition

9.6.2
For any W ⊂ Rn, a pure action profile a ∈ A is subgame enforceable on W if
there exists a mapping γ : Y → W such that, for all initial nodes ξ ∈ �, for all
i, and a′i ∈ Ai ,

(1− δ)ui(a | ξ)+ δγi(y(a | ξ)) ≥ (1− δ)ui(a′i , a−i | ξ)+ δγi(y(a′i , a−i | ξ)).

The function γ subgame enforces a (on W ).

Because we only use pure action decomposability in this section, we omit the
adjective “pure-action” in the following notions.

Definition

9.6.3
A payoff vector v ∈ Rn is subgame decomposable on W if there exists an action
profile a ∈ A, subgame enforced by γ on W , such that

vi = (1− δ)ui(a)+ δγi(y(a)).

The payoff v is subgame decomposed by the pair (a, γ ) (on W ).
A set of payoffs W ⊂ Rn is subgame self-generating if every payoff profile in

W is subgame decomposed by some pair (a, γ ) on W .



9.6 ■ Repeated Extensive-Form Games 313

We now have an analog to propositions 2.5.1 and 7.3.1 (the proof is identical,
apart from the appeal to proposition 9.6.1, rather than proposition 2.2.1 or 7.1.1):

Proposition

9.6.2
For any bounded set W ⊂ Rn, if W is subgame self-generating, then W ⊂ E E(δ),
that is, W is a set of subgame-perfect equilibrium payoffs.

It is a straightforward verification that proposition 7.3.4 and corollaries 7.3.2 and
7.3.3 hold for the current notions (where locally subgame self-generating is the obvious
notion).

We now consider the analog of (8.1.1) for the current scenario. Let κ∗(a, λ, δ) be
the maximum value of λ · v over v for which there exists γ : Y → Rn satisfying

v = (1− δ)u(a)+ δγ (y(a)),
(1− δ)ui(a | ξ)+ δγi(y(a | ξ)) ≥ (1− δ)ui(a′i , a−i | ξ)+ δγi(y(a′i , a−i | ξ)),

∀ξ ∈ �,∀a′i ∈ Ai,∀i,
and

λ · v ≥ λ · γ (y), ∀y ∈ Y.
As in chapter 8, we can replace γi with xi(y) = δ(γi(y)− vi)/(1− δ) to obtain

constraints independent of the discount factor. It is easy to verify that the subgame
version of lemma 8.1.1 holds. Let κ∗(λ) = maxa∈A κ∗(a, λ, δ) and

M E ≡ ∩λ{v : λ · v ≤ κ∗(λ)}.
We then have the analog of proposition 9.1.2 (which is proved similarly):

Proposition

9.6.3
Suppose the stage game is a finite extensive form. Suppose W is a smooth convex
subset of the interior of M E . Then, W is locally subgame self-generating, so
there exists δ < 1 such that for all δ ∈ (δ, 1), W ⊂ E E(δ).

We are now in a position to state and prove the folk theorem for repeated extensive-
form games.

Proposition

9.6.4
Suppose there are no short-lived players, and the stage game is a finite extensive-
form game with no moves of nature. Suppose, moreover, that F † has nonempty
interior and vp = (vp1 , . . . ,vpn ) is inefficient. For every v ∈ intF †p, there exists
δ < 1 such that for all δ ∈ (δ, 1) there exists a subgame-perfect equilibrium of the
repeated extensive-form game with value v.

Proof Given proposition 9.6.3, we need only prove that F †p ⊂M E .

Step 1. We first show that any pure action profile a is subgame enforced, that is,
there exists x : Y → Rn such that, for all ξ ∈ �,

ui(a | ξ)+ xi(y(a | ξ)) ≥ ui(a′i , a−i | ξ)+ xi(y(a′i , a−i | ξ)),
∀a′i ∈ Ai,∀i. (9.6.1)

As � is the set of initial nodes of subgames of �, it is partially ordered by
precedence, where ξ ≺ ξ ′ if ξ ′ is a node in �ξ . Let {��}L�=0 be a partition of �,
where�0 = {ξ0},�� = {ξ ∈ � : ξ ′ ≺ ξ , � ∃ξ ′′, ξ ′ ≺ ξ ′′ ≺ ξ for some ξ ′ ∈ ��−1}.
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Because � is finite, L is finite. Let Yξ be the set of terminal nodes in �ξ . If ξ and
ξ ′ are not ordered by≺, then Yξ ∩ Yξ ′ = ∅, whereas if ξ ≺ ξ ′ then Yξ ′ � Yξ (i.e.,
we have strict inclusion).10 Of course, Yξ0 = Y .

Fix an initial node ξ ∈ �L. Any two unilateral deviations from a in �ξ that
result in a terminal node different from y(a | ξ) being reached must reach distinct
terminal nodes, that is, if y(a′i , a−i | ξ) �= y(a | ξ) and y(a′j , a−j | ξ) �= y(a | ξ),
then y(a′i , a−i | ξ) �= y(a′j , a−j | ξ). Consequently, for y ∈ Yξ , we can specify

xL(y) so that (9.6.1) is satisfied using x = xL.
We now proceed by induction. Suppose we have specified, for � ≥ 1, x�(y)

for y ∈ ∪ξ∈��Yξ so that (9.6.1) holds for all ξ ∈ ∪k≥���. Fix an initial node ξ ′ ∈
��−1. If there is no node in �� following ξ ′, then x�(y) for y ∈ Yξ ′ is undefined.
As for the case ξ ∈ �L, we can specify x�−1(y) for y ∈ Yξ ′ so that (9.6.1) is
satisfied using x = x�−1 for ξ ′, without affecting (9.6.1) for ξ ∈ ∪k≥���.

Suppose now there is one (or more nodes) in �� following ξ ′. If y(a | ξ ′) �∈
∪ξ∈��Yξ (i.e., none of these nodes are reached under a from ξ ′), then set

x�−1
i (y) =



M̄�, y = y(a | ξ ′),
x�i (y), y ∈ ∪ξ∈��Yξ ,
0, y �∈ ∪ξ∈��Yξ , y �= y(a | ξ ′),

where M̄� = max ui(a)−min ui(a)+ 1+max x�i (y). This choice of x�−1(y)

for y ∈ Yξ ′ ensures that (9.6.1) is satisfied using x = x�−1 for ξ ′, without affecting
(9.6.1) for ξ ∈ ∪k≥��� (because the normalized continuations on the subgames
are unaffected).

If y(a | ξ ′) ∈ Yξ ′′ for some (necessarily unique) ξ ′′ ∈ ��, set

x�−1
i (y) =



x�i (y)+ M̄�, y ∈ Yξ ′′ ,
x�i (y), y ∈ ∪ξ∈��,ξ �=ξ ′′Yξ ,
0, y �∈ ∪ξ∈��Yξ .

This choice of x�−1(y) for y ∈ Yξ ′ ensures that (9.6.1) is satisfied using x =
x�−1 for ξ ′, without affecting (9.6.1) for ξ ∈ ∪k≥��� (because the normalized
continuations on the subgames are either unaffected, or modified by a constant).
Hence, (9.6.1) holds for all ξ ∈ �.

Consequently (recall lemma 9.2.1), the pure-action minmax profile âi is
orthogonally enforceable in the direction −ei .
Step 2. It remains to argue that every pure action profile is orthogonally sub-
game enforced in all noncoordinate directions. Because a “subgame” version of
lemma 8.1.1 holds with identical proof, it is enough to show that a is orthogonally
subgame enforced in all pairwise directions. Denote by x̂ the normalized con-
tinuations just constructed to satisfy (9.6.1). For a fixed ij-pairwise direction λ,

10. Without loss of generality, we assume each node has at least two moves.
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we now construct orthogonally enforcing continuations from x̂. We first define
new continuations that satisfy the orthogonality constraint for y = y(a), that is,

x̃k(y) =
{
x̂k(y), if k �= i, j ,

x̂k(y)− x̂k(y(a)), if k = i or j .

Then, λ · x̃(y(a)) = 0. Moreover, because a constant was subtracted from xi

independent of y (and similarly for j ), (9.6.1) holds for all ξ ∈ � under x̃.
We first iteratively adjust x̃ so that on the outcome path of every subgame of �,

orthogonality holds. Suppose ξ ∈ �1 and that ξ is reached from ξ0 by a unilateral
deviation by player i (hence, ∃y ∈ Yξ , ∃a′i �= ai , y = y(a′i , a−i )).

For y ∈ Yξ , we subtract from each of player j ’s continuations the quantity
x̃j (y(a | ξ))+ λix̃i(y(a | ξ))/λj . Observe that these new continuations satisfy
(9.6.1) for all ξ ′′ ∈ �. Moreover, denoting the new continuations also by x̃,
λ · x̃(y(a | ξ)) = 0.

We proceed analogously for a node ξ ∈ �1 reached from ξ0 by a unilateral
deviation by player j . The only other possibility is that ξ cannot be reached by a
unilateral deviation by i or j , in which case we can set x̃i (y) = x̃j (y) = 0 for all
y ∈ Yξ without any impact on incentives.

Proceeding inductively, we now assume λ · x̃(y(a | ξ ′)) = 0 for all ξ ∈
∪�−1
m=0�m. Suppose ξ ∈ ��, and denote its immediate predecessor by ξ�−1 ∈
��−1. If y(a | ξ�−1) = y(a | ξ), then λ · x̃(y(a | ξ)) = 0, and no adjustment is
necessary. Suppose y(a | ξ�−1) �= y(a | ξ) and ξ is reached from ξ�−1 by a unilat-
eral deviation by either i or j (hence, either ∃y ∈ Yξ , ∃a′i , y = y(a′i , a−i | ξ�−1),
or ∃y ∈ Yξ , ∃a′j , y = y(a′j , a−j | ξ�−1)). Suppose it is player i. For y ∈ Yξ , we
subtract x̃j (y(a | ξ))+ λix̃i(y(a | ξ))/λj from each of player j ’s continuations.
These new continuations also satisfy (9.6.1) for all ξ ′′ ∈ �. Moreover, denoting
the new continuations also by x̃, λ · x̃(y(a | ξ)) = 0.

As before, the only other possibility is that ξ cannot be reached from ξ�−1 by
a unilateral deviation by i or j , in which case we can set x̃i (y) = x̃j (y) = 0 for
all y ∈ Yξ without any impact on incentives.

Proceeding in this way yields continuations x̃ that satisfy (9.6.1) and for all
ξ ∈ �, λ · x̃(y(a | ξ ′)) = 0. It remains to adjust x̃ for y �= y(a | ξ) for all ξ .

Fix such a y. There is a “last” node ξ ∈ � such that y ∈ Yξ (that is, � ∃ξ ′, ξ ≺ ξ ′,
with y ∈ Yξ ′ ). We partition Yξ into three sets, {y(a | ξ)}, Y 1

ξ , and Y 2
ξ , where Y 1

ξ =
{y ∈ Yξ : y = y(a′i , a−i | ξ) for some a′i �= ai , or y = y(a′j , a−j | ξ) for some
a′j �= aj } is the set of nodes reached via a unilateral deviation by either i or j from

ξ , and Y 2
ξ = Yξ \ (Y 1

ξ ∪ {y(a | ξ)}) are the remaining terminal nodes. If y ∈ Y 2
ξ ,

we can redefine x̃i (y) = x̃j (y) = 0 without affecting any incentive constraints,
and obtaining λ · x̃(y) = 0. Finally, suppose y ∈ Y 1

ξ and y = y(a′i , a−i ) for some
a′i ∈ Ai . Then, player j cannot unilaterally deviate from a and reach y, so that the
value of xj (y) is irrelevant for j ’s incentives, and we can set xj (y(a′i , a−i )) =
−λixi(y(a′i , a−i ))/λj .

■
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9.7 Games of Symmetric Incomplete Information

This section examines an important class of dynamic games, games of symmetric
incomplete information. Although there is incomplete information about the state of
the world, because players have identical beliefs about the state after all histories,
decomposability and self-generation are still central concepts.

The game begins with the draw of a state ξ from the finite set of possible states
�, according to the prior distribution µ0, with µ0(ξ) > 0 for all ξ ∈ �. The players
know the prior distribution µ0 but receive no further information about the state. Each
player i, i = 1, . . . , n, has a finite set of actions Ai , independent of ξ , with payoffs
given by ui : A×�→ R.11

Every pair of states ξ, ξ ′ ∈ � are distinct, in the sense that there is an action profile
a for which u(a, ξ) �= u(a, ξ ′). As usual, u(α, µ) =∑ξ

∑
a ui(a, ξ)α(a)µ(ξ).

The players share a common discount factor δ. At the end of each period t , each
player observes the action profile at and the realized payoff profile u(at , ξ).

Observing the action and payoff profiles may provide the players with considerable
information about the state, but it does not ensure that the state is instantly learned or
even eventually learned. For any pair of states ξ and ξ ′, there may be some action
profiles that give identical payoffs, so that some observations may give only partial
information about the state or may give no information at all. Because the set of states
is finite and every pair of states is distinct, there are repeated-game strategy profiles
ensuring that the players will learn the state in a finite number of periods. However, it
is not obvious that an equilibrium will feature such behavior. The players in the game
face a problem similar to a multiarmed bandit. Learning the payoffs of all the arms
requires that they all be pulled. It may be optimal to always pull arm 1, never learning
the payoff of arm 2.

As players become increasingly patient, experimenting in their action choices to
collect information about the state becomes increasingly inexpensive. However, even
arbitrarily patient players may optimally never learn the state. The players’bandit prob-
lem is interactive. The informativeness of player i’s action depends on j ’s choice, so
that i alone cannot ensure that the state is learned. In addition, the outcome that appears
once a state is learned is itself an equilibrium phenomenon, raising the possibility that
a player may prefer to not learn the state.

Example

9.7.1
Players need not learn Suppose there are two players and two equally likely
states, with the stage games for the two states given in figure 9.7.1. Suppose first
that x = y = 0, and consider an equilibrium in which players 1 and 2 each choose
C in each period, regardless of history. These are stage-game best responses for
any posterior belief about the state. In addition, no unilateral deviation results
in a profile that reveals any information about the state (even though there exist
profiles that would identify the state). We thus have an equilibrium in which the
players never learn the state.

There are also equilibria in which players learn the state. One such profile has
an outcome path with AA in the initial period, followed by BB in odd periods

11. As in section 5.5.1, this is without loss of generality.
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A B C

A 5, 1 0, 0 y, 0

B 0, 0 1, 5 x, 0

C 0, y 0, x 2, 2

ξ ′

A B C

A 0, 0 1, 5 x, 0

B 5, 1 0, 0 y, 0

C 0, x 0, y 2, 2

ξ ′′

Figure 9.7.1 Stage games for state ξ ′ and state ξ ′′.

and AA in even periods if payoffs reveal the state is ξ ′, and by AB in odd periods
and BA in even periods if the state is revealed to be ξ ′′. Given the specification
of AA in the initial period, the state is revealed at the end of period 0 even if
a player unilaterally deviates to B. The profile is completed by specifying that
any deviation to C in the initial period restarts the profile, that other deviations
by player 2 after period 0 and all other deviations by player 1 are ignored, and
finally that a deviation by player 2 in period 0 to B results in permanent AA in ξ ′
and permanent BA in ξ ′′. Player 1 is always playing a stage-game best response.
Though A is not a best response for player 2 in period 0 (she is best responding
in every subsequent period, given the revelation of the state in period 0), the
specification ensures that she is optimizing for large δ.

Suppose now that x = 6 and y = 7. The profile in which CC is played in every
period after every history is clearly no longer an equilibrium. Nonetheless, there
is still an equilibrium in which players do not learn the state. In the equilibrium,
CC is played after any history featuring only the outcomes CC. After any history
in which the state becomes known as a result of a unilateral deviation by player 1
(respectively, 2), continuation play consists of the perpetual play of BB (respec-
tively, AA) in state ξ ′ and AB (respectively, BA) in state ξ ′′. Continuation play
thus penalizes the deviating player for learning the state, and sufficiently patient
players will find it optimal to play CC, deliberately not learning the state.

●

Example

9.7.2
Learning facilitates punishment Continuing from example 9.7.1, suppose x =
y = 10. We are still interested in the existence of equilibria in which learning does
not occur, that is, in equilibria with outcome path CC,CC,CC, . . . . In contrast to
example 9.7.1, a deviation (though myopically profitable) does not reveal the state.
However, we can use subsequent learning to create appropriate incentives. Con-
sider the following revealing profile, σ 1. In the initial period, play BB, followed
by BB in state ξ ′ and AB in state ξ ′′, in every subsequent period. Deviations to C
in period 0 restart the profile, and other deviations are ignored. The actions are a
stage-game Nash equilibrium in each period and only an initial deviation toC can
affect information about the state, so this profile is an equilibrium, giving player 1 a
payoff close to 1. Denote by σ 2 the analogous revealing profile that gives player 2
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a payoff close to 1. Then, for large δ, there exists a pure-strategy nonreveal-
ing equilibrium with outcome path CC,CC,CC, . . . , simultaneous deviations
ignored, and continuation play given by σ i after unilateral deviation by player i.

●

Remark

9.7.1
Imperfect monitoring Both actions and payoffs are perfectly monitored in the
model just described. The canonical single-agent bandit problem considers the
more complicated inference problem in which arms have random payoffs. Wise-
man (2005) considers a game of symmetric incomplete information with a similar
inference problem. For each action profile a and state ξ , there is a distribution
ρ(y | a, ξ) determining the draw of a public signal y ∈ Y for some finiteY . Ex ante
payoffs, as a function of the action profile and the state, are given by

ui(a, ξ) =
∑
y∈Y

u∗i (y, a)ρ(y | a, ξ),

where u∗i : Y × A→ R is i’s ex post payoff.
After each period, players observe both the actions chosen in that period and

the realized payoff profile (or equivalently, the signal y). Our formulation is the
special case in which the distribution ρ(y | a, ξ) is degenerate for each a and ξ .

◆

9.7.1 Equilibrium

For each player i and state ξ , we let vpi (ξ) be the pure minmax payoff:

v
p
i (ξ) = min

a−i
max
ai
ui(ai, a−i , ξ ).

We then let F (ξ), F †(ξ), and F †p(ξ) be the set of pure stage-game payoffs, the
convex hull of this set, and the subset of the latter that is strictly individually rational,
for state ξ . We assume that F †p(ξ) has dimension n, for each ξ .

A period t history (ξ, {aτ , uτ }t−1
τ=0) contains the state and the action profiles and

payoffs realized in periods 0 through t − 1. A period t public history ht contains the
action profiles and payoffs from periods 0 to t − 1. The set of feasible period t public
histories H t is thus a subset of (A× Rn)t , with {aτ , uτ }t−1

τ=0 ∈H t if there exists
ξ ∈ � with the property that, for each period τ = 0, . . . , t − 1, uτ = u(aτ , ξ).

Given a prior µ ∈ �(�), an action profile a and a payoff u may rule out some
states but otherwise does not alter the odds ratio. That is, the posterior is given by

ϕ(µ | a, u)(ξ) ≡
{
µ(ξ)/

∑
{ξ ′:u(a,ξ ′)=u} µ(ξ ′), if u(a, ξ) = u,

0, if u(a, ξ) �= u.

We write ϕ∗(µ | a, ξ) for ϕ(µ | a, u(a, ξ)).
The period t posterior distribution over�, given the period t history ht , is denoted

by µ(· | ht ) or µ(ht ). These posteriors are defined recursively, with

µ(∅) = µ0 (9.7.1)
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and

µ(ht ) = ϕ(µ(ht−1) | a, u), (9.7.2)

where ht = (ht−1, a, u).
Fix a prior distribution µ0 and let K be the set of possible posterior distributions,

given prior µ0. The set K is finite with 2K − 1 elements, where K is the number of
states in �. Each posterior is identified by the states that have not been ruled out, that
is, that still command positive probability. It is clear from (9.7.1) and (9.7.2) that for
any subset of states, every history under which beliefs attach positive probability to
precisely that subset must give the same posterior distribution.

A behavior strategy σ for player i is a function mapping from the set of public
histories H into �(A). We let Ui(σ, µ) be the expected payoff to player i given
strategy profile σ and prior distribution over states µ.

We can treat this game of symmetric incomplete information as a dynamic game
of perfect information by setting the set of game states equal to K , setting the stage-
game payoffs equal to the expected payoffs under the current state, and determining
game-state transitions by ϕ.

Because Bayes’ rule specifies beliefs after every public history, beliefs trivially
satisfy the consistency requirement of sequential equilibrium.

Definition

9.7.1
The strategy profile σ is a sequential equilibrium if, given the beliefs implied by
(9.7.1) and (9.7.2), for all players i, histories h, and alternative strategies σ ′i ,

Ui(σ |h, µ(h)) ≥ Ui(σ ′i , σ−i |h, µ(h)).
The set of sequential equilibrium profiles of the game of symmetric incomplete

information clearly coincides with the set of subgame-perfect equilibrium profiles of
the implied dynamic game.

We now provide a self-generating characterization of sets of sequential equilibrium
payoffs. Let W ⊂ Rn be a set of payoff profiles. A pair (v, µ) ∈ W ×K identifies
a payoff profile v for the repeated game whose prior probability over � is µ. Let
WK be a subset of W ×K (where WK need not be a product set). A pair (v, µ)
is decomposed by the profile α ∈∏i �(Ai) on the set WK if there exists a function
γ : A×K → Rn with (γ (a, µ̂), µ̂) ∈ WK for all a and µ̂ ∈ K such that, for each
player i and action a′i ,

vi = (1− δ)ui(α, µ)+ δ
∑
a∈A

γi(a, ϕ
∗(µ | a, ξ))α(a)µ(ξ) (9.7.3)

≥ (1− δ)ui(a′i , α−i , µ)+ δ
∑

a−i∈A−i
γ (a′i , a−i , ϕ∗(µ | ai, a−i , ξ ))α−i (a−i )µ(ξ).

(9.7.4)

The first condition ensures that expected payoffs are given by v, and the second supplies
the required incentive compatibility constraints. We cannot in general take the set WK

to be the product W ×K . There may be payoff profiles that can be achieved in games
with some prior distributions over states but not in games with other prior distributions.

The set WK is self-generating if every pair (v, µ) ∈ WK can be decomposed on
WK . The following is a special case of proposition 5.7.4 for dynamic games:
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Proposition

9.7.1
Suppose WK is self-generating. Then for every (v, µ) ∈ WK , there is a sequential
equilibrium of the repeated game with prior belief µ whose expected payoff is v.

9.7.2 A Folk Theorem

Let U(σ | ξ) be the repeated-game payoff from strategy profile σ , given that the state
is in fact ξ . Let the states in � be denoted by {ξ1, . . . , ξK}. The following is a special
case of Wiseman’s (2005) main result (see remark 9.7.1).

Proposition

9.7.2
Fix a prior µ0 on � with µ0(ξk) > 0 for all ξk ∈ �. For any vector of payoff
profiles (v∗(ξ1), . . . , v

∗(ξK)), with v∗(ξk) ∈ intF †p(ξk) for all k, and any ε > 0,
there is a discount factor δ such that, for all δ ∈ (δ, 1), there exists a sequential
equilibrium σ of the game of incomplete information with prior µ0 such that

|U(σ | ξk)− v∗(ξk)| < ε ∀k.

We thus have a state-by-state approximate folk theorem. The profile constructed
in the proof produces the appropriate payoffs given the state, by first inducing the
players to learn the state. As we have seen in example 9.7.1, learning need not occur
in equilibrium, and so specific incentives must be provided.

Proof From (9.7.1) and (9.7.2), each posterior in K is identified by its support. Let
K (�) be the collection of posteriors in which � states receive positive probability.

Fix (v∗(ξk))k , a vector of payoff profiles, with v∗(ξk) ∈ intF †p(ξk) for all k.
Choose ε′ < ε/2 sufficiently small that Bε′(v∗(ξk)) is in the interior of F †p(ξk)

for each ξk . For each posterior µ ∈ K (�), let

Cµ = Bε′ K−�+1
K


∑
ξk∈�

v∗(ξk)µ(ξk)


 . (9.7.5)

For each possible posterior distribution µ ∈ K , Cµ is a closed ball of payoffs,
centered at the expected value of the target payoffs under µ. The radius decreases
in the number of states contained in the support of µ, ranging from a radius
of ε′/K when no states have been excluded to a radius of ε′ when probability
one is attached to a single state. This behavior of the radius of Cµ is critical in
providing sufficient freedom in the choice of continuation values after revealing
action profiles to provide incentives.

Our candidate for a self-generating set is the union of these sets,

CK = ∪µ∈K (Cµ × {µ}).
The pair (a, µ), consisting of a pure action profile and a belief, is revealing if

the belief µ attaches positive probability to two or more states that give different
payoffs under a. Hence, a revealing pair (a, µ) ensures that if a is played given
posterior µ, then the set of possible states will be refined. In equilibrium, there
can only be a finite number of revealing profiles played, at which point beliefs
either attach unitary probability to a single state or no further revealing profiles
are played.
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The proof relies on two lemmas. First, lemma 9.7.1 shows there exists a dis-
count factor δ′ such that for all δ ∈ (δ′, 1), the set CK is self-generating. This
suffices to ensure that CK is a set of sequential equilibrium payoffs (proposi-
tion 9.7.1) for such δ. Second, lemma 9.7.2 shows that for all δ ∈ (δ′, 1), there
exists an equilibrium with every continuation-payoff/posterior pair (v, µ) in CK

with the property that in every period, either a revealing profile is played, or
µ ∈ K (1).

As a result, for all δ ∈ (δ′, 1), we are assured of the existence of an equilibrium
such that within at most K periods, the continuation payoff lies within ε′ < ε/2
of v∗(ξk) for the true state ξk . To ensure that payoffs are within ε of v∗, it then
suffices to restrict the discount factor to be high enough that

(1− δK)(M −m) < ε

2
,

where M ≡ maxi,a,ξ ui(a, ξ) and m ≡ mini,a,ξ ui(a, ξ). This gives us the dis-
count factor δ such that for δ ∈ (δ, 1), there exists a sequential equilibrium with
the desired payoffs.

■

Lemma

9.7.1
There exists δ′ such that for all δ ∈ (δ′, 1), the set CK is self-generating.

Proof The proof proceeds in four steps.

Step 1. Consider the sets Cµ for µ ∈ K (1). Here, the identity of the state is
known, and the continuation game is a repeated game of compete information
and perfect monitoring. Letting ξ be the state to whichµ attaches probability one,
each set Cµ is a compact set contained in the interior of the set F †p(ξ), the set
of feasible, pure-action strictly individually rational payoffs for this game. It is
then an implication of proposition 9.1.3 and the observation that under perfect
monitoring, every pure action profile has pairwise full rank, that there exists
δµ such that any (v, µ) ∈ Cµ × {µ} can be decomposed on Cµ × {µ}, for any
δ ∈ (δµ, 1).

Step 2. Suppose µ assigns positive probability to more than one state, and fix
η > 0. Denote by Cηµ the set of values v ∈ Cµ satisfying, for each player i,

vi ≥ min
v̂∈Cµ

v̂i + η. (9.7.6)

In this step, we show that there exists δη such that every point in Cηµ can be
decomposed on CK using a revealing action profile, for all δ ∈ (δη, 1).

Choose δη ∈ (0, 1) so that for all δ ∈ (δη, 1),

1− δ
δ

(M −m) < min

{
η,

ε′

2
√
nK

}
≡ ζ. (9.7.7)

Because states are distinct, there is a revealing action profile a that discrimi-
nates between at least two of the states receiving positive probability under µ.
Fix v ∈ Cηµ, and let v′ be the payoff satisfying
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v = (1− δ)u(a, µ)+ δv′.
Rearranging, (9.7.7) implies |v′i − vi | < ε′

2
√
nK

, i = 1, . . . , n. Hence, letting� ≡
v′ − v, we have |�| < ε′

2K . Let

�v ≡ v −
∑
ξk∈�

v∗(ξk)µ(ξk),

so that |�v| < ε′(K − �+ 1)/K (from (9.7.5)). For all ξj ∈ suppµ (with the
specification for other ξ being arbitrary), set

γ (a, ϕ∗(µ | a, ξj )) =
∑
ξk∈�

v∗(ξk)ϕ∗(µ | a, ξj )(ξk)+�v +�. (9.7.8)

The expected continuation under a and γ is

∑
ξj∈�

γ (a, ϕ∗(µ | a, ξj ))µ(ξj )

=
∑
ξj∈�


∑
ξk∈�

v∗(ξk)ϕ∗(µ | a, ξj )(ξk)+�v +�

µ(ξj )

=
∑
ξj∈�


∑
ξk∈�

v∗(ξk)ϕ∗(µ | a, ξj )(ξk)

µ(ξj )+�v +�

=
∑
ξj∈�


 ∑
ξk∈suppϕ∗(µ|a,ξj )

v∗(ξk)µ(ξk)




 ∑
ξk∈suppϕ∗(µ|a,ξj )

µ(ξk)


−1

µ(ξj )+�v +�

=
∑
ξk∈�

v∗(ξk)µ(ξk)+�v +�

= v +�
= v′,

so that we have the desired expected value. Because

|�v +�| < |�v| + ε′

2K
< ε′

(
K − �+ 3

2

)
/K,

the continuation-belief pair satisfy (γ (a, ϕ∗(µ | a, ξj )), ϕ∗(µ | a, ξj )) ∈ CK .
We now specify the continuations for unilateral deviations from a (ignoring

multiple deviations, as usual). For any unilateral deviation a′ = (a′i , a−i ) that is
a revealing action profile, mimic (9.7.8) in setting, for all ξj ∈ suppµ,

γ (a′, ϕ∗(µ | a′, ξj )) =
∑
ξk∈�

v∗(ξk)ϕ∗(µ | a′, ξ)(ξj )+�v +�− eiζ. (9.7.9)
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Repeating the argument following (9.7.8), player i’s payoff under a′ is given by
v′ − ζ . Invoking (9.7.7), a′ is not a profitable deviation for player i. Because
ζ < ε′/(2K), we have

|�v +�− eiζ | < ε′(K − �+ 2)/K, (9.7.10)

and so again (γ (a′, ϕ∗(µ | a′, ξj )), ϕ∗(µ | a′, ξj )) ∈ CK .
For any unilateral deviation a′ = (a′i , a−i ) that is not a revealing action profile,

ϕ∗(µ | a′, ξk)) = µ for all ξk ∈ suppµ. In this case, set

γ (a′, µ) = arg min
v̂∈Cµ

v̂i ,

so that γi is no larger than vi − η. From (9.7.7), the deviation is again unprofitable,
and since (γ (a′, µ), µ) ∈ CK , we have decomposed every point in Cηµ on CK .

Step 3. As in Step 2, suppose the posterior µ attaches positive probability to more
than one state. Set

η′ ≡ ε′

K

(
1− 1√

2

)
.

For any η < η′, if v �∈ Cηµ, then (9.7.6) fails for one, and only one, player.12 Fix
an η ∈ (0, η′), and a payoff profile v in Cµ for which, for one player i,

vi ≤ min
v̂∈Cµ

v̂i + η. (9.7.11)

The potential difficulty in decomposing v is that we now do not have sufficient
punishments available in Cµ to deter player i’s deviations.13

Let

ξ(i, µ) ∈ arg min
{ξ∈�:µ(ξ)>0}

v
p
i (ξ). (9.7.12)

Of the states assigned positive probability byµ, ξ(i, µ) is that state giving player i
the lowest minmax payoff, if the state were known. Let â−i (µ) be the associated
minmax profile in state ξ(i, µ). This action profile need not minmax player i given
posterior µ because it only necessarily minmaxes i in one of the states receiving
positive probability underµ. However, vpi (ξ(i, µ)) < vi because vi is the average
(over states) of payoffs which exceed the corresponding minmax payoffs vpi (ξ),
each of which is at least vpi (ξ(i, µ)).

The idea is to decompose v using the profile a ≡ (âi , â−i (µ)), where âi max-
imizes ui(a′′i , â−i (µ), µ). Suppose the action profile (âi , â−i (µ)) is revealing.
The analysis in step 2 shows that with the exception of nonrevealing deviations
a′ = (a′i , â−i (µ)), the continuations after any profile ã and payoff u(ã, ξ) can be

12. Inequality (9.7.6) can fail for two players only if
√

2(r − η)2 < r or η > r(1− 1/
√

2) (where
r is the radius of Cµ). Finally, r ≥ ε′/K for all µ ∈ K .

13. If we use a revealing action to decompose v, then the analysis from step 2 can be used to construct
continuations that deter any deviations to revealing actions. The difficulty arises with a deviation
to a nonrevealing action profile a′.



324 Chapter 9 ■ The Folk Theorem

chosen so deviations by i are not profitable and (γ (ã, ϕ∗(µ | ã, ξ )), ϕ∗(µ | ã, ξ ))
∈ CK . The difficulty with nonrevealing action profiles a′ = (a′i , â−i (µ)) is that
the continuation payoff must now come from the set Cµ and player i’s payoff
is already near its minimum in the set Cµ. Consequently, incentives cannot be
provided via continuations. However, for the deviation to a′ not to be profitable,
it suffices that

ui(a
′, µ) ≤ ui((âi , â−i (µ)), µ).

We show that this inequality holds. Player i’s expected payoff from (a′i , â−i (µ))
must be the same in every positive probability state (otherwise the profile is reveal-
ing). But player i’s payoff from (a′i , â−i (µ)) in state ξ(i, µ) can be no larger than
v
p
i (ξ(i, µ)), and hence his payoff in every state can be no larger. The deviation

to a′i thus brings a smaller current payoff than vi . Choosing v as the continuation
payoff then ensures that a′i is suboptimal.

Hence, combining these last two steps, if µ has nonsingleton support, for all
η ∈ (0, η′) and all δ ∈ (δη, 1), every payoff in Cµ is decomposed on CK , apart
from v ∈ Cµ with vi ≤ minv̂∈Cµ v̂i + η and ((âi , â−i (µ)), µ) nonrevealing.

Step 4. It remains to decompose payoffs v ∈ Cµ with vi ≤ minv̂∈Cµ v̂i + η and
((âi , â−i (µ)), µ) nonrevealing, for small η. As we argued in the penultimate
paragraph of step 3, ui(a, µ) ≡ ui((âi , â−i (µ)), µ) = vpi (ξ(i, µ)). This value is
strictly less than vi . Let vi ∈ Cµ be the unique point for which i’s payoff in Cµ
is minimized (the point is unique because Cµ is a strictly convex set). Because
vii > ui(a, µ), there is a θ ′ > 1 such that (1− θ)u(a, µ)+ θvi ∈ intCµ for all
θ ∈ (1, θ ′). Consequently, there exist η′′ ∈ (0, η′) and θ ′′ > 1 such that for all
v ∈ Cµ satisfying (9.7.11), (1− θ)u(a, µ)+ θv ∈ intCµ for all θ ∈ (1, θ ′′). This
implies that for all δ ∈ (1/θ ′′, 1), there exists v′ in the interior of Cµ such that

v = (1− δ)u(a)+ δv′.

We decompose v with a profile (âi , â−i (µ)) and continuation payoff v′ after
(âi , â−i (µ)). Continuation payoffs for deviations by players other than i or by
deviations on the part of player i to revealing actions are constructed as in step 2.
Nonrevealing deviations by player i are ignored. Set δµ = max{δη′′ , 1/θ ′′}, where
δη′′ is defined in (9.7.7) for η = η′′. It is now straightforward to verify that the
required incentive constraints hold for all δ ∈ (δµ, 1).

Summarizing steps 2 through 4, for allµwith nonsingleton support, there exists
δµ such that any (v, µ) ∈ CK can be decomposed on CK , for any δ ∈ (δµ, 1).
The proof of the lemma is completed by taking δ′ as the maximum of δµ over all
µ ∈ K (a finite set).

■

Lemma

9.7.2
For every δ ∈ (δ′, 1), there exists a sequential equilibrium with the properties that
every history gives rise to a pair (v, µ) ∈ CK and that in every period, either a
revealing profile is played or µ ∈ K (1).
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Proof Because δ satisfies (9.7.7) for η = η′′ from step 4 of the proof of lemma 9.7.1, by
step 2 the payoff

∑
ξk∈� v

∗(ξk)µ0(ξk) can be decomposed by a revealing current
action profile a and continuation payoffs γ (a, ϕ∗(µ | a, ξj )) that lie within ε′/2K
of
∑
ξk∈� v

∗(ξk)ϕ∗(µ | a, ξj )(ξk).
For any µ = ϕ∗(µ0 | a, ξj ), because a is revealing, µ ∈ ∪�<KK (�) and the

ball Cµ has radius at least 2ε′/K . Hence, given the belief µ = ϕ∗(µ0 | a, ξj )
we can again apply step 2 with a new revealing action profile a′ to decom-
pose the continuations γ (a, ϕ∗(µ | a, ξj )). Moreover, the application of step 2
yields continuation payoffs γ (a′, ϕ∗(ϕ∗(µ0 | a, ξj ) | a′, ξj )) that lie within ε′/K
of
∑
ξk∈� v

∗(ξk)ϕ∗(ϕ∗(µ0 | a, ξj ) | a′, ξj )(ξk) and so satisfy (9.7.6) (because
η′′ < ε′/K).

Now, note that for µ ∈ K (�), if v ∈ Cµ satisfies |v −∑ξ v
∗(ξ)µ(ξ)| <

[ε′(K − �)/(2K)], then

vi − min
v′∈Cµ

v′i ≥
ε′

K

(
K − �+ 1− K − �

2

)

= ε′

K

(
K − �

2
+ 1

)

≥ ε′

K

> η′′,

and so satisfies (9.7.6).
Hence, continuing in this fashion, we construct a profile with a revealing

action in each period and with the property that any continuation value on the
path of play satisfies (9.7.6) (because at each stage, the continuation v is within
ε′(K − �)/(2K) of the center of Cµ). Consequently, within at most K peri-
ods, the posterior probability is in K (1) and continuation payoffs are within
K−1
K
ε′ < ε′ < ε

2 of v∗(ξj ) for that (single) state ξj to which the posterior attaches
positive probability. Because the set CK is self-generating for δ > δ′, and K is
finite, for sufficiently large δ, the profile is a sequential equilibrium.

■

There are two key insights in this argument. The first is that by choosing the
set CK to be the union of sets Cµ × {µ}, where the size of Cµ is increasing in the
confidence that players have about the state, revealing action profiles can be enforced
(step 2 of the proof of lemma 9.7.1). The second is that when a nonrevealing action
profile is played, because payoffs are uninformative, continuations are not needed to
provide incentives (steps 3 and 4 in the proof of lemma 9.7.1).

These insights play a similarly important role in Wiseman’s (2005) argument,
which covers mixed minmax payoffs and games of imperfect monitoring (see
remark 9.7.1). This noisy monitoring of payoffs poses two difficulties. First, the set of
posteriors, and hence the set K , is no longer finite. Second, we no longer have the
sharp distinction between a revealing action and a nonrevealing action profile.

The argument replaces our finite union ∪µ∈K (Cµ × {µ}) with a function from
the simplex of posteriors into sets of continuation payoffs, with the property that
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the sets of payoffs become larger as beliefs approach certainty. The next step is to
replace the idea of a revealing profile with a profile that maximizes expected learning,
that is, maximizes the expected distance between the current posterior and the future
posterior. One then argues that every payoff/belief pair (v, µ) can be decomposed
with a current action that maximizes expected learning, except those that minimize a
player’s payoff, which can be decomposed by forcing the player in question to choose
an action that either induces some learning or yields a low payoff. The argument
concludes by showing that there is a finite number of periods with the property that
with very high probability, within this collection of periods the posterior converges to
very near the truth and stays there forever.

9.8 Short Period Length

In section 3.2.3, we introduced the interpretation of patience as short period length.
For perfect monitoring games, it is purely a question of taste whether one views high
δ as patient players or short-period length. This is not the case, however, for public
monitoring. Although interpreting payoffs on a flow basis poses no difficulty as period
length goes to 0, the same is not true for imperfect public signals.

Consider, for example, the imperfect monitoring prisoners’dilemma of section 7.2.
We embed this game in continuous time, interpreting the discount factor δ as e−r�,
where r is the players’ common discount rate and � is the length of the period. In
each period of length �, a signal is generated according to the distribution 7.2.1. In a
unit length of time, there are �−1 realizations of the public signal. For small �, the
signals over the unit length of time thus become arbitrarily informative in distinguishing
between the events that the players had always exerted effort in that time interval, or
one player had always shirked.14

Once the repeated game is embedded in continuous time, the monitoring distri-
bution should reflect this embedding. In this section, we illustrate using an example
motivated by Abreu, Milgrom, and Pearce (1991). We consider two possibilities. First,
assume the public monitoring distribution is parameterized by � as

ρ(ȳ | a) =
{
e−β�, if a = EE,

e−µ�, otherwise,

with 0 < β < µ. When the period length � is small, we can view the probability
distribution as approximating a Poisson process, where the signal y constitutes an
arrival (and signal ȳ denotes the absence of an arrival) of a “bad” signal, and where the
instantaneous arrival rate is β if both players exert effort and µ otherwise. Observe
that although taking �→ 0 does make players more patient in the sense that δ→ 1,
this limit also makes the signals uninformative (both p and q converge to 1), and so

14. This can be interpreted as an intuition for the observation in remark 9.2.1 that the sufficient
conditions for the public monitoring folk theorem concern only the statistical identifiability of
deviations. There are no conditions on the informativeness of the signals.
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the structural aspects of the model have changed. On the other hand, players unam-
biguously become patient as the preference parameter r goes to 0, because in this case
δ→ 1 whereas no other aspect of the model is affected.

We saw in section 7.7.1 that a necessary and sufficient condition for mutual effort
to be played in a strongly symmetric equilibrium is (7.7.3), that is, δ[3ρ(ȳ | EE)
− 2ρ(ȳ | SE)] ≥ 1, which becomes

e−r�(3e−β� − 2e−µ�) > 1. (9.8.1)

Taking r → 0 yields

3e−β� − 2e−µ� > 1,

which is simply 3p − 2q > 1 (see (7.2.5)).
Suppose we now make the period length arbitrarily small, fixing the players’

discount rate r . The left side of (9.8.1) equals 1 and its derivative equals 2µ− 3β − r
for � = 0, so (9.8.1) holds for small � > 0 if

r < 2µ− 3β. (9.8.2)

If players are sufficiently patient that (9.8.2) is satisfied, then from (7.7.1), the largest
strongly symmetric PPE payoff converges to

lim
�→0

2− 1− e−β�
e−β� − e−µ� = 2− β

µ− β > 0.

Hence, in the “bad news” case, even for arbitrarily short period lengths, it is possible
to support some effort in equilibrium.

Consider now the “good news” case, where the public monitoring distribution is
parameterized by � as

ρ(ȳ | a) =
{

1− e−β�, if a = EE,

1− e−µ�, otherwise,

with 0 < µ < β. The probability distribution approximates a Poisson process where
the signal ȳ constitutes an arrival (and signal y denotes the absence of an arrival) of a
“good” signal, and where the instantaneous arrival rate is β if both players exert effort
and µ otherwise. In the current context, (7.7.3) becomes

e−r�(1− 3e−β� + 2e−µ�) > 1.

Suppose we now make the period length arbitrarily small, fixing the players’ discount
rate r . Then,

lim
�→0

e−r�(1− 3e−β� + 2e−µ�) = 0,

implying that there is no strongly symmetric perfect public equilibrium with strictly
positive payoffs.
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We see then a striking contrast between the “good news” and “bad news” cases.
This contrast is exaggerated by the failure of pairwise identifiability. If, for example,
the game has a product structure, with player i’s signal yi ∈ {yi, ȳi}, distributed as

ρ(ȳi | ai) =
{

1− e−β�, if ai = E,

1− e−µ�, if ai = S,

then it is possible to support some effort for small � even in the “good news” case.
An alternative to considering short period length is to directly analyze continuous

time games with public monitoring. We content ourselves with the comment that there
are appropriate analogs to many of the ideas in chapter 7 (see Sannikov 2004).



10 Private Strategies in Games with
Imperfect Public Monitoring

The techniques presented in chapters 7–9 provide the tools for examining perfect public
equilibria. It is common to restrict attention to such equilibria, and doing so is without
loss of generality in many cases. For example, the public-monitoring folk theorem
(proposition 9.2.1) only relies on public strategies. Moreover, if games have a product
structure, all sequential equilibrium outcomes are PPE outcomes (proposition 10.1.1).
In this chapter, we explore the impact of allowing for private strategies, that is,
strategies that are nontrivial functions of private (rather than public) histories.

10.1 Sequential Equilibrium

The appropriate equilibrium notion when players use private strategies is sequential
equilibrium, which we define at the end of this section. This equilibrium notion com-
bines sequential rationality with consistency conditions on each player’s beliefs over
the private histories of other players.

Any PPE is a sequential equilibrium. Because any pure strategy is realization
equivalent to a public strategy (lemma 7.1.2), any pure strategy sequential equilibrium
outcome is also a PPE outcome. Moreover, every mixed strategy is clearly realization
equivalent to a mixture over public pure strategies. Thus every Nash equilibrium is
realization equivalent to a Nash equilibrium in which each player’s mixture has only
public pure strategies in its support.

If the analysis could be restricted to either pure strategies or Nash equilibria, there
is no need to consider private strategies. However, sequential rationality with mixing
requires us to work with behavior strategies. A mixture over pure strategies need not
be realization equivalent to any public behavior strategy. For example, consider the
twice-played prisoners’ dilemma with imperfect monitoring and with the set of signals
{y, ȳ}, as in section 7.2. Let σ̂1 and σ̃1 be the following pure strategies:

σ̂1(∅) = σ̂1(ȳ) = E, σ̂1(y) = S,

and

σ̃1(∅) = σ̃1(ȳ) = σ̃1(y) = S.
Each of these strategies is obviously public, because behavior is specified only as a
function of the public signal. Now consider a mixed strategy that assigns probability

329
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1/2 to each of these public pure strategies. This is by construction a mixture over public
strategies. However, the corresponding behavior strategy, denoted by σ1, is given by

σ1(∅) = 1
2 ◦ E + 1

2 ◦ S,

and

σ1(a1, y) =
{
E, if (a1, y) = (E, ȳ),
S, otherwise.

This is a private strategy, as the second-period action following signal ȳ depends on the
player’s (private) period 1 action. Notice in particular that it does not suffice to specify
the second period action as a half/half mixture following signal ȳ. Doing so assigns
positive probability to player 1 histories of the form (E, ȳ, S, ·) or (S, ȳ, E, ·), which
the half-half mixture of σ̂1 and σ̃1 does not allow. As a consequence, there are mixed
strategy Nash equilibria that are not realization equivalent to any Nash equilibrium in
public behavior strategies. Restricting attention to public behavior strategies may then
exclude some equilibrium outcomes that can be achieved with private strategies.

Sequential equilibrium, originally defined for finite extensive form games (Kreps
and Wilson 1982b), has a straightforward definition in games of public monitoring if
the distribution of public signals generated by every action profile has full support.
After any private history hti , player i’s belief over the private histories of the other
players is then necessarily given by Bayes’ rule (even if player i had deviated in the
history hti). Let σ−i |ht−i = (σ1|ht1 , . . . , σi−1|hti−1

, σi+1|hti+1
, . . . , σn|htn).

Definition

10.1.1
Suppose ρ(y | a) > 0 for all y ∈ Y and all a ∈ A. A strategy profile σ is a sequen-
tial equilibrium of the repeated game with public monitoring if, for all private
histories hti , σi |hti is a best reply to E[σ−i |ht−i

∣∣hti].
A sequential equilibrium outcome can fail to be a PPE outcome only if players

are randomizing and at least one player’s choice is a nontrivial function of his own
realized actions as well as his signals. Conditioning on his period t−1 action is of
value to player i (because that action itself is private) only if player i’s prediction
of others’ period t continuation play depends on i’s action. Even if player i’s best
responses are independent of his beliefs about others’ continuation play, appropriately
specifying his period t best response as a function of his past actions may create new
incentives beyond those achievable in public strategies. Both possibilities require the
informativeness of the period t−1 public signal about others’ period t−1 actions to
depend on player i’s period t−1 action. This is not the case in games with a product
structure (section 9.5), suggesting the following result (Fudenberg and Levine 1994,
theorem 5.2):1

Proposition

10.1.1
Suppose A is finite, the game has a product structure, and the short-lived players’
actions are observable. The set of sequential equilibrium payoffs is given by E (δ),
the set of PPE payoffs.

1. Intuitively, a sequential equilibrium in a public monitoring game without full-support monitoring
is a profile such that after every private history, player i is best responding to the behavior of
the other players, given beliefs over the private histories of the other players that are minimally
consistent with his own private history.
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10.2 A Reduced-Form Example

We first illustrate the potential advantages of private strategies in a two-period game.
The first-period stage game is (yet again) the prisoners’ dilemma stage game from
figure 1.2.1, reproduced on the left in figure 10.2.1, and the second period game is
given on the right. We think of the second-period game as representing the equilibrium
continuation payoffs in an infinitely repeated game, here collapsed into a stage game
to simplify the analysis and focus attention on the effects of private strategies. As the
labeling and payoffs suggest, we will think of R as a rewarding action and P as a
punishing action. The payoff ties in the second-period subgame are necessary for the
type of equilibrium we construct. Section 10.4 shows that we can obtain such a pattern
of continuation payoffs in the infinitely repeated prisoners’ dilemma.

In keeping with this interpretation, we let payoffs in the two-period game, given
period 1 and period 2 payoff profiles u1 and u2, be given by

(1− δ)u1 + δu2.

The public monitoring distribution is given by (7.2.1), where the signals {y, ȳ} are
distributed according to

ρ(ȳ | a) =



p, if a = EE,

q, if a = ES or SE,

r, if a = SS.

(10.2.1)

We assume

p = 9
10 , q = 4

5 , r = 1
5 , and δ = 25

27 . (10.2.2)

Observe that p − q is small, so that any incentives based on shifting the distribution
of signals from p ◦ ȳ + (1− p) ◦ y to q ◦ ȳ + (1− q) ◦ y are weak.

10.2.1 Pure Strategies

Suppose first that the players do not have access to a public correlating device. Then the
best pure-strategy symmetric perfect public equilibrium payoff is obtained by playing

E S

E 2, 2 −1, 3

S 3,−1 0, 0

R P

R 8
5 , 8

5 0, 8
5

P 8
5 , 0 0, 0

Figure 10.2.1 The two-period game for section 10.2, with the first-period
game on the left, and the second period on the right.
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EE in the first period, followed by RR in the second if the first-period signal is ȳ and
PP otherwise. This provides an expected payoff of 2

27 (2)+ 25
27

9
10

8
5 = 40

27 .
The first-period incentive constraint in the equilibrium we have just presented,

that players prefer effort to shirking, is

(1− δ)2+ δp 8
5 ≥ (1− δ)3+ δq 8

5 .

Given the values from (10.2.2), this incentive constraint holds with strict inequality
(40/27 > 38/27). There is then a sense in which too much of the potential expected
payoff in the game is expended in creating incentives, suggesting that a higher payoff
could be achieved if incentives could be more finely tuned.

10.2.2 Public Correlation

Suppose now players have access to a public correlating device, allowing for a finer
tuning of incentives. The best pure-strategy strongly symmetric PPE payoff is now
given by strategies that prescribeE in the first period,R in the second period following
signal ȳ, and R with probability φ (with P otherwise) in the second period following
signal y. The largest possible payoff is given by setting φ equal to the value that just
satisfies the incentive constraint for effort in the first period, or

(1− δ)(2)+ δ(p 8
5 + (1− p)φ 8

5

) = (1− δ)(3)+ δ(q 8
5 + (1− q)φ 8

5

)
.

Under (10.2.2), this equality is solved byφ = 1/2 and the corresponding expected pay-
off is 42/27. Note that this exceeds the payoff 40/27 achieved without the correlating
device.

10.2.3 Mixed Public Strategies

The signals in this game are more informative about player 1’s action when player 2
shirks than when she exerts effort. As a result, shirking with positive probability in
the first period can improve incentives. We have seen examples of this possibility in
sections 7.7.2, 8.4.1, and 8.4.5.

Let α be the probability that each player i plays E in the first period. Assume
that RR is played in the second period after the first-period signal ȳ, and that φ is
again the probability of playing RR after signal y. Then the incentive constraint for the
first-period mixture between effort and shirking is

α
{
(1− δ)2+ δ(p 8

5 + (1− p)φ 8
5

)}
+ (1− α){(1− δ)(−1)+ δ(q 8

5 + (1− q)φ 8
5

)}
= α{(1− δ)(3)+ δ(q 8

5 + (1− q)φ 8
5

)}
+ (1− α){δ(r 8

5 + (1− r)φ 8
5

)}
. (10.2.3)

The left side of this equality is the payoff toE and the right side the payoff to S, where
α and (1− α) are the probabilities that the opponent exerts effort and shirks.
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We can solve for

φ = 11− 10α

2(6− 5α)
. (10.2.4)

This fraction exceeds 1/2 whenever α < 1. Hence, first-period mixtures allow incen-
tives to be created with a smaller threat of second-period punishment, reflecting the
more informative monitoring. This increased informativeness is purchased at the cost
of some shirking in the first period.

Substituting (10.2.4) into (10.2.3) to obtain expected payoffs gives

224− 152α − 30α2

27(6− 5α)
.

For α ∈ [0, 1], this is maximized at α = 6
5 − 2

15

√
3 = 0.969, with a value 1.5566 >

42/27.
The benefits of better monitoring outweigh the costs of shirking, and mixed

strategies thus allow a (slightly) higher payoff than is possible under pure strategies.

10.2.4 Private Strategies

Because the signals about player 1 are particularly informative when 2 shirks, it is
natural to ask whether we could do even better by punishing 1 only after a bad signal
was observed when 2 shirked. This is a private strategy profile. Each player not only
mixes but conditions future behavior on the outcome of the mixture.

Suppose players mix between E and S in the first period. After observing the
signal ȳ, R is played in the second period. After signal y, a player potentially mixes
between R and P , but attaches positive probability to the punishment action P only if
that player played S in the first period.

Let α again be the probability placed onE in the first period, and now let ξ denote
the probability that a player choosesR in the second period after having chosen S in the
first period and observed signal y. Players choose R for sure after E in the first period,
regardless of signal, or after S but observing signal ȳ. Figure 10.2.2 illustrates these
strategies with an automaton. The automaton does not describe the strategy profile;
rather, each players’ behavior is described by an automaton (see remark 2.3.1). The
profile we describe is symmetric, so the automaton description is common. However,
because the strategy described is private, players may end up in different states.

αw

ξw
yS

ySyEyE ,,
0w

Rw

Figure 10.2.2 The automaton of the private strategy described in
section 10.2.4. Subscripts on states indicate the specified behavior.
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The incentive constraint for the first-period mixture is

α
{
(1− δ)2+ δ 8

5

}+ (1− α){(1− δ)(−1)+ δ(q 8
5 + (1− q)ξ 8

5

)}
= α{(1− δ)(3)+ δ 8

5

}+ (1− α){δ(r 8
5 + (1− r)ξ 8

5

)}
.

Solving for ξ gives

ξ = 11− 12α

12(1− α),

which we use to calculate the expected payoff as 2
9

(
α + 56

9

)
. Maximizing α subject to

the constraint ξ ∈ [0, 1] gives α = 11/12 (and ξ = 0), with expected payoff 2
9

( 11
12 +

56
9

) = 1.5864. We thus have the following ranking of payoffs:

1.4815︸ ︷︷ ︸
pure strategies

< 1.5556︸ ︷︷ ︸
public correlation

< 1.5566︸ ︷︷ ︸
mixed public strategies

< 1.5864︸ ︷︷ ︸
private mixed strategies

.

Private mixed strategies allow the players to randomize in the second period but
not in a way that can be implemented by a public correlating device. From player 1’s
perspective, player 2’s strategy depends on a history that he has not observed. However,
the second-period incentive constraints are trivially satisfied by construction—each
player is indifferent between R and P , no matter how he expects the opponent to play.
With a finite horizon, this is clearly very special. We show in section 10.4 that it is
possible to construct equilibria in the infinitely repeated game with this property.

10.3 Two-Period Examples

This section presents three examples from Mailath, Matthews, and Sekiguchi (2002),
in which private strategies open up new equilibrium possibilities in a two-period game
with identical stage games in each period.

10.3.1 Equilibrium Punishments Need Not Be Equilibria

We first examine a stage-game with a unique Nash and correlated equilibrium.2 The
set of perfect public equilibria for this game is then trivial—the stage-game Nash
equilibrium must be played in each period. However, there exists an equilibrium in
private strategies that does not play the stage-game Nash equilibrium in the first period
and that offers payoffs superior to those of the perfect public equilibrium. The key to
this result is that out-of-equilibrium first-period actions need not lead to equilibrium
behavior in the second period.

2. A correlated equilibrium (Aumann 1974) of a stage game u :∏iAi → R
n is a probability

distribution over all action profiles, µ ∈ �(∏iAi), such that when an action profile is drawn
according toµ, and each player is privately recommended to play his part of the realized profile,
that player has no incentive to deviate from the recommendation, assuming other players follow
their own recommendations.
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c1 c2 c3 c4

r1 6, 0 0, 1 0, 0 0, 0

r2 5, 6 1, 5 11, 0 11, 1

r3 0, 0 0, 0 10, 10 10, 10

Figure 10.3.1 The stage game for section 10.3.1.

c1 c2 c3 c4

r1 .5 .5 .5 .5

r2 .5 .5 .9 .1

r3 .5 .5 .5 .5

Figure 10.3.2 The probability of ȳ
under different action profiles.

The private equilibrium we construct yields payoffs dominating those of the perfect
public equilibrium. Given the uniqueness of the stage-game Nash equilibrium, this
perfect public equilibrium is also the unique subgame-perfect equilibrium outcome
in the perfect-monitoring version of the game. Thus we have an example of a case
in which the players gain higher payoffs as a result of a noisier monitoring scheme.
Section 12.1.3 discusses an example, due to Kandori (1991a), illustrating a similar
phenomenon in private-monitoring games.

The stage game of figure 10.3.1 is played twice. The stage game has a unique Nash
and correlated equilibrium in which player 1 mixes equally over r1 and r2 and player 2
mixes equally over c1 and c2. Suppose that the set of public signals is Y = {y, ȳ}, with
the monitoring technology ρ(ȳ | ricj ) displayed in figure 10.3.2. The key feature is
that player 1 learns something about player 2’s action only if 1 plays r2, in which case
1 receives information about the relative likelihoods of c3 and c4. The signals provide
player 1 with no other information.

We construct an equilibrium that does not duplicate the unique PPE. The fol-
lowing strategies (σ1, σ2) are a sequential equilibrium that in the first period gives
either r3c3 or r3c4. In the first period, player 1 chooses r3 and player 2 mixes over c3

and c4:

σ1(∅) = r3, and

σ2(∅) = 1

2
◦ c3 + 1

2
◦ c4.
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In the second period, regardless of the signal received in the first period, player 1 mixes
equally between r1 and r2 if he took the first-period equilibrium action of r3 or if he
deviated to r1, but plays r2 if he deviated to r2 in the first period:

σ1(a1y) =
{

1
2 ◦ r1 + 1

2 ◦ r2, if a1 = r1 or r3,

r2, if a1 = r2.

Player 2 chooses c2 after the histories c3ȳ or c4y, and otherwise plays c1:

σ2(a2y) =
{
c2, if a2y = c3ȳ or c4y,

c1, otherwise.

Along the equilibrium path, the second-period outcome is the unique Nash and corre-
lated equilibrium of the stage game—player 1 mixes equally over r1 and r2, and player
2 mixes equally over c1 and c2. Player 2 is playing a stage-game best response in the
first period, but player 1 is not. Why does player 1 choose r3 instead of the myopically
superior r2? A deviation by player 1 to r2 in the first period induces player 2 to play
0.1 ◦ c1 + 0.9 ◦ c2 in the second period, whereas player 1 plays his best response of
r2. This is less lucrative than second-period equilibrium play, sufficiently so as to deter
the first-period deviation.

If a first-period signal y is realized with positive probability in a Nash equilibrium,
then the equilibrium distribution of second-period actions, conditional on y, must be a
correlated equilibrium of the stage game.3 If the equilibrium strategies are public, the
uniqueness of the stage-game correlated equilibrium then ensures that every signal is
followed by identical second-period behavior. First-period actions thus cannot affect
second-period behavior, making it impossible to create incentives to play anything
other than a myopic best response in the first period and leading to the unique perfect
public equilibrium.

In contrast, player 2’s private strategy allows the stage-game correlated equilib-
rium to be played in the second period in equilibrium, while still allowing second-period
behavior to respond to player 1’s first-period out-of-equilibrium actions. The key to
achieving these two properties is that when strategies are private, second-period play
for a given public signal need not be a stage-game Nash equilibrium. A deviation by
player 1 in the first period can elicit player 2 behavior that is not a best response to
player 1’s second-period behavior, though it is a best response to player 2’s equilibrium
beliefs.

The example we constructed in section 10.2.4 similarly exploits a dependence
between first-period and second-period behavior. In that game, however, there are

3. We cannot expect a Nash equilibrium in the second period, because players’ actions may be
conditioned on their own private histories. These histories take the role of the privately observed
signals that lie behind the standard formulation of a correlated equilibrium. However, any first-
period private history must lead to a second-period action that is a best response to the beliefs
induced by that private history (and any second-period action played after two different private
histories must be a best response to any average of the beliefs induced by those histories). This
ensures that the realized distribution in the second period is a correlated equilibrium.
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c1 c2 c3

r1 0, 0 1, 2 2, 1

r2 2, 1 0, 0 1, 2

r3 1, 2 2, 1 0, 0

Figure 10.3.3 The stage game for section 10.3.2.

multiple Nash equilibria of the second-period stage game, allowing us to construct links
between the periods even with public strategies. Private strategies are then valuable in
making these links stronger, and hence relaxing incentive constraints, by associating
punishments with histories that are especially likely to appear if a player deviates from
equilibrium play.

10.3.2 Payoffs by Correlation

Our next example again concerns a stage game in which the private strategies yield
equilibrium payoffs dominating those of any PPE (or any subgame-perfect equilibrium
of the perfect monitoring game). The stage game has a unique Nash equilibrium but
also has a correlated equilibrium offering higher payoffs than the Nash equilibrium.
The repeated game has a unique PPE that repeats the stage-game Nash equilibrium in
each period. Private strategies allow the players to play the correlated rather than Nash
equilibrium of the stage game in the second period, leading to higher payoffs.

The stage game is given in figure 10.3.3. This game has a unique Nash equilibrium,
in which each player mixes equally over her three actions, for expected payoffs (1, 1).
It has a correlated equilibrium in which probability 1/6 is placed on each off-diagonal
outcome, for payoffs (3/2, 3/2).

There are three signals y1, y2, and y3, with conditional distribution given in
figure 10.3.4. Note that a player’s first-period action and the public signal allow that
player to rule out one of the opponent’s actions as a first-period possibility but provides
no evidence as to which of the other two actions was taken. It should be apparent that
this already brings us most of the way toward constructing a correlated equilibrium
because the essence of the optimality conditions for the correlated equilibrium is that
each player believe the opponent is mixing equally over two actions.

We now specify strategies in which each player mixes equally over all three actions
in the first period, with second-period play given by (where we adopt the conventions
that r4 = r1, c4 = c1, r0 = r3, and c0 = c3):

σ1(r
�, y) =



r�, if y = y1,

r�−1, if y = y2,

r�+1, if y = y3,
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c1 c2 c3

r1 1
2 ◦ y2 + 1

2 ◦ y3 1
2 ◦ y1 + 1

2 ◦ y3 1
2 ◦ y1 + 1

2 ◦ y2

r2 1
2 ◦ y1 + 1

2 ◦ y2 1
2 ◦ y2 + 1

2 ◦ y3 1
2 ◦ y1 + 1

2 ◦ y3

r3 1
2 ◦ y1 + 1

2 ◦ y3 1
2 ◦ y1 + 1

2 ◦ y2 1
2 ◦ y2 + 1

2 ◦ y3

Figure 10.3.4 The monitoring distribution.

and

σ2(c
�, y) =



c�, if y = y1,

c�+1, if y = y2,

c�−1, if y = y3.

It is then straightforward to verify that second-period play constitutes a correlated equi-
librium. For example, if player 1 has played r3 and observed signal y3, then his beliefs
are that player 2 played either c1 or c3 in the first period, and therefore will mix equally
over c2 and c3 in the second, to which the prescribed player 1 second-period action
r1 is a best response. In addition, the expected payoff from the second period is 3/2,
no matter which first-period action a player takes, and hence the first-period mixture
is optimal.

10.3.3 Inconsistent Beliefs

This section considers a stage game with two pure-strategy Nash equilibria. Once again
an equilibrium in private strategies exists dominating every perfect public equilibrium.
As in the first example, in section 10.3.1, the key to this result is that out-of-equilibrium
first-period actions need not be followed by second-period equilibria. However, the
second-period equilibrium construction now depends not on players being unable to
detect deviations by their opponents, as in the first example, but on players being
unable to detect the identity of the defector. For this to play a role, we need a game
with at least three players.

The stage game is given in figure 10.3.5. Player 1 chooses rows, 2 chooses columns,
and 3 chooses matrices. Notice first that R strictly dominates L for player 3, giving
a payoff that is larger by 9, regardless of the other players’ actions. The stage-game
Nash equilibria consist of LRR and RLR, for payoffs of (1, 1, 12), and a mixture in
which players 1 and 2 put probability 1/3 on L, for payoffs (1/3, 1/3, 74/9).

We are interested in equilibria that place significant probability on the jointly
lucrative outcome LLL. The difficulty with a PPE is that the second period must feature
a Nash equilibrium of the stage game. Switching between Nash equilibria in the second
period of the game allows us to construct a difference in continuation payoffs for player
3 of only 34/9, which is not sufficient to overwhelm the payoff increment of 9 that
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L R L R

L 15, 15, 17 −85, 5, 3 L −1,−1, 26 1, 1, 12

R 5,−85, 3 5, 5,−9 R 1, 1, 12 0, 0, 0

L R

Figure 10.3.5 The stage game for section 10.3.3.

player 3 receives from choosingR instead ofL. As a result, no arrangement of second-
period play in a public equilibrium can induce player 3 to choose L in the first period.
Given this, the best that can be accomplished in a public equilibrium, no matter what
the monitoring technology (including perfect), is some sequence of LRR and RLR, for
payoffs of (2, 2, 24).

Suppose Y = {y0, y1, y2, y3}. If the number of players choosing L in the first
period is � (∈ {0, 1, 2, 3}), then the probability of y� is 1− 3ε, whereas that of ym,
m �= �, is ε. Now consider first-period strategies given by

σ1(∅) = θ ◦ L+ (1− θ) ◦ R,
σ2(∅) = θ ◦ L+ (1− θ) ◦ R,
σ3(∅) = L,

where

θ = 90− 2ε

100− 3ε
.

These actions make LLL relatively likely in the first period. Second-period play depends
on private histories only if signal y2 is received, and is given by

(σ1(a1y), σ2(a2y), σ3(a3y)) = (L,R,R) ∀(a1, a2, a3), y �= y2,

σ1(Ly
2) = σ2(Ly

2) = R,
σ1(Ry

2) = σ2(Ry
2) = L,

and σ3(Ly
2) = σ3(Ry

2) = R.
If ε is sufficiently small, then play in the second period calls only for best responses.
After any signal other than y2, the stage-game equilibrium LRR is played. For suf-
ficiently small ε, the signal y2 almost certainly follows first-period behavior of LRL
or RLL, in which cases the second-period Nash equilibria RLR and LRR are played,
respectively. The strictness of these Nash equilibria ensures that second-period actions
following y2 are best responses, for small ε.

Now consider the first period. Player 1’s and player 2’s expected second-period
payoffs following their first-period play, given player 3’s choice ofL in the first period,
are given in figure 10.3.6. Adding these payoffs to the first-period payoffs, player 3’s
first-period choice of L induces a first-period game between players 1 and 2 whose
equilibrium is given by θ ◦ L+ (1− θ) ◦ R.
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L R

L 1−ε, 1−ε 1, 1

R 1, 1 1−2ε, 1−2ε

Figure 10.3.6 Expected continuation payoffs for players 1
and 2 as a function of their first-period actions.

If player 3 chooses L in period 1, the first-period signal is y3 with very high
probability (for small ε), for a second-period payoff of 12. Switching to R implies
that with high probability, the signal will be y2. Because both players 1 and 2 choose
L in the first period with high probability, this realization of y2 generates with high
probability the second-period outcome RRR, for a player 3 payoff of 0. For small ε,
this deviation is unprofitable.

The key to interpreting this equilibrium is to think in terms of the beliefs player
1 and 2 have about the origin of signal y2, given that they played L. In equilibrium,
the most likely cause of such a signal is that the other player’s mixture generated a
choice of R, and player 3 chose the equilibrium action L. Both players 1 and 2 have
this belief and both switch to R in the second period, dooming player 3.

As ε→ 0, the expected payoff from this equilibrium approaches (6, 6, 26.22),
giving a private equilibrium that is superior to any public equilibrium. In this case, the
advantage of the private equilibrium is in allowing players to condition second-period
actions on different beliefs about the origins of first-period signals.

10.4 An Infinitely Repeated Prisoners’ Dilemma

10.4.1 Public Transitions

The examination of private strategies in section 10.2 was simplified by the second
period’s game having been constructed to pose no incentive issues. We now present an
analysis, from Kandori and Obara (2006), showing that equilibria in public and private
strategies can differ in the infinitely repeated prisoners’ dilemma.

The stage game is the prisoners’ dilemma from the left panel of figure 10.2.1.
There are two public signals, y and ȳ, distributed according to (10.2.1). We assume
q = 0 here and analyze q > 0 in section 10.4.2. We will explain why this violation of
the full support assumption does not pose difficulties for the application of sequential
equilibrium (see definition 10.1.1). We assume p > 0 and make no assumptions about
r at this point. The highest symmetric payoff from perfect public equilibrium is then
(see (7.7.1) or section 8.4.1)

2− (1−p)
p

< 2.

We now argue that one can do better with the following private strategy, described
as an automaton. The profile is symmetric, so the automaton description is common.
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Rw Pw
yS

ySyEyE ,,

0
iw

ySySyEyE ,,,

Figure 10.4.1 An automaton representation of player i’s
private strategy, with fi(wR) = α and fi(wP ) = S.

However, because the strategy described is private, even with a common initial state,
players may in general end up in different states. The set of states for player i is
Wi = {wR,wP }, with initial state wR . The output function is fi(wR) = α ∈ (0, 1],
where α is the probability of E, and fi(wP ) = S. The transition function is given by

τi(wi, aiy) =
{
wR, if wi = wR and either ai = E or aiy = Sy,

wP , otherwise,

where wi is the current state of player i. The strategy is private because the transition
function depends on a player’s own actions. Figure 10.4.1 illustrates the automaton.

Although the strategy is private, the particular monitoring structure (i.e., q = 0)
implies a very special property: If, for both i = 1 and 2, player i begins in the state
wR , then when both players follow the private strategy just described, both players
are always in the same state. That is, even though the transition from state wR to wP
is potentially private, both players necessarily transit at the same time. The transition
only occurs when a player observes ȳ (which is public) and has chosen S, and q = 0
implies that when ȳ is observed after one player chose S, the other player must also
have chosen S, and so will also transit. Consequently, when a player has transited to
wP , he believes his opponent has also transited to the same state. Moreover, because
the transition to wP is effectively public, when both players start in wR , and a player
remains inwR as a result of his private history, so does his opponent. Finally, statewP
is absorbing (and hence specifies the myopic dominant action, as it must if the relevant
incentive constraints are satisfied in wP ). In other words, under the profile, players
are always in a common state (whether it is wR or wP ). As a result, the application of
sequential equilibrium is straightforward.

Suppose then that player i is in the state wR , for i = 1, 2. Given that the two
players are always in a common state, we can let V (wR) be the expected payoff to a
player when both players are in state wR . The value of exerting effort in state wR is
given by

V E(wR) ≡ (1− δ)(2α + (−1)(1− α))+ δV (wR). (10.4.1)

Similarly, the value of shirking is given by

V S(wR) = α{(1− δ)3+ δV (wR)}
+ (1− α){(1− δ)× 0+ δ[(1− r)V (wR)+ r × 0]}
= (1− δ)3α + δ{1− r(1− α)}V (wR), (10.4.2)
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where 0 is the value of state wP . Indifference between actions E and S in state wR
requires

V E(wR) = V S(wR) = V (wR),
and so, from (10.4.1)

V (wR) = 3α − 1.

and, from (10.4.2)

3α − 1 = (1− δ)3α + δ{1− r(1− α)}(3α − 1).

Solving this for the probability of E in state wR yields

α = 1

3δr

(
2δr +

√
δ2r2 − 3δr + 3δ2r

)
,

which is a well-defined probability for r > 0 and δ close to 1. As players become
patient, we have

lim
δ→1

α = 1,

and hence
lim
δ→1

V (wR) = 2.

That is, the private strategy profile is efficient for patient players and in particular
implies higher payoffs than the maximum attainable under public strategies.

This profile is not an equilibrium if q > 0, even if q is arbitrarily small. It is now
not true that the two players are always in the same state when the profile is followed.
Suppose w1 = w2 = wR and player 1, for example, stays in wR after observing ȳ
having chosen E. When q > 0, there is some (even if small) probability that player
2 had chosen S, and so will transit to wP . In other words, the transition from wR to
wP is now truly private. This has implications for incentives. Consider the player 1
private historyEȳ, (Ey)k for large k. Immediately after observingEȳ, the probability
assigned by player 1 to player 2 being in the state wR is

β0(q) = Pr{w2 = wR | Eȳ}
= Pr{a2 = E | Eȳ}
= Pr{ȳ | EE}Pr{a2 = E}

Pr{ȳ | a1 = E}
= pα

pα + q(1− α) < 1.

Note that β0(0) = 1 and β0 is continuous in q. Let

βk(q) = Pr{w2 = wR | Eȳ, (Ey)k}.

Then βk(0) = 1 for all k, but βk(q)↘ 0 as k→∞ for all q > 0. Eventually, player 1
must conclude that player 2 is almost certainly in state wP , disrupting the optimality
of cooperation.

It is then trivial that the candidate profile is not an equilibrium. The value of α
was calculated assuming the opponent was in state wR with probability 1. This is
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no longer the case once the second period has been reached (when q > 0), violating
the indifference required for optimality. In addition, adjusting the probability of E in
period t for an agent in state wR , to maintain indifference between E and S, will not
rescue the equilibrium. Such a construction fails for large t because S is a strict best
response for an agent in wP , and hence the convergence of βk(q) to 0 ensures that
eventually E must fail to be a best response. When transitions are private, some other
approach to sustaining effort is required.

10.4.2 An Infinitely Repeated Prisoners’Dilemma: Indifference

In general, studying equilibria in private strategies is complicated by the potential need
to keep track of players’ beliefs of other players’ private histories. Optimal actions
will then depend on beliefs about beliefs about . . . , quickly becoming prohibitively
complicated. This difficulty surfaced at the end of the last section, where setting q > 0
and hence making transitions private disrupted the equilibrium we had constructed.

The two-period example in section 10.2 suggests an alternative to keeping track
of players’ beliefs. If a player has the same best replies for all beliefs, then beliefs
are irrelevant. In section 10.2 we ensured that players had the same best responses for
all period 2 beliefs by building payoff ties into the second-period stage game. Such
indifferences arise endogenously in infinitely repeated games in belief-free equilibria
(definition 14.1.2). Belief-free equilibria play an important role in repeated games with
private monitoring, and are discussed in chapter 14.

This section presents an example of a belief-free equilibrium. In the course of
doing so, we present a symmetric-payoff equilibrium in private strategies where the
sum of the players’ payoffs is higher than can be achieved in any equilibrium with
public strategies.

We examine the repeated prisoners’ dilemma of figure 10.4.2, where we will be
interested in the comparative statics of b. There are two public signals, y and ȳ. The
monitoring structure is given by (10.2.1). The equilibria we examine are described by
an automaton, again describing an individual strategy rather than a strategy profile,
with two states, wR and wP . Intuitively, we think of these as a reward state and a
punishment state. The initial state is wR . The output function is given by

fi(w) =
{
αR ◦ E + (1− αR) ◦ S, w = wR,
S, w = wP .

E S

E 2, 2 −b, b

S b,−b 0, 0

Figure 10.4.2 The prisoners’ dilemma from figure 8.4.1, with c = b.
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Rw Pw

ySyEyE ,,
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ySyEyE ,,
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)1( β−

0
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Figure 10.4.3 Private strategies under which each agent is
indifferent in each state, regardless of the opponent’s state.
In state wR , the player plays αR ◦ E + (1− αR) ◦ S,
and in state wP , the player chooses S for sure.

The transition function is given by

τi(wi, aiy) =




wR, if wi = wR and ai = E or aiy = Sȳ,

wP , if wi = wR and aiy = Sy, or

if wi = wP and ai = E or aiy = Sy,

β ◦ wR + (1− β) ◦ wP , if wi = wP and aiy = Sȳ.

Figure 10.4.3 illustrates the strategy.
The idea is to determine the two probabilities, β and αR , so that each player is

indifferent betweenE and S, irrespective of the current state of the opponent (in which
case, beliefs are irrelevant). Let V xi (ai) denote player i’s value under the profile, when
player j ’s current state is wx and i plays ai this period. We are thus searching for
probabilities so that V Ri (E) = V Ri (S) ≡ V R and V Pi (E) = V Pi (S) ≡ V P (the profile
is symmetric, so we drop the player subscript). The equation V R = V Ri (E) is

V R = (1− δ)[2αR − b(1− αR)]
+ δ[αRV R + (1− αR){qV R + (1− q)V P }]. (10.4.3)

This value must equal V Ri (S),

V R = (1− δ)[bαR] + δ[αRV R + (1− αR){rV R + (1− r)V P }]. (10.4.4)

Similarly, for V P , we have

V P = (1− δ)[−b] + δ[q(βV R + (1− β)V P )+ (1− q)V P ] (10.4.5)

= δ[r(βV R + (1− β)V P )+ (1− r)V P ]. (10.4.6)

If all four equations hold, then player i is always indifferent between exerting
effort and shirking. This in turn implies that any strategy for player i is a best response,
including the proposed strategy. It also implies that i’s payoff depends only on j ’s
state, as desired.
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Simplifying (10.4.3) yields

(1− δ)(V R − (2+ b)αR + b) = −δ(1− αR)(1− q)(V R − V P ), (10.4.7)

(10.4.4) yields

(1− δ)(V R − bαR) = −δ(1− αR)(1− r)(V R − V P ), (10.4.8)

(10.4.5) yields

(1− δ)(V P + b) = δβq(V R − V P ), (10.4.9)

and finally, (10.4.6) simplifies to

(1− δ)V P = δβr(V R − V P ). (10.4.10)

Eliminating V R − V P from (10.4.7) and (10.4.8), we have

V R =
(

2(1− r)
(q − r) + b

)
αR − b(1− r)

(q − r) . (10.4.11)

Eliminating V R − V P from (10.4.9) and (10.4.10),

V P = br

(q − r) . (10.4.12)

Eliminating V P from (10.4.9) gives

V R − V P = b(1− δ)
δβ(q − r) . (10.4.13)

Inserting (10.4.11) and (10.4.13) in (10.4.8), and solving yields

β = b(1− αR)
b − 2αR

. (10.4.14)

Substituting for β in (10.4.13), and using (10.4.11) and (10.4.12), we have

(1− αR)δ[(2(1− r)+ b(q − r))αR − b] − (1− δ)(b − 2αR) = 0. (10.4.15)

For δ = 1, αR = 1 is clearly a solution to (10.4.15). We now set p = 1/2, q =
1/2− ε, and r = ε, and consider ε small and b close to 2. Then, we can apply the
implicit function theorem to the function described by (10.4.15) to conclude that for
δ < 1 but close to 1, there is a value of αR < 1 but close to 1, satisfying (10.4.15).
Moreover, the value of β from (10.4.14) is also a well-defined probability, because b >
2. Consequently, for δ close to 1, equations (10.4.3)–(10.4.6) can be simultaneously
satisfied through an appropriate specification of β and αR .
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Remark

10.4.1
Determinacy of equilibria In this automaton, players play S for sure in state
wP , and state wR has deterministic transitions, allowing us to determine both
αR and β. Kandori and Obara (2006) describe a two-dimensional manifold of
belief-free equilibria using private strategies by allowing for randomization in
both behavior atwP and in the state transitions atwR . This is typical of belief-free
equilibria and arises even in games with perfect monitoring; see chapter 14.

◆

Applying (8.4.8) from section 8.4.1 for our parametrization, no PPE can provide a
sum of payoffs exceeding 0 (the set A is empty, b − c = 0, and for small ε and b close
to 2, vSSE < 0). Nonetheless, for the same parameters, not only are there nontrivial
equilibria in private strategies but the equilibrium just constructed is nearly efficient,
because from (10.4.11), V R is close to 2. The advantage of private strategies appears
here in a setting in which there are too few signals for the public-monitoring folk
theorem to hold. Kandori and Obara (2006) also show that for a fixed discount factor,
private equilibria can be effective in increasing the set of perfect equilibrium payoffs
even when the perfect public equilibrium folk theorem holds.



11 Applications

The study of imperfect public monitoring games began with work centered around
economic applications, including noisy principal-agent models (e.g., Radner 1985;
Rubinstein 1979b; Rubinstein and Yaari 1983; discussed in section 11.4) and imperfect
competition with noisy prices (Green and Porter 1984; Porter 1983a; discussed in
section 11.1). This chapter presents several examples.

11.1 Oligopoly with Imperfect Monitoring

11.1.1 The Game

In the stage game, each firm i, i = 1, . . . , n, simultaneously chooses a quantity of
output ai ∈ Ai . Though it is common to take Ai to be all of R+, we assume that firms
must choose from a common finite subset of R+. We say that the grid Ai becomes
increasingly fine as the maximal distance between adjacent quantities approaches 0. We
could interpret the restriction to Ai as reflecting an indivisibility that restricts outputs
to be multiples of a smallest unit. Working with finite action sets allows us to restrict
attention to bang-bang equilibria (see proposition 7.5.1).

The market price p is determined by the firms’ quantities (a1, . . . , an) ≡ a
and a price shock θ ∈ R+. The firms produce homogeneous products, so that
p : A× R+ → R+ depends only on the aggregate quantity produced (p(a, θ) =
p(a′, θ) if

∑n
i=1 ai =

∑n
i=1 a

′
i). The function p(a, θ) is strictly decreasing in a where

it is positive, strictly increasing in θ , and continuously differentiable in a. There is an
upper bound on expected revenues.

The price shock θ is randomly drawn after the firms have chosen their actions,
according to the cumulative distribution F with continuously differentiable density
f . The probability measure on prices implied by an action profile a ∈ A is ρ(· | a).
Because F has a density, ρ(· | a) is absolutely continuous with respect to Lebesgue
measure. We assume the price shocks are sufficiently noisy that ρ(· | a) has full
support on R+.

The price p is the signal in a game of imperfect public monitoring. We write firm
i’s ex post payoff, as a function of the action profile a and realized price p, as

u∗i (a, p) = pai − c(ai),

347
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where c(ai) is an increasing, convex cost function. Firm i’s ex ante payoff is

ui(a) =
∫ ∞

0
u∗i (a, p(a, θ))dF (θ).

We assume that the stage game has a Nash equilibrium in pure strategies, in which
each firm i produces an identical quantity that we denote by aN > 0, and that the
symmetric action profile that maximizes the total payoffs for the n firms calls for each
firm i to produce the identical quantity am < aN , where aN ∈ Ai . Both are satisfied if,
for example, (11.1.8) holds and the demand curve p(a) is a linear function of

∑n
i=1 ai .

We omit the subscripts on the quantities aN and am.
Turning to the repeated game, with δ ∈ (0, 1), the price shock θ t is independently

and identically distributed across periods. In each period t , the firms choose their quan-
tities simultaneously, yielding profile at , and then observe the market price. They are
unable to observe either their rivals’quantities or (unlike the analysis of Rotemberg and
Saloner 1986 in section 6.1) the shock θ t , either before or after choosing their actions.

11.1.2 Optimal Collusion

We are interested in the equilibrium that earns the largest repeated-game payoff for
the firm among pure-strategy strongly symmetric equilibria. The impact of restricting
attention to pure strategies vanishes as the grid of feasible quantities becomes arbitrarily
fine. We refer to the resulting equilibrium as the most collusive equilibrium.

In an equilibrium with ai < aN , a firm seeing a low market price cannot be
certain whether this reflects a relatively large market output or simply an adverse
demand shock. A “collusive” equilibrium in which the firms restrict their output levels
to increase the market price then runs the risk that a firm may be tempted to cheat on
the agreement, increasing its output while hoping that the deviation will be masked by
the randomness in market prices.1

We can restrict attention to equilibria with the bang-bang property. Let V̄i and Ṽi
be the maximum and minimum (strongly symmetric) pure perfect public equilibrium
payoffs for player i. By proposition 7.5.1, there exists an equilibrium with value V̄i
and with continuation values drawn exclusively from the set {V̄i , Ṽi}. Let ā denote
the action profile played in the first period of this equilibrium. Similarly, there is an
equilibrium with value Ṽi and the same set of continuations. Let ã denote its first-period
action profile. The equilibrium with value V̄i consists of a reward state during which
ā is produced, and a punishment state during which ã is produced. Play begins in the
former. Transitions are governed by a pair of sets of prices P̄ and P̃ . In the reward
state, any price in P̄ prompts a switch to the punishment state, with play otherwise
continuing in the reward state. In the punishment state, any price in P̃ causes play to
continue in the punishment state, with play otherwise switching to the reward state.
Figure 11.1.1 illustrates.

Player i’s continuation values satisfy

V̄i = (1− δ)ui(ā)+ δ[(1− ρ(P̄ | ā))V̄i + ρ(P̄ | ā)Ṽi] (11.1.1)

1. Porter (1983b), with elaboration by Coslett and Lee (1985) and Ellison (1994), uses a repeated
game of imperfect monitoring with this type of equilibrium to examine the pricing behavior of
railroads in the 1880s.
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Figure 11.1.1 Equilibrium strategy profile for
repeated oligopoly with imperfect monitoring.

and

Ṽi = (1− δ)ui(ã)+ δ[(1− ρ(P̃ | ã))V̄i + ρ(P̃ | ã)Ṽi]. (11.1.2)

Solving (11.1.1) and (11.1.2), firm i’s equilibrium payoff is

V̄i = ui(ā)(1− δρ(P̃ | ã))+ δui(ã)ρ(P̄ | ā)
1− δ[ρ(P̃ | ã)− ρ(P̄ | ā)] .

There is always an equilibrium in which āi = ãi = aN for all i, duplicating the
Nash equilibrium of the stage game in every period. In this case, the incentive con-
straints for equilibrium play are trivially satisfied. If the action sets Ai are sufficiently
fine (see proposition 11.1.2), this equilibrium payoff falls short of V̄i .

To achieve payoff V̄i , it must be that āi < aN (again, for sufficiently fine Ai).
Player i prefers to choose āi rather than any alternative actiona′i , in either case thereafter
continuing with the equilibrium strategies, if, for all feasible a′i ,

(1− δ)[ui(a′i , ā−i )− ui(ā)] ≤ δ[ρ(P̄ | (a′i , ā−i ))− ρ(P̄ | ā)](V̄i − Ṽi). (11.1.3)

We see the basic equilibrium trade-off in this inequality. The left side captures the
immediate payoff gain of deviating from the proposed equilibrium strategy. The right
side captures the loss in future payoffs caused by the attendant increase in the likelihood
of triggering the punishment.

Green and Porter (1984) and Porter (1983a) consider strategies in which punish-
ments consist of a finite number of periods of playing the stage-game Nash equilibrium,
followed by a return to the reward phase. Optimal punishments are in general more
severe, and hence allow equilibria that are “more collusive,” in the sense that they allow
a higher equilibrium payoff. These optimal punishments involve large quantities, that
is, ãi > aN , and give rise to the incentive constraint that, for all feasible a′i ,

(1− δ)[ui(a′i , ã−i )− ui(ã)] ≤ δ[ρ(P̃ | (a′i , ã−i ))− ρ(P̃ | ã)](V̄i − Ṽi). (11.1.4)

Remark

11.1.1
Likelihood ratios To develop intuition about the sets P̄ and P̃ , suppose there were
only two actions available, the actions āi and ãi . The incentive constraint (11.1.3)
imposes a lower bound on the difference ρ(P̄ | (ãi , ā−i ))− ρ(P̄ | ā). Let ha be
the density (Radon-Nikodym derivative) of ρ(· | a). The bang-bang equilibrium
strategy achieving payoff V̄i must minimize ρ(P̄ | ā) subject to the incentive
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constraint (11.1.3) and holding fixed ā and the continuation values V̄i and Ṽi
in (11.1.3). This can be written as

min
P̄

∫
P̄

hā(p) dp (11.1.5)

such that∫
P̄

h(ãi ,ā−i )(p) dp −
∫
P̄

hā(p) dp ≥ (1− δ)[ui(ãi , ā−i )− ui(ā)]
δ(V̄i − Ṽi)

. (11.1.6)

The solution to (11.1.5)–(11.1.6) calls for P̄ to be a set of prices with the
property that every price (signal) in P̄ has a higher likelihood ratio than any price
not in P̄ , where the likelihood ratio is

h(ãi ,ā−i )(p)

hā(p)
≡ �(p). (11.1.7)

To see why, suppose there is a set of prices P̂ contained in the complement of P̄
that has positive measure underρ(· | ā), that is,

∫
P̂
hā(p) dp = η > 0, and that the

likelihood ratio is larger on P̂ than on some set P † ⊂ P̄ with
∫
P † hā(p) dp = η.

There exists κ > 0 such that for all p ∈ P̂ and all p′ ∈ P †, �(p′) < κ < �(p),
and so ∫

P̂

h(ãi ,ā−i )(p) dp −
∫
P †
h(ãi ,ā−i )(p) dp

=
∫
P̂

hā(p)�(p) dp −
∫
P †
hā(p)�(p) dp

>

∫
P̂

hā(p)κ dp −
∫
P †
hā(p)κ dp = 0.

Hence, modifying P̄ by replacing P † with P̂ leaves ρ(P̄ | ā) unchanged but
increasesρ(P̄ | (a′i , ā−i )). This in turn introduces slack into the constraint (11.1.6)
in the minimization problem (11.1.5), allowing P̄ to be made smaller, reducing
the equilibrium probability of a punishment while still preserving incentives.

The next section builds on this intuition, with additional assumptions on the
game, to characterize P̄ when players have many alternative actions.

◆

11.1.3 Which News Is Bad News?

Green and Porter (1984) and Porter (1983a) assume that the set of prices P̄ resulting
in a punishment while in the reward phase is of the form [0, p̄]. It seems natural
to associate punishments with low prices, because the latter are in turn associated
with the increases in quantity that allow profitable deviations from collusive outputs.
However, nothing from the bang-bang argument of section 7.5 suggests the set of
signals triggering a punishment should reflect such intuition. This section establishes
(restrictive) conditions under which the most collusive equilibrium entails P̄ = [0, p̄].
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In general, the set of prices that maximizes the likelihood ratio (11.1.7) need
not be of the form [0, p̄]. A sufficient condition is that the density ha(p) satisfy the
monotone likelihood ratio property: For any profiles a and a′ with

∑
i ai <

∑
i a
′
i ,

ha′(p)

ha(p)

is strictly decreasing in p. However, the monotone likelihood ratio alone does not
ensure P̄ = [0, p̄], because we have more than the two actions of remark 11.1.1 to
contend with. An incentive constraint must then be satisfied for each alternative action.
By the argument in remark 11.1.1, if the monotone likelihood ratio property holds, then
for each action a′i > āi , p(a′i , ā−i ) < p(ā), and so there is a price p̄a′i such that [0, p̄a′i ]
is the most effective way to discourage a deviation to a′i . Hence, if no other constraints
bind, then P̄ = [0, p̄] for p̄ ≡ sup{pa′i |a′i > āi}. Notice that under this P̄ , player i is
just indifferent between āi and some larger quantity.

What about deviations to smaller quantities? On the face of it, such devia-
tions appear to be obviously counterproductive because they reduce current payoffs.
However, such a deviation may be useful because it reduces the probability of a
punishment.

A repetition of our previous argument, again under the monotone likelihood ratio
property, suggests that deviations to smaller quantities are most effectively deterred
by attaching punishments to large rather than small prices. Hence, if the optimal
punishment set is to be of the form [0, p̄], it must be the case that the binding incen-
tive constraints are those to larger quantities, and the incentive constraints to smaller
quantities do not bind.

We establish sufficient conditions under which this is the case, and hence
P̄ = [0, p̄]. We now assume the price shock θ enters the function p(a, θ) multipli-
catively, or

p(a, θ) = θp(a). (11.1.8)

We continue to use the notationp in this case, trusting to the context to indicate whether
it is p(a, θ) or simply p(a). Then,

ρ([0, p̂] | a) = F
(

p̂

p(a)

)
and ha(p̂) = 1

p(a)
f

(
p̂

p(a)

)
.

We let the distribution of shocks be given by

F(θ) = θ

θ + 1
, with density f (θ) = 1

(θ + 1)2
. (11.1.9)

Under (11.1.8) and (11.1.9), the monotone likelihood ratio property is satisfied. We fur-
ther assume that demand is given by p(a) = r −∑i ai and for some r > 0, that costs
are such that aN < r/n, and (to ensure full-support signals and hence the bang-bang
principle) that Ai ⊂ [0, r/n).
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If P̄ = [0, p̄] for some p̄, then the payoff for firm i from profile a′ = (ai, ā−i ) is

(1− δ)ui(a′)+ δ
(

1− F
(

p̄

p(a′)

))
V̄i + δF

(
p̄

p(a′)

)
Ṽi .

Differentiating (recalling that dp(a)/dai = −1) gives

(1− δ)dui(a
′)

dai
− δf

(
p̄

p(a′)

)
p̄

(p(a′))2
(V̄i − Ṽi). (11.1.10)

Differentiating again, denoting df (·)/dθ by f ′(·) and using the specification of f
given by (11.1.9) to infer the final inequality:

(1− δ)d
2ui(a

′)
da2

i

− δf ′
(

p̄

p(a′)

)
p̄2

(p(a′))4
(V̄i − Ṽi)− δf

(
p̄

p(a′)

)
2p̄

(p(a′))3
(V̄i − Ṽi)

= (1− δ)d
2ui(a

′)
da2

i

− δ(V̄i − Ṽi) p̄

(p(a′))3

(
f ′
(

p̄

p(a′)

)
p̄

p(a′)
+ 2f

(
p̄

p(a′)

))
< 0.

Hence, firm i’s payoff function is concave. Coupled with player i’s indifference
between āi and some ai > āi , this ensures that deviations to quantities smaller than āi
are suboptimal, and hence P̄ = [0, p̄] for p̄ = sup{pa′i |a′i > āi}.

We summarize the discussion in the following proposition.

Proposition

11.1.1
Suppose the demand shocks satisfy (11.1.9), the price function satisfies (11.1.8)
with p(a) = r −∑n

i=1 ai for some r > 0, and Ai ⊂ [0, r/n). Suppose there is a
nontrivial strongly symmetric PPE (so that V̄i > Ṽi). Then V̄i is the value of a
bang-bang equilibrium and P̄ = [0, p̄] for some p̄ ∈ R+.

In the punishment phase of a nontrivial bang-bang equilibrium, ãi > aN and hence
the firm has a myopic incentive to lower its quantity. Applying similar reasoning, one
might then expect P̃ to be given by a set of the form [p̃,∞). This is indeed the most
effective way to deter deviations to smaller quantities. However, the equilibrium payoff
is now given by

Ṽi = (1− δ)ui(ã)+ δF
(

p̃

p(ã)

)
V̄i + δ

(
1− F

(
p̃

p(ã)

))
Ṽi ,

which is not obviously concave. If ãi = maxAi , then deviations to larger quanti-
ties are impossible and hence P̃ = [p̃,∞). Otherwise, our argument leaves open the
possibility that P̃ has a more complicated structure.

11.1.4 Imperfect Collusion

If the choice sets Ai contain a sufficiently fine grid of points, then the most collusive
equilibrium will be nontrivial. However, it will not entail perfect collusion:

Proposition

11.1.2
Let am ∈ Ai . Under the assumptions of proposition 11.1.1, if the finite grid of
feasible quantities Ai is sufficiently fine, then am < āi < aN .
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Firms produce quantities larger than the monopoly output to reduce the incentives to
deviate from equilibrium play, which in turn allows equilibrium punishments to be
less severe. Because punishments actually occur in equilibrium, this reduced severity
is valuable. The proof of this result makes precise the following intuition: If we take
the joint profit maximizing outputs am as our point of departure, then an increase in
quantities causes a second-order reduction in reward-phase payoffs, while attaining a
first-order reduction in punishment severity, ensuring that āi > am.

Proof It is immediate that āi ∈ [am, aN ], because quantities below am only make devi-
ations more tempting and hence require more likely equilibrium punishments,
without any flow payoff benefit. We suppose āi = am ∈ Ai and derive a contra-
diction by constructing an alternative equilibrium, when Ai is sufficiently fine,
with higher expected profits.

We begin by assuming every action in [0, r/n) is available as a candidate
for āi , while retaining the remaining structure of the equilibrium. From the proof
of proposition 11.1.1, we know that firm i’s payoff V̄i(a′) is concave in ai and
maximized at āi . In the limit as Ai approaches [0, r/n), the first-order condition
implied by (11.1.10) must approach zero. Denote the equilibrium value p̄/p(ā)
by θ̄ and rewrite this condition as

(1− δ)dui(ā)
dai

− δf (θ̄) θ̄

p(ā)
(V̄i − Ṽi) = 0. (11.1.11)

From (11.1.9), f (θ̄)θ̄ is single-peaked with a maximum at θ̄ = 1. Because larger
values of θ̄ make punishments more likely, and because (11.1.11) holds in the
most collusive equilibrium (and hence must correspond to choosing θ̄ and ā to
maximize the firms’ payoffs, holding fixed the continuation values V̄i and Ṽi), its
solution must correspond to a value θ̄ ≤ 1.

Consider marginally increasing āi for all i from its current value of am, while
adjusting θ̄ (or equivalently, p̄) to preserve the equality in (11.1.11), holding
fixed V̄i − Ṽi . This adjusts the first-period quantity of output and punishment
criteria, holding fixed the remainder of the equilibrium. Because (11.1.11) cap-
tures the first-period incentive constraints, this adjustment gives us an alternative
equilibrium. If dθ̄/dāi < 0, the probability of punishment falls and this alternative
equilibrium gives a higher payoff, establishing the desired result. In particular, as
we consider actions larger than but arbitrarily close to am, we couple a reduction
in the probability of a punishment with a current payoff sacrifice that is (in the
limit) an order of magnitude smaller, giving the result.

To determine dθ̄/dāi , implicitly differentiate (11.1.11) to obtain

0 = (1− δ)
[
d2ui(ā)

dāidāi
+ (n− 1)

d2ui(ā)

dāidāj

]
− δf (θ̄) θ̄n

(p(ā))2
(V̄i − Ṽi)

− δ
(
f ′(θ̄) θ̄

p(ā)
+ f (θ̄) 1

p(ā)

)
(V̄i − Ṽi) dθ̄

dāi
.

The linearity of the demand curve and convexity of cost functions ensures that the
bracketed part of the first term in the first line is the negative, and the second term
in the first line is also obviously negative. Condition (11.1.9) and θ̄ ≤ 1 ensure that
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the terms in the second line are positive except for dθ̄/dāi . The latter must then
be negative. For a sufficiently fine grid for the finite set Ai , this implies that there
exists an equilibrium with higher payoffs, giving a contradiction.

Similar ideas (leading to an argument reminiscent of those in section 4.3) allow
us to show that āi < aN .

■

11.2 Repeated Adverse Selection

11.2.1 General Structure

In each period, each player i first learns his type, θi , which is drawn from a finite set�i .
The distribution of types is independent across players and time with πi the commonly
known distribution of player i’s type.2 After learning their types, players simultane-
ously choose their moves, with player i’s move yi ∈ Yi being publicly observable. The
public outcome is the profile y = (y1, . . . , yn).

A pure action for player i is a mapping from his type space into his space of moves,
ai : �i → Yi . Assume the payoff structure is one of private values, so that player
i’s realized payoff is given by ri(y, θi) when his type is θi and the public outcome
profile is y.

Player i’s expected payoff, given action profile a, is then given by

ui(a) =
∑
θ∈�

ri(a(θ), θi)
∏n

j=1
πj (θj )

=
∑
θi∈�i

πi(θi)
∑

y−i∈Y−i
ri (ai(θi), y−i , θi)

∏
j �=i ρj (yj | aj ),

where

ρj (yj | aj ) =


∑
θj∈a−1

j (yj )
πj (θj ), if yj ∈ aj (�j ),

0, otherwise.

Define

u∗i (y, ai) =
{
E[ri(yi, y−i , θi) | θi ∈ a−1

i (yi)], if yi ∈ ai(�i),
0, otherwise.

Because yi arises with zero probability under ai if yi �∈ ai(�i), u∗i (y, ai) can then be
defined arbitrarily. With this definition of u∗i , player i’s payoff can be written as an
expectation of the ex post payoff u∗i (see (7.1.1)). This description of i’s payoffs is
not natural here because u∗i now involves taking expectations over player i’s private
information about his type.

2. This setting of a repeated stage game with private information contrasts with the reputation
games that we study in part IV. Here, players’ types are drawn anew in each period, in contrast
to being fixed throughout the repeated game in reputation games.
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Remark

11.2.1
It is immediate from definition 9.5.1 that games of repeated adverse selection have
a product structure. Proposition 9.5.1 then applies, giving us a folk theorem for
such games. As a result, adverse selection in repeated interactions is typically
not an impediment to efficiency if players are patient. Section 11.2.6 provides an
illustration.

◆

The notion of enforceability is unchanged from definition 7.3.1. This gives us ex
ante enforceability, applied to actions ai : �i → Yi that map from types into moves
and that can be viewed as describing players’ behavior before they learn their realized
type and choose their move.

Say that an action profile a is interim enforceable with respect to W if there exists
a mapping γ : Y → W such that for all i, for all θi ∈ �i , and all y′i ∈ Yi ,∑

θ−i
{(1− δ)ri(ai(θi), a−i (θ−i ), θi)+ δγi(ai(θi), a−i (θ−i ))}

∏
j �=i πj (θj )

≥
∑
θ−i
{(1− δ)ri(y′i , a−i (θ−i ), θi)+ δγi(y′i , a−i (θ−i ))}

∏
j �=i πj (θj ).

Players’ types are private, so the function describing the continuation promises is
independent of type (that is, the same function γ is used for all types).

It is immediate that if an action profile is interim enforceable, then it is ex ante
enforceable. Taking expectations over the above inequality with respect to player
i’s type yields the relevant inequality in definition 7.3.1. Moreover, it is almost as
immediate that ex ante enforceability implies interim enforceability: Suppose a is ex
ante enforced by γ but that for player i there is some type θ ′i with a profitable deviation
y′i against γ . Then a cannot have been ex ante enforced by γ , because âi given by
âi (θ

′
i ) = y′i and âi (θi) = ai(θi) for θi �= θ ′i is a profitable deviation.

11.2.2 An Oligopoly with Private Costs:The Game

This section introduces an example of repeated adverse selection, based on Athey and
Bagwell (2001) and Athey, Bagwell, and Sanchirico (2004).

There are two firms, denoted 1 and 2. Nature first independently draws, for each
firm, a constant marginal cost equal to either θ or θ̄ > θ , with the two values being
equally likely. The firms then simultaneously choose prices in R+. There is a unit mass
of consumers, with a reservation price of r . Aconsumer purchases from the firm setting
the lower price if it does not exceed r . Consumers are indifferent between the two firms
if they set identical prices, in which case we specify consumer decisions as part of the
equilibrium. Consumers are thus small anonymous players. A firm from whom a mass
µ of consumers purchases at price p, with cost θ , earns payoff µ(p − θ).

The stage game has a unique symmetric Nash equilibrium. A firm whose cost
level is θ̄ sets price θ̄ and earns a zero expected profit. A low-cost firm chooses a price
according to a distribution α(p) with support on [(θ + θ̄ )/2, θ̄].3 If the low-cost firm
sets price p, its expected payoff is

3. It is straightforward that prices above θ̄ are vulnerable to being undercut by one’s rival. Prices
above θ̄ thus will not appear in equilibrium, and high-cost firms will set price θ̄ . The lower bound
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[ 1
2 + 1

2 (1−α(p))
][p − θ ],

because the probability that the customer buys from the firm is 1/2 (from the event the
other firm is high-cost) plus (1−α(p)/2) (from the event that the other firm is low
cost but sets a higher price). Differentiating, the equilibrium is completed by solving
the differential equation

1+ (1−α(p))− dα(p)
dp

(p − θ) = 0.

The expected payoff to each firm from this equilibrium is given by (θ̄ − θ)/4. The
noteworthy aspect of this equilibrium is that it does not vary with r . If r is much larger
than θ̄ , the firms are falling far short of the monopoly profit.

Minmax payoffs are (0, 0). Each firm can ensure the other earns a zero payoff
by setting p = θ , whereas a firm can ensure at least this payoff by setting p ≥ θ̄ . To
maximize firm i’s payoff, we have firm i set p = r and the other firm set a price higher
than r . This gives expected payoff r − (θ + θ̄ )/2. An upper bound on the payoffs in
a symmetric-payoff equilibrium would call for both firms to set price r , but with only
low-cost firms (if there is such a firm) selling output, for an expected payoff to each
firm of

1
8 (r − θ̄ )+ 3

8 (r − θ) = 1
2

(
r − 3

4θ − 1
4 θ̄
)
.

The firms can come arbitrarily close to this payoff by having a firm with high costs set
price r and a low-cost firm set a slightly smaller price.

11.2.3 A Uniform-Price Equilibrium

We first study an equilibrium of the repeated game in which each firm sets price r
in every period, as long as such behavior has been observed in the past, with any
deviation triggering a switch to permanent play of the stage-game Nash equilibrium.
We assume that half of the consumers buy from each firm in this case. The payoff from
this strategy profile is

1
2

(
r − 1

2 (θ + θ̄ )
)
. (11.2.1)

A firm can earn a higher payoff in the stage game by setting a price slightly lower
than r , allowing the firm to capture the entire market (rather than simply half of it).
This undercutting is most attractive when the firm has drawn cost θ . In addition, the
larger is the price that the firm sets, given that it falls below r , the more profitable the
deviation, with a supremum on the set of deviation payoffs of r − θ . The condition

on the support of the low-cost firm’s price distribution makes the firm indifferent between selling
with probability 1 at that price and selling with probability 1/2 at price θ̄ , or p − θ = (θ̄ − θ)/2,
giving p = (θ + θ̄ )/2. Though this example violates our practice of considering only pure
strategies when examining continuum action spaces (remark 7.1.1), in the profiles we study,
mixing only appears as behavior in an absorbing state of the automaton, so the measurability
issues do not arise.
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for the candidate strategies to be an equilibrium is that a deviation commanding this
payoff, having drawn cost θ be unprofitable, or

(1− δ)(r − θ)+ δ 1
4 [θ̄ − θ ] ≤ (1− δ) 1

2 (r − θ)+ δ 1
2

(
r − 1

2 (θ + θ̄ )
)
.

We assume that δ is sufficiently large that this constraint holds, and therefore that we
have at least one equilibrium providing payoffs larger than continual play of the stage-
game Nash equilibrium. This is the best symmetric-payoff equilibrium when the firms
are constrained to set prices that do not depend on their realized costs.

11.2.4 A Stationary-Outcome Separating Equilibrium

We now maximize the firms’ equilibrium payoff, in a strongly symmetric equilibrium,
where consumers treat firms identically when they choose the same price and firms
choose a different price when drawing cost θ than when drawing cost θ̄ .4 The result-
ing equilibrium has a stationary outcome, and so no intertemporal incentives on the
equilibrium path. Let pi denote the price set by firm i.

The first step in simplifying this problem is recognizing that in enforcing an action
profile a, we can think of prices as falling in two categories, equilibrium and out of
equilibrium. Equilibrium prices are those that are set with positive probability by a,
and out-of-equilibrium prices are the remainder. Attaching a punishment to an out-
of-equilibrium price has no effect on the equilibrium payoff, unlike the case of an
equilibrium price.

Moreover, if we are examining the limit as the discount factor gets large, we can
ignore out-of-equilibrium prices. For sufficiently large δ, the maximum symmetric
equilibrium payoff exceeds that of the stage-game Nash equilibrium. It then follows
that for any candidate equilibrium, attaching the punishment of perpetual play of the
stage-game Nash equilibrium to out-of-equilibrium prices suffices to ensure (again,
for large discount factors) that such prices will be suboptimal.

We thus restrict attention to equilibrium prices when evaluating the enforceability
of the action profile a. Because firms price similarly in a symmetric profile, any
symmetric action profile a is described by two prices, p and p̄, set by a firm drawing
cost θ and θ̄ , respectively. Separation requires p �= p̄. Without loss of generality, we
assumep < p̄. A separating symmetric action profile a is enforced if, for each player i,

(1− δ) 3
4 (p − θ)+ δE(p,aj )γ (pi, pj ) ≥ (1− δ) 1

4 (p̄ − θ)+ δE(p̄,aj )γ (pi, pj )
(11.2.2)

and

(1− δ) 1
4 (p̄ − θ̄ )+ δE(p̄,aj )γ (pi, pj ) ≥ (1− δ) 3

4 (p − θ̄ )+ δE(p,aj )γ (pi, pj ),
(11.2.3)

whereE(p̄,aj )γ (pi, pj ) is the expected value of γ (pi, pj )with respect topj = aj (θj ),
fixing pi = p̄ (given our focus on symmetry, γi = γj ). The enforceability constraints
have been written in interim form.

4. Strong symmetry is not a particularly restrictive notion in the current context. See note 6 on page
231 and remark 11.2.3.
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We now reformulate the search for the best strongly symmetric separating equi-
librium. Consider choosing a pair of prices (p, p̄) and a pair of values x and x̄
to solve

max
p,p̄,x,x̄

1
2

( 3
4 (p − θ)+ x

)+ 1
2

( 1
4 (p̄ − θ̄ )+ x̄

)
subject to

3
4 (p − θ)+ x ≥ 1

4 (p̄ − θ)+ x̄,
3
4 (p − θ̄ )+ x ≤ 1

4 (p̄ − θ̄ )+ x̄,
and x, x̄ ≤ 0.

To interpret this in terms of the repeated game, let v̄ be the maximum strongly
symmetric equilibrium payoff and let

x̄ = δ

1− δ [E(p̄,αj )γ (p)− v̄]

and x = δ

1− δ [E(p,αj )γ (p)− v̄].
Therefore, x̄ and x are the normalized expected penalties a player faces, measured in
terms of shortfall from the maximum possible payoff, for choosing the price consistent
with cost level θ̄ and θ , respectively.

Simplifying the first two constraints, we find

2θ + 4(x̄ − x) ≤ 3p − p̄ ≤ 2θ̄ + 4(x̄ − x). (11.2.4)

We now note that the prices p̄ andp enter this constraint only in the difference 3p − p̄.
Because high prices bring high payoffs and we seek a payoff-maximizing equilibrium,
we must set both prices as large as possible. We therefore set p̄ at its maximum value

p̄ = r,
and then increasep until the upper constraint in (11.2.4) binds, giving constraints of

2θ + 4(x̄ − x) ≤ 3p − p̄ = 3p − r = 2θ̄ + 4(x̄ − x).
We can solve for

p = 1
3 (2θ̄ + r)+ 4

3 (x̄ − x).
Given the prices we have calculated, the payoff from the mechanism is given by

1
2

( 3
4 (p − θ)+ x

)+ 1
2

( 1
4 (p̄ − θ̄ )+ x̄

) = 1
4 r + 1

8 (θ̄ − 3θ)+ x̄.
We now note that this expected payoff does not depend on x and is increasing in x̄.
Hence, the problem has a solution in which we set x̄ at its largest value of 0. Once we
have made this choice, the value of x is arbitrary and can without loss of generality be
taken to also equal 0. We then obtain prices of

p̄ = r (11.2.5)

and p = 1
3 (2θ̄ + r). (11.2.6)

We imposed no constraints beyond nonpositivity on x̄ and x, so there is in general
no guarantee that its solution leads to an equilibrium of the repeated game. In this case,
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however, we have found a solution with the convenient property that x = x̄ = 0. This
implies that we can maximize the expected payoff by choosing the prices given by
(11.2.5)–(11.2.6) while respecting the incentive constraints and holding future payoffs
constant. It then follows that setting the prices (11.2.5)–(11.2.6) in every period must
be a stationary-outcome, strongly symmetric equilibrium of the repeated game.

In the course of solving this problem, we have seen ideas that are familiar from
mechanism design. For example, the finding that only the upper constraint in (11.2.4)
binds is the statement that high-cost firms may prefer to mimic low-cost firms, but not
the other way around. Athey and Bagwell (2001) and Athey, Bagwell, and Sanchirico
(2004) refer to this as the mechanism design approach to repeated games of adverse
selection. The idea is to attach a punishment to out-of-equilibrium actions sufficient
to deter them when players are patient. One then notes that the remaining optimal-
ity conditions for equilibrium actions look much like a mechanism design problem,
with continuation payoffs in the repeated game taking the place of transfers in the
mechanism. This allows us to bring the insights of mechanism design theory to work
in solving for the equilibrium of the repeated game.

11.2.5 Efficiency

We assumed throughout section 11.2.4 that the two types of firm, low-cost and high-
cost, will choose different prices. Together with section 11.2.3, this gives us two
candidates for the stationary-outcome, strongly symmetric equilibrium (in which
consumers treat firms identically when prices are equal) that maximizes the players’
payoffs. In one of these equilibria, from section 11.2.4, players with different costs
set different prices in each period, with prices given by (11.2.5)–(11.2.6). Expected
payoffs are given by

1
4 r + 1

8 (θ̄ − 3θ).

We refer to this as the discriminatory-price equilibrium. The other equilibrium, from
section 11.2.3, is the uniform-price equilibrium in which both first set price r in every
period, for expected payoffs of (see (11.2.1))

1
2

(
r − 1

2θ − 1
2 θ̄
)
.

For sufficiently large r , the second payoff dominates.
The stage-game Nash equilibrium in this market has the virtue that production

is efficient, in the sense that the low-cost firm always sells the output. However,
competition between the firms ensures that they cannot set prices above θ̄ . If r is much
larger than θ , the incentive to improve on this outcome by colluding is tremendous.

The question then arises as to how the firms can use their repeated play to collude.
It is immediate that they can achieve prices larger than θ̄ by attaching punishments
to undercutting prices. If they set the same price regardless of their cost level, they
sacrifice productive efficiency but all deviations are to out-of-equilibrium prices that
can be deterred by Nash reversion punishments that never occur in equilibrium. If the
firms are to produce efficiently, they must set different prices when drawing low and
high cost. There are now two equilibrium prices, and the temptation for a high-cost
firm to mimic a low-cost firm must now be countered by incentives that occur on the
equilibrium path and thus are costly.
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When r is sufficiently large, the payoff-maximizing strongly symmetric equilib-
rium of the repeated game abandons all attempts at productive efficiency and calls for
both firms to set the monopoly price r . The inefficiency cost of not directing production
to the low-cost firm is (θ̄ − θ)/4, which is independent of r . Arranging production effi-
ciently brings an incentive for the high-cost firm to undercut the low-cost firm’s price
to obtain a payoff arbitrarily close to r − θ̄ , which grows as does r . Counteracting this
temptation requires a similarly sized incentive cost. When r is large, this incentive cost
is larger than the productive inefficiency of uniform pricing, and the latter maximizes
payoffs. The result is an equilibrium payoff bounded away from efficiency, regardless
of the discount factor.

11.2.6 Nonstationary-Outcome Equilibria

We once again examine equilibria with symmetric payoffs, but we no longer limit
attention to stationary-outcome equilibria and no longer assume that consumers treat
the firms identically when they charge identical prices. Recall that the efficient stage-
game payoff profile is

( 1
2

(
r − 3

4θ − 1
4 θ̄
)
, 1

2

(
r − 3

4θ − 1
4 θ̄
)) ≡ v∗.

We are interested in the existence of an equilibrium with payoff near profile v∗. Recall
from section 11.2.5 that if r is sufficiently large, the highest payoff that can be achieved
in a stationary-outcome, strongly symmetric equilibrium is bounded away from v∗,
for all discount factors. We thus find circumstances under which asymmetric strategies
are required to maximize symmetric payoffs.

We consider an equilibrium built around two prices, r and r − ε, with interest
centering on small ε. Low cost firms use the price r − ε to distinguish themselves
from high-cost firms, ensuring that the firms produce efficiently. For small ε, the price
r − ε is a virtually costless announcement that one is low cost.

Consumers are indifferent between firms that set identical prices, and can condition
on the public history to apportion themselves between the two firms in various ways.
We excluded this possibility when examining the strongly symmetric equilibria of
section 11.2.4, but it will play a role here.

We again ignore out-of-equilibrium prices, trusting the threat of a switch to the
stage-game Nash equilibrium to ensure patient players will never set such prices.
However, we can no longer hope to use only current incentives to enforce equilibrium
prices. Because the prices r and r − ε are arbitrarily close together, the threat of adverse
future consequences will be necessary to ensure that neither firm finds it optimal to set
price r − ε even though it has drawn a high cost.

Proposition

11.2.1
For any η > 0, there exists a δ̄ < 1 such that for all δ ∈ (δ̄, 1), there exists a pure
perfect public equilibrium with payoff at least v∗i − η for each player.

Proof We exhibit an equilibrium with the desired property. Fix η > 0 with η < 1
2 [v∗i −

1
4 (θ̄ − θ)] and let ε be sufficiently small that choosing price r when high cost
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Prices

State r− ε, r− ε r− ε, r r, r− ε r, r

B split 1 2 split

I 1 1 2 1

II 2 1 2 2

Figure 11.2.1 Market share regimes B, I , and II , each identifying how
the market is split between the two firms, as a function of their prices.
Allocations 1 and 2 grant all of the market to firm 1 and 2, respectively,
and “split” divides the market equally between the two firms.

and r − ε when low cost gives each firm a payoff at least v∗i − η. Our candidate
strategies for the firms then specify that a high-cost firm choose price r and a
low-cost firm price r − ε, after any history featuring no other prices, and that any
history featuring any other price prompts play of the stage-game Nash equilibrium.
We also specify that if an out-of-equilibrium price has ever been set, consumers
thereafter split equally between the two firms whenever the latter set identical
prices.

Given our assumption about consumer behavior, the stage-game Nash equilib-
rium features the payoff profile ( 1

4 (θ̄ − θ), 1
4 (θ̄ − θ)). As a result, there is a value

δ1 ∈ (0, 1) such that for any δ ∈ (δ1, 1), deviating to an out-of-equilibrium price
after a history prescribing equilibrium prices is suboptimal. It then remains to
ensure that firms have the incentives to choose the equilibrium prices prescribed
for their cost levels.

The behavior of consumers in response to equilibrium prices is described by
defining three market share “regimes,” B, I , and II . Each regime specifies how
consumers behave when the firms both set price r or both set price r − ε. (Con-
sumers necessarily purchase from the low-price firm if one firm sets price r and
the other price r − ε.) These regimes are shown in figure 11.2.1, where “split”
indicates that the market is to be split equally, and otherwise the indicated firm
takes the entire market.

The history of play determines the market share regime as shown in
figure 11.2.2. Play begins in regime B. This regime treats the firms equally.
Regime I rewards firm 1 and regime II rewards firm 2, where a reward is triggered
by having chosen price r while the opponent chose price r − ε.

The prescribed actions always allocate the entire market to the low-cost pro-
ducer, ensuring that the proposed equilibrium outcome is efficient. The three
market share regimes differ in how the market is to be allocated when the two
firms have the same cost level. Under the three regimes (for ε small), the payoffs
shift along a frontier passing through the payoff profile v∗, with a slope of −1.
Transitions between regimes thus correspond to transfers from one agent to the
other, with no loss of efficiency.
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B

I
ε−rr,

rr ,ε−
0w

II

ε−rr,rr ,ε−

Figure 11.2.2 Equilibrium market-share regime transitions
for the efficient equilibrium. Unlabeled transitions occur for
the remaining equilibrium price combinations.

Verifying that the strategy profile is an equilibrium requires only showing that
each firm prefers to “identify its cost level truthfully,” in the sense that it prefers
to set the appropriate price, in each regime. We examine the incentive constraints
for the limiting case of ε = 0, establishing that they hold with strict inequality for
sufficiently patient firms. They will continue to hold if ε is sufficiently small.

Let V̄ be the value to firm 1 of regime I or equivalently the value of firm 2 of
regime II . Also, letV be the value of firm 2 in regime I or firm 1 in regime II . To
simplify the notation, let

r − θ̄ = β
and r − θ = ξ.

Then we have

V̄ = (1− δ)( 1
2ξ + 1

4β
)+ δ( 3

4 V̄ + 1
4V
)

and

V = (1− δ) 1
4ξ + δ

( 3
4V + 1

4 V̄
)
,

giving [
4− 3δ −δ
−δ 4− 3δ

] [
V̄

V

]
= (1− δ)

[
2ξ + β
ξ

]
.

Solving,

V̄ = (4− 3δ)(2ξ + β)+ δξ
8(2− δ)

and V = (4− 3δ)ξ + δ(2ξ + β)
8(2− δ) ,
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so that

V̄ −V = (1− δ) ξ + β
2(2− δ) . (11.2.7)

With this in hand, we turn to the incentive constraints. The requirement that a
low-cost firm 1 be willing to set price r − ε rather than r in regime I is

(1− δ)ξ + δ
(

1

2
V + 1

2
V̄

)
≥ (1− δ)1

2
ξ + δV̄ ,

which we solve for

ξ ≥ δ

1− δ (V̄ −V ).

The requirement that a high-cost firm 1 choose price r in regime I is:

(1− δ)1

2
β + δV̄ ≥ (1− δ)β + δ

(
1

2
V + 1

2
V̄

)
,

giving
δ

1− δ (V̄ −V ) ≥ β.

The requirement that a low-cost firm 2 set price r − ε in regime I is

(1− δ)1

2
ξ + δV ≥ δ

(
1

2
V + 1

2
V̄

)
,

giving

ξ ≥ δ

1− δ (V̄ −V ).

The requirement that a high-cost firm 2 optimally choose price r in regime I is

δ

(
1

2
V + 1

2
V̄

)
≥ (1− δ)1

2
β + δV,

giving
δ

1− δ (V̄ −V ) ≥ β.

Regime II yields equivalent incentive constraints. Our attention accordingly turns
to regime B. Let V be the expected value of regime B, which is identical for the
two firms. For a low-cost firm to optimally choose price r − ε, we have

(1− δ)3

4
ξ + δ

(
1

2
V + 1

2
V

)
≥ (1− δ)1

4
ξ + δ

(
1

2
V + 1

2
V̄

)
,

which gives

ξ ≥ δ

1− δ (V̄ −V ).
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For a high-cost firm to optimally choose price r , we need

(1− δ)1

4
β + δ

(
1

2
V + 1

2
V̄

)
≥ (1− δ)3

4
β + δ

(
1

2
V + 1

2
V

)
,

which we can solve for
δ

1− δ (V̄ −V ) ≥ β.
Putting these results together, the incentive constraints are captured by

ξ ≥ δ

1− δ (V̄ −V ) ≥ β.

Using (11.2.7), this is

ξ ≥ δ(ξ + β)
2(2− δ) ≥ β.

In the limit as δ→ 1, this inequality becomes

ξ ≥ ξ + β
2
≥ β,

which, because ξ > β, holds with the inequalities strict. There is then a sufficiently
large δ > δ1 with the property that the on-equilibrium constraints hold for larger
values of δ, yielding the desired result.

■

Remark

11.2.2
In the efficient equilibrium, the choices of indifferent consumers provide the incen-
tives that allow the firms to collude. It may seem unreasonable that consumers
arrange their behavior to facilitate collusion. In our view, one cannot assess the
plausibility of an equilibrium purely within the confines of the model. The selec-
tion of an equilibrium is not part of the analysis of the game; rather constructing
the game and choosing the equilibrium are jointly part of the modeling process.
The plausibility of the equilibrium must be evaluated in the context of the strate-
gic interaction to be studied. In this respect, we note that “meet the competition”
practices are both common and are often interpreted as a device for inducing con-
sumer behavior that facilitates collusion.

◆

Remark

11.2.3
Strong symmetry The equilibrium constructed in this section features nonstation-
ary outcomes but is strongly symmetric (definition 7.1.2), because all long-lived
players are playing the same action (i.e., mapping from types to prices) after every
history. As we have just seen, however, it is still possible to provide asymmet-
ric incentives via the short-lived players, reinforcing our observation that strong
symmetry is a less useful concept with short-lived players.

It is straightforward to construct a nonstrongly symmetric PPE in which identi-
cally pricing firms always evenly split the market but again come arbitrarily close
to full efficiency. For ε small, the profile in regime I has the low-cost firm 1
pricing at r − 3ε, the high-cost firm 1 at r − ε, the low-cost firm 2 at r − 2ε, and
the high-cost firm 2 at r (and similarly in regime II ).

◆
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11.3 Risk Sharing

This section examines consumers facing random income shocks. The model is similar
to that of section 6.3, except that the income shocks are now privately observed. This
will give rise to different incentive-compatibility considerations.5

There are two players, 1 and 2, and two equally likely states,H and L. Player 2 is
endowed with 1 unit of the consumption good in each state. Player 1 is endowed with
no consumption good in state L and 1 unit in state H . The state is observed only by
player 1.6

Player 2 is risk neutral, with utility over consumption c given by u2(c) = c. Player
1 is risk averse. Player 1 has a utility function u1 that exhibits nonincreasing absolute
risk aversion. This implies that for any positive c1, c2, c3, and c4 and any λ ∈ (0, 1)

λu1(c1)+ (1− λ)u1(c2) ≥ u1(c3)

⇒ λu1(c1 + c4)+ (1− λ)u1(c2 + c4) ≥ u1(c3 + c4).

This assumption allows us to apply a convexity argument to a particular collection of
constraints (compare with lemma 6.3.1).

In each period, player 1 has the opportunity to announce either Ĥ or L̂, interpreted
as a report about the state. If 1 announces Ĥ , then 1 has the opportunity to transfer
an amount of consumption τ

Ĥ
≥ 0 to player 2. If 1 announces L̂, then 2 has the

opportunity to transfer an amount τ
L̂

to player 1.
The stage game has a unique Nash equilibrium outcome, in which τ

Ĥ
= τ

L̂
= 0

with utilities given by

v1 = 1
2u1(0)+ 1

2u1(1)

and v2 = 1.

These are the minmax values for the two players. Playing this Nash equilibrium after
every history of the repeated game is a pure PPE of the latter. Because it entails minmax

5. The model examined here is a simplified version of Hertel (2004). Thomas and Worrall (1990)
examine a risk-averse agent with a private income shock facing a risk-neutral insurer. Thomas
and Worrall assume that the agents can commit to contracts, in the sense that participation
constraints must be satisfied only at the beginning of the game, in terms of ex ante payoffs.
The inability to completely smooth the risk-averse agent’s consumption within a period prompts
some risk to be optimally postponed until future periods. As a result, the risk-averse agent’s
equilibrium consumption shrinks to 0 as time proceeds and her continuation value becomes
arbitrarily negative, both with probability 1, clearly eventually violating participation constraints
in the continuation game. Extensions of this model are examined byAtkeson and Lucas (1992) (to
a general equilibrium setting) andAtkeson and Lucas (1995) (to study unemployment insurance).
Wang (1995) shows that if utility is bounded below, then (obviously) continuation utilities
cannot become arbitrarily negative, and (more important) consumption does not shrink to 0 with
probability 1, because then the accumulation of utility at the lower bound would preclude the
creation of incentives. Ljungqvist and Sargent (2004, chapter 19) provide a useful discussion.

6. Unlike section 6.3, we have uncertainty in the aggregate endowment. We avoided such uncer-
tainty in section 6.3 by taking the players’ endowments to be perfectly (negatively) correlated.
The essence of the problem here is that player 2 is uncertain about player 1’s endowment, with
the simplest case being that in which 2’s own endowment provides no information about 1’s.
This requires either aggregate uncertainty or a continuum of agents.
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Figure 11.3.1 Endowments and full-insurance allocations. The
endowments in state H and L are given by e(H) and e(L). Consumption
vectors in states H and L, given c, are given by c(H) and c(L). Player 2
receives her minmax utility when c = 1/2, and player 1 receives his
minmax utility when c = c. Any c ∈ (c, 1/2) is a strictly individually
rational, full-insurance consumption allocation.

payoffs for each player, it is the most severe punishment that can be imposed in the
repeated game.

Because player 1 is risk averse, player 2 can insure player 1 against 1’s income
fluctuations. An efficient allocation in the stage game features complete insurance,
or 1− τ

Ĥ
= τ

L̂
≡ c after every history, so that player 1’s consumption does not

vary across states. Setting c = 1/2 gives payoffs (u1(1/2), 1), with player 2 then
receiving her minmax utility. Setting c = c < 1/2, where v1 = u1(c), gives payoffs
(v1, 3/2− c), with player 1 receiving his minmax utility. Any intermediate value of
c gives an efficient, strictly individually rational allocation with player 2 preferring a
lower value of c and player 1 a higher value. Figure 11.3.1 illustrates. We refer to such
an outcome as one of perfect risk sharing.

A period t ex post history (for player 1) is a sequence of t realized player 1 endow-
ments, announced endowments, and transfers, and the period t endowment realization.
A period t announcement history (for player 2) is a sequence of t announcements and
transfers, and the period t announcement. Observe that announcement histories are
public. A strategy for player 1 maps from ex post histories into announcements and
from ex post histories followed by an announcement of Ĥ into transfers. A strategy
for player 2 maps from announcement histories ending in L̂ into transfers.

This is again a game of repeated adverse selection. By proposition 9.5.1, we can
come arbitrarily close to perfect risk sharing as an equilibrium outcome (in a finite
approximation of this game) as the players become increasingly patient.

We are interested in efficient equilibria for arbitrary discount factors. Let τ
Ĥ

and

τ
L̂

be defined as the transfer made after announcements Ĥ and L̂, from player 1 to
player 2 in the first case and in the opposite direction in the second. Efficient pure
equilibria solve the optimization problem:
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max
τ
Ĥ
,τ
L̂
,γ (Ĥ ),γ (L̂)

1
2 [(1− δ)(1− τL̂)+ δγ2(L̂)+ (1− δ)(1+ τĤ )+ δγ2(Ĥ )]

such that

1
2 [(1− δ)u1(τL̂)+ δγ1(L̂)+ (1− δ)u1(1− τĤ )+ δγ1(Ĥ )] ≥ v1,

(1− δ)u1(1− τĤ )+ δγ1(Ĥ ) ≥ (1− δ)u1(1+ τL̂)+ δγ1(L̂),

(1− δ)(1− τ
L̂
)+ δγ2(L̂) ≥ 1,

and γ (Ĥ ), γ (L̂) ∈ E p(δ).

We are thus maximizing player 2’s payoff, with the first constraint imposing the
requirement that player 1 receive at least v1.

The next two inequalities are incentive constraints. The first indicates that player
1 should prefer to announce Ĥ and transfer τ

Ĥ
when the state is H , rather than

announcing L̂ to receive transfer τ
L̂

. Player 1 faces a collection of additional incentive

constraints, because he can announce Ĥ and then make any transfer from [0, 1] (in
state H ). However, no restrictions are imposed by having the equilibrium strategies
react to an announcement of H coupled with a transfer other than τ

Ĥ
by a permanent

switch to the autarkic equilibrium: Player 1’s most attractive alternative to announcing
Ĥ and making the transfer τ

Ĥ
, in state H , is to announce L̂, because announcing L̂

and earning the continuation payoff γ1(L̂) necessarily dominates an announcement
of Ĥ followed by reversion to the autarkic equilibrium. Player 1 faces no incentive
constraints in state L, where he is unable to make the transfer to player 2 that would
be required in state H . Hence, the single player 1 constraint listed in the optimization
program suffices for the optimality of player 1’s actions.

The next constraint is the only nontrivial one for player 2—that she be willing to
make transfer τ

L̂
in stateL. The final constraint implies that continuation payoffs must

themselves be equilibrium payoffs.
LetG(v1) be a function that describes, for each payoff v1, the largest equilibrium

payoff available to player 2, conditional on player 1 receiving at least v1.

Lemma

11.3.1
Let v̄1 be the largest equilibrium payoff possible for player 1. ThenG(v1) is strictly
concave on domain [v1, v̄1].

Proof It suffices to show that if v1 and v′1 are distinct equilibrium values for player 1 and
λ ∈ (0, 1), then there exists an equilibrium with payoffλv1 + (1− λ)v′1 to player 1
and a payoff exceeding λG(v1)+ (1− λ)G(v′1) to player 2. This establishes that
G is strictly concave on [v1, v̄1].

We construct the desired equilibrium. Let ˜H denote the set of announce-
ment histories. The equilibria yielding payoffs v1 and v′1 are described by two
functions, τ : ˜H → [0, 1] and τ ′ : ˜H → [0, 1], each identifying the transfer,
along the equilibrium paths of the equilibria giving payoffs v1 and v′1, after each
announcement history in ˜H . If this is an announcement history ending in Ĥ , then
this is a transfer from player 1 to player 2. For an announcement history ending
in L̂, it is a transfer from player 2 to player 1. We use these functions to construct
an equilibrium with the desired properties.
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Throughout, we assume any out-of-equilibrium transfer prompts a reversion
to the autarkic equilibrium. Specifying the remainder of an equilibrium then
requires only specifying transfers after histories in ˜H . In particular, we can spec-
ify equilibrium transfers as a function of the announcement history (only), with
the presumption that this is the appropriate transfer if there has been no previ-
ous deviation from prescribed play and that this transfer is irrelevant if play has
already switched to the autarkic equilibrium.

We now construct a function τ ′′ characterizing the transfers in the equilibrium
with the desired properties. For any history h̃ ∈ ˜H , denote by τ ′′(h̃) the transfer
τ ∗ solving

u1(τ
∗) = λu1(τ (h̃))+ (1− λ)u1(τ

′(h̃))

for h̃ ending in L̂, and

u1(1− τ ∗) = λu1(1− τ(h̃))+ (1− λ)u1(1− τ ′(h̃))
for h̃ ending in Ĥ . The implied continuation value γ ′′1 clearly satisfies γ ′′1 (h̃) =
λγ1(h̃)+ (1− λ)γ ′1(h̃), for all histories h̃, and so the allocation induced by
the transfers τ ′′(h̃) must give player 1 precisely utility λv1 + (1− λ)v′1. The
concavity of player 1’s utility function implies for all announcement histories
ending in L̂

τ ′′(h̃) < λτ(h̃)+ (1− λ)τ ′(h̃) (11.3.1)

whenever τ(h̃) �= τ ′(h̃), and for all announcement histories ending in Ĥ

τ ′′(h̃) > λτ(h̃)+ (1− λ)τ ′(h̃). (11.3.2)

As a result, the allocation induced by the transfers τ ′′(h̃) must give player 2 a
strictly higher payoff thanλG(v1)+ (1− λ)G(v′1), as long as there is some history
h̃ after which τ(h̃) �= τ ′(h̃). But there must exist such a history if v1 �= v′1. This
implies for every continuation history h̃, the continuation payoffs satisfy γ ′′2 (h̃) ≥
λγ2(h̃)+ (1− λ)γ ′2(h̃), with a strict inequality holding in the initial period.

It remains to show that the transfers specified by τ ′′(h̃) yield an equilibrium.
This in turn requires that the two incentive constraints in the maximization problem
characterizing efficient equilibria are satisfied, for any equilibrium history. Con-
sider the constraint that player 2 be willing to transfer τ

L̂
to player 1 after

announcement L̂. Fix some history h̃ terminating in announcement L̂. The player 2
incentive constraints for the equilibria supporting v and v′ are (suppressing the
history in our notation)

(1− δ)(1− τ
L̂
)+ δγ2(L̂) ≥ 1 (11.3.3)

and (1− δ)(1− τ ′
L̂
)+ δγ ′2(L̂) ≥ 1. (11.3.4)

Player 2’s continuations under τ ′′ are larger than the average of the continuations
under τ and τ ′, so (11.3.1)–(11.3.4) imply

(1− δ)(1− τ ′′
L̂
)+ δγ ′′2 (L̂) ≥ 1,
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satisfying one of the incentive constraints for our putative equilibrium. We now
consider player 1’s constraint. We have

(1− δ)u1(1− τĤ )+ δγ1(Ĥ ) ≥ (1− δ)u1(1+ τL̂)+ δγ1(L̂) (11.3.5)

and

(1− δ)u1(1− τ ′
Ĥ
)+ δγ ′1(Ĥ ) ≥ (1− δ)u1(1+ τ ′

L̂
)+ δγ ′1(L̂). (11.3.6)

Our construction of τ ′′ gives

(1− δ)u1(1− τ ′′
Ĥ
)+ δγ ′′1 (Ĥ )

= λ[(1− δ)u1(1− τĤ )+ δγ1(Ĥ )]+ (1− λ)[(1− δ)u1(1− τ ′
Ĥ
)+ δγ ′1(Ĥ )]

≥ λ[(1− δ)u1(1+ τL̂)+ δγ1(L̂)] + (1− λ)[(1− δ)u1(1+ τ ′
L̂
)+ δγ ′1(L̂)]

= λ[(1− δ)u1(1+ τL̂)] + (1− λ)[(1− δ)u1(1+ τ ′
L̂
)] + δγ ′′1 (L̂), (11.3.7)

where the first equality follows from our construction of τ ′′ and the subsequent
inequality follows from (11.3.5)–(11.3.6). By the definition of τ ′′,

u1(τ
′′
L̂
) = λu1(τL̂)+ (1− λ)u1(τ

′
L̂
).

The nonincreasing absolute risk aversion of player 1 then implies

u1(1+ τ ′′
L̂
) ≤ λu1(1+ τL̂)+ (1− λ)u1(1+ τ ′

L̂
).

Inserting this in (11.3.7) gives

(1− δ)u1(1− τ ′′
Ĥ
)+ δγ ′′1 (Ĥ ) ≥ (1− δ)u1(1+ τ ′′

L̂
)+ δγ ′′1 (L̂),

which is the needed incentive constraint for player 1.
■

We can now characterize the equilibrium. In contrast to section 6.3, full insurance
is unavailable for any discount factor:

Lemma

11.3.2
In an efficient equilibrium, for any ex ante history ht , τ

L̂
(ht ) < 1− τ

Ĥ
(ht ).

The implication of this result is that player 1 always bears some risk. This in turn
ensures that the folk theorem result for this model is truly an approximation result. As
the discount factor approaches 1, we can come increasingly close to full insurance, but
some residual risk inevitably remains.

Proof It is immediate that we cannot have τ
L̂
(ht ) > 1− τ

Ĥ
(ht ). If this were the case, we

could instead replace (τ
L̂
, τ
Ĥ
) with τ ′

L̂
= 1− τ

Ĥ
and τ ′

Ĥ
= 1− τ

L̂
while leaving

all other aspects of the strategy unchanged. Since both endowments are equally
likely, the distribution of values in any period is unaffected, while causing both
incentive constraints after history ht to hold with strict inequality. We can then
revise the equilibrium to offer more insurance to player 1 while offering a higher
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payoff to player 2 after ht , without disrupting incentive constraints, contradicting
the supposed efficiency of the equilibrium.

Suppose next that τ
L̂
= 1− τ

Ĥ
, so that player 1 is perfectly insured. Then it

must be the case that γ1(Ĥ ) > γ1(L̂), because otherwise 1’s incentive constraint
for announcing state H fails. Now consider an adjustment in the suppos-
edly efficient equilibrium that marginally decreases τ

Ĥ
and τ

L̂
at equal rates.

This adjustment has only a second-order effect on player 1’s current expected
utility (because this effect is proportional to (1− δ)(u′1(τL̂)− u′1(1− τĤ )) = 0).
However, it has a first-order effect on player 1’s incentive constraint (because
(1− δ)(u′1(1+ τL̂)+ u′1(1− τĤ )) > 0). As a result, we could consider decreas-

ing γ1(Ĥ ) and increasing γ1(L̂) to preserve their expected value (and hence player
1’s expected payoff in the equilibrium) until player 1’s incentive constraint binds.
From the strict concavity of G, however, this allows us to choose continuation
equilibria that increase player 2’s payoffs. Furthermore, this increase cannot
disrupt any of player 2’s incentive constraints in prior periods because it can
only increase the left side of such incentive constraints. As a result, we have a
contradiction to the putative efficiency of the equilibrium.

■

In the terms introduced in section 6.3, we have just established that consumption
will respond to current income more than is warranted by a full-insurance outcome.
The intuition is straightforward. If player 1 faces no current consumption risk, then he
must face future consumption risk to create the incentives for truthful current revelation.
But this allocation of no risk to the current period and all risk to the future period is
inefficient. There are gains to be had by smoothing his consumption, introducing some
risk into the current period in response for reduced future risk. As the discount factor
gets large, the risk in current consumption can be made quite small but is eliminated
only in the limit as the discount factor becomes unity.

We also see history dependence in this model. The following is immediate.

Lemma

11.3.3
After any announcement history at which τ

Ĥ
is positive, it must be that γ1(Ĥ ) >

γ1(L̂).

Hence, favorable income realizations for player 1 give rise to more favorable con-
tinuation consumption streams. Turning this observation around, player 1’s previous
period(s) income is relevant for current consumption.

11.4 Principal-Agent Problems

11.4.1 Hidden Actions

Our point of departure is a canonical principal-agent problem with hidden actions. The
agent (player 2) can choose an effort level e ∈ [0, ē] that stochastically generates an
output y ∈ [0, ȳ]. The cumulative distribution function governing the output y, given
effort level e, is denoted by F(y, e) with F(0, 0) = 1. The principal (player 1) and
the agent have payoffs u1(y,w) = y − w and u2(e, w, y) = w − c(e), where w is a



11.4 ■ Principal-Agent Problems 371

payment from player 1 to player 2 and c(e) is an increasing, convex, continuously
differentiable cost-of-effort function. We assume F(y, e) first-order stochastically
dominates F(y, e′) for e > e′ (higher effort levels are associated with higher out-
puts), F is twice continuously differentiable with density f , and F has the monotone
likelihood ratio property (fe(y, e)/f (y, e) is strictly increasing in y).7 Whenever con-
venient, we also assume F(y, c−1(x)) is convex in x. This last condition is less easily
interpreted but allows us to use the first-order approach to solving the principal-agent
problem (Rogerson 1985).

The stage game proceeds as follows. Player 1 first offers a contract to player 2,
consisting of a schedule w(y) giving the payment from player 1 to 2 as a function of
the observed output level. Player 2 either rejects, in which case both agents receive a
payoff of 0, or accepts. In the latter case, player 2 then chooses an effort level, output
is realized, and the appropriate payment made. Payments cannot be conditioned on the
agent’s effort level.

The efficient effort level e∗ maximizes∫ ȳ

0
yf (y, e)dy − c(e).

We assume that this maximizer is positive, making this a nontrivial problem.
The unique subgame-perfect equilibrium of the stage game realizes the efficient

effort level e∗, with

w(y) = y − ŵ (11.4.1)

and ŵ =
∫ ȳ

0
yf (y, e∗)dy − c(e∗). (11.4.2)

This is easily recognized as the outcome in which the principal “sells the firm” to the
agent, collecting from the agent a fee ŵ equal to the expected surplus, given an efficient
effort choice, and making the agent the residual claimant for any shortfall or excess in
output. This causes the agent to be faced with just the incentives needed for efficiency.

The recommendation that the principal-agent problem be solved by selling the firm
to the agent often seems unsatisfying. What might prevent such a sale? One commonly
offered but often unmodeled explanation is that capital market imperfections preclude
the agent’s paying ŵ to the principal. The remainder of this section explores two other
common explanations.

11.4.2 Incomplete Contracts:The Stage Game

Suppose first that the output inevitably accrues to the principal and that there is nothing
the principal can do to transfer this receipt to the agent. If the agent is to receive y, it
must come via a transfer from the principal. Now suppose further that the parties are
unable to contract on the output y. Such a constraint would obviously arise if y could
not be observed. Instead, we assume that the principal and the agent both observe y,

7. This is equivalent to the formulation of the monotone likelihood ratio property invoked in
section 11.1.
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but y has an “I know it when I see it” nature that makes it prohibitively expensive to
incorporate in a contract.8

The stage game begins with the principal proposing a fixed wage w to the agent,
as well as an additional payment or bonus of b(y). If the agent accepts the contract, the
wage w is legally binding. However, this is the only provision of the principal-agent
interaction that can be enforced. The noncontractability of y ensures that the bonus
b(y) is voluntary. Hence, once the output level has been realized, the principal has the
option of making transfer b(y) to the agent (if b(y) > 0) or not doing so, and similarly
the agent has the option of making transfer |b(y)| (if b(y) < 0) to the principal, or
not doing so. Because the bonus is noncontractable, we ignore the announcement and
consider a stage game where the principal decides on the size of the bonus after output
is realized.

The subgame-perfect equilibrium of the stage game is trivial. Once the output has
been produced, neither party will make transfers. As a result, the agent’s remuneration
will be given by w, and is independent of the realized output. The optimal effort level
is then e = 0. Notice that the stage-game equilibrium gives each player his or her
minmax payoff of 0.

11.4.3 Incomplete Contracts:The Repeated Game

We maintain the assumption that contracts cannot be conditioned on y, but now assume
that the game is repeated. The result is sometimes called a “relational contract” (see,
for example, Baker, Gibbons, and Murphy 2002; Levin 2003).

An action for the principal, in period t , consists of a transferwt and a bonus bt (y).
The interpretation is that wt is the fixed payment over which the principal and agent
can contract, whereas bt (y) is a prescribed additional transfer from the principal to the
agent (if bt (y) > 0) or from agent to principal (if bt (y) < 0). The players can write
only short-term contracts, in the sense that the principal cannot renege on the period t
wage wt but cannot in period t make commitments to future wages.

The first observation is that if the players are sufficiently patient, we can again
support the efficient effort level e∗. Let w∗(y) be the remuneration scheme given by
(11.4.1)–(11.4.2). On the equilibrium path, let the principal offer wt = w∗(0) and
bt (y) = w∗(y)− wt = w∗(y)− w∗(0). It is a best response for the agent to accept
this contract and choose the efficient effort e∗. Let the equilibrium strategies call for
the players to continue with this equilibrium path if the transfer bt (y) is made in each
period t and otherwise revert to the minmax values of (0, 0), enforced by the subsequent
play of the stage-game Nash equilibrium.

By choosing wt = w∗(0), we ensure that only the principal is called on to make
transfers. In particular, the strategy profile makes the agent indifferent between partic-
ipating and not doing so. After each ex ante history, the agent’s continuation value is
the agent’s minmax value of 0. We then cannot create incentives for the agent to make
a transfer to the principal.

For the proposed strategies to be an equilibrium, it must be the case that the
principal makes the transfer bt (y) when called on to do so. It is clearly most tempting
to balk when y = ȳ. The incentive constraint to not do so is given by

8. Such “observable but not verifiable” assumptions are common but controversial in the literature
on incomplete contracts. See Maskin and Tirole (1999).
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(1− δ)(w∗(ȳ)− w∗(0)) ≤ δŵ.
Because ŵ > 0, this constraint is satisfied for sufficiently large δ. This result is another
reflection of the ability to achieve efficient (or nearly efficient) outcomes in games of
imperfect monitoring as the players become arbitrarily patient.

Player 1 extracts all of the surplus in this equilibrium. Unlike the complete-
contracting stage game, where this is the only equilibrium division of the surplus,
the repeated game has other efficient equilibria that divide the surplus between the
two agents differently. These include equilibria in which the surplus is divided equally
between the two agents as well as equilibria in which the principal earns a payoff
of nearly 0, all enforced by punishments in which both agents receive continuation
payoffs of 0. In addition, we can replace the inefficient punishments with contin-
uation equilibria that are efficient but that feature a sufficiently low payoff for the
transgressing player. This allows us to avoid renegotiation problems that might arise
with punishments based on inefficiencies. Notice finally that we lose no generality in
restricting attention to stationary-outcome efficient equilibria. Given an equilibrium
in which continuation payoffs vary along the equilibrium path, we can rearrange the
transfers between agents to make equilibrium continuation payoffs constant throughout
the game.

What happens if the discount factor is too small to support this efficient outcome?
Invoking the sufficient conditions to apply the first-order approach to the principal-
agent problem, we can write the principal’s problem in each period as

max
b(·),e,w

∫ ȳ

0
(ỹ − (w + b(ỹ)))f (ỹ, e)dỹ

subject to

∫ ȳ

0
(w + b(ỹ))fe(ỹ, e)dỹ − ce(e) = 0,∫ ȳ

0
(w + b(ỹ))f (ỹ, e)dỹ − c(e) ≥ 0,

b(y) ≥ 0, ∀y ∈ [0, ȳ],

and

δ

∫ ȳ

0
(ỹ − (w + b(ỹ)))f (ỹ, e)dỹ − (1− δ)b(y) ≥ 0, ∀y ∈ [0, ȳ].

The first constraint is the first-order condition capturing an incentive constraint for
the agent, ensuring that the agent finds optimal the effort level e involved in the
solution. The next constraint ensures that the agent receives a nonnegative payoff.
In equilibrium this constraint will bind. The following constraint, that b(y) ≥ 0 for
all y ∈ [0, ȳ], ensures that the agent is never called on to make a transfer. This is an
incentive constraint for the agent, who will never make a positive transfer in order to
proceed with an equilibrium whose continuation value is 0. The final constraint is the
principal’s incentive constraint, ensuring that for every value ofy ∈ [0, ȳ], the principal
prefers to make the accompanying transfer rather than abandon the equilibrium path.
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Noting that the equilibrium will entail a zero payoff for the agent, we can rewrite
this problem as

max
b(·),e,w

∫ ȳ

0
(ỹ − c(e))f (ỹ, e)dỹ

subject to ∫ ȳ

0
(w + b(ỹ))fe(ỹ, e)dỹ − ce(e) = 0, (11.4.3)

b(y) ≥ 0, ∀y ∈ [0, ȳ], (11.4.4)

and

δ

∫ ȳ

0
(ỹ − c(e))f (ỹ, e)dỹ − (1− δ)b(y) ≥ 0, ∀y ∈ [0, ȳ]. (11.4.5)

If b(y) is interior (i.e., (11.4.4) and (11.4.5) do not bind), then the first-order condition
λfe(y, e) = 0 must hold, where λ > 0 is the multiplier on the agent’s incentive con-
straint (11.4.3). Hence, an interior value b(y) requires fe(y, e) = 0. If this equality is
nongeneric, there will be no interior values b(y) (up to a set of measure zero). The
optimal bonus scheme thus has a bang-bang structure. If fe(y, e) < 0, then b(y) will
be set at its minimum value of 0 (causing the agent’s incentive constraint to bind).
If fe(y, e) > 0, then b(y) will be set at a value b̄ at which the principal’s incentive
constraint binds. The switching output level for the two bonus values is the output
level at which the likelihood ratio fe(y, e)/f (y, e) switches from negative to positive.

In general, this contract will induce inefficiently little effort on the part of the
worker. As the discount factor increases, so does the range of possible equilibrium
transfers [0, b̄] and so does the principal’s ability to create incentives for the agent. For
sufficiently large discount factors, we achieve efficient outcomes.

11.4.4 Risk Aversion: The Stage Game

When the agent is risk averse, it is no longer efficient to sell her the firm. The efficient
contract involves risk sharing between the risk-neutral principal and the risk-averse
agent. Repetition may again make incentives available that cannot be created in a single
interaction.

Simplifying the model makes the arguments more transparent. The stage game
again involves two players, a principal and an agent. The agent can choose one of
two effort levels, low (denoted by L) or high (denoted by H ). Low effort is costless,
whereas high effort incurs a cost of c > 0. There are two possible outcomes, success
(ȳ) or failure (y). The probability of a success in the event of low effort is q and the
probability of a success in the event of high effort is p > q. The principal values a
success at 1 and a failure at 0. The agent has an increasing and strictly concave utility
function for money ũ, with ũ(0) = 0.

The stage game begins with the principal offering a contract to the agent, consisting
of a payment w̄ to be made in the event of a success andw in the event of a failure. The
agent either accepts the contract or rejects, with both players receiving a payoff of 0
in the latter case. On accepting, the agent chooses an effort level and the outcome is
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High Effort Low Effort

Success 1−w, ũ(w)− c 1−w, ũ(w)

Failure −w, ũ(w)− c −w, ũ(w)

Figure 11.4.1 Payoffs to the principal (first element) and
agent (second element) as a function of the agent’s effort
level and realized outcome.

randomly drawn from the appropriate distribution. Payoffs are then received and the
game ends. Payoffs, as a function of the agent’s effort level and the outcome, are given
in figure 11.4.1.

Because the agent is risk averse and the principal risk neutral, efficiency calls for
the principal to insure the agent, and therefore w̄ =w. Let ŵ be the wage satisfying
ũ(ŵ) = c. We assume that

p − ŵ > q.

This implies that any efficient allocation in the stage game calls for the agent to exert
high effort (for potential payoff profile (p − ŵ, 0)) rather than low effort (payoff
(q, 0)). There is a collection of efficient allocations for the stage game, differing in
how the surplus is split between the principal and agent, with the payment w ranging
from ŵ to p, the former leaving no surplus to the agent and the latter no surplus to the
principal.

These efficient allocations are unattainable in the stage game, because a fully
insured agent faces no incentives and optimally chooses low effort. Instead, there are
two candidates for subgame-perfect equilibria of the stage game, one involving high
effort and one low effort. In one, w = 0 and w̄ satisfies (p − q)ũ(w̄) = c, with the
agent choosing high effort. Let w̃ be the resulting wage rate in the event of a success.
The agent now bears some risk, and hence pw̃ > ŵ. If the agent is not too risk averse,
we will havep − q > pw̃ and a stage-game equilibrium in which the agent exerts high
effort. If the agent is sufficiently risk averse, p − q < pw̃. The cost of inducing effort
is then sufficiently large that the equilibrium calls for zero payments to the agent and
low effort (though the agent still accepts the contract). We assume the former is the
case and let ṽ be the resulting stage-game equilibrium payoff profile.

11.4.5 Risk Aversion: Review Strategies in the Repeated Game

Now suppose the game is repeated, with common discount factor δ. Suppose v∗ is an
efficient payoff profile.

It is an immediate implication of proposition 9.2.1 that if v∗ is strictly individually
rational, then as the players become increasingly patient, we can come arbitrarily close
to v∗ as an equilibrium payoff (in a finite approximation of the game). We examine here
outcomes that can be achieved with review strategies, examined by Radner (1985),
Rubinstein (1979b), and Rubinstein and Yaari (1983). These strategies have a simple
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and intuitive structure.9 For large discount factors, there exist equilibria in review
strategies that are approximately efficient.

Review strategies use the statistical idea that although one noisy signal may not be
particularly informative, many signals may be. A single failure might then be ignored,
whereas a string of signals with many failures may be more troubling. Incentives may
then condition rewards or punishments on long histories of signals.

The ability to exploit strings of signals appears to be lost when working with
self-generation techniques for studying equilibria. The recursive techniques involved
in self-generation focus attention on how actions or signals in the current period affect
future behavior and payoffs. However, this apparent memorylessness is possible only
because the agents enter each period characterized by a state, consisting of a pair
of target payoffs to be decomposed, that itself can be linked to past play in quite
complicated ways. Any PPE in review strategies has a self-generation representation.

We simplify the analysis by examining an efficient profile v∗ with v∗i > ṽi for
both players, so that v∗ dominates the stage-game equilibrium profile ṽ. Let w∗ be the
wage rate associated with payoff profile v∗ in the stage game (i.e., ũ(w∗)− c = v∗2).
A review strategy proceeds as follows. For R periods, called the review phase, the
wage w∗ is offered and accepted. At the end of these R periods, the realized number
of successes is compared to a threshold S. If the realized number of success equals
or exceeds S, the agent is considered to have passed the review and a new review
phase is started. If the number of successes falls short of S, the agent fails and a
T period punishment phase begins, characterized by the stage-game subgame-perfect
equilibrium in which w̄ = w̃ and w = 0, with the agent accepting and exerting high
effort, for payoffs (ṽ1, ṽ2) (with ṽ2 = 0). At the end of the T periods, a new review
process begins. Should the principal ever make a nonequilibrium wage offer, the game
reverts to the permanent play of the stage-game subgame-perfect equilibrium.

It is clear that the review strategies exhibit equilibrium play during the punishment
phase, in the form of a subgame-perfect equilibrium of the state game. It is also clear,
given v∗i > ṽi , that the prospect of permanent reversion to the stage-game equilibrium
suffices to ensure that a sufficiently patient principal will find the prescribed strategies
optimal.

We have said nothing yet about how the agent responds to such a review strategy.
Our task is to examine this behavior and to show that R, S, and T can be chosen so
that the result is an equilibrium featuring a nearly efficient payoff.

To gain some intuition, suppose first that the agent must make a single choice
of either high or low effort to be played in each of the R periods of the review
phase, and suppose T = ∞ so that the punishment phase is absorbing. Suppose we let
S = ((p + q)R)/2. Let φ(H,R) be the probability that the agent fails the review,
given high effort, and φ(L,R) the probability that the agent fails, given low effort. Let
V̄2 be the expected payoff to the agent at the beginning of a review phase (the expected
payoff at the beginning of a punishment phase equals 0). Then the agent’s payoff, at
the beginning of the review phase, from choosing high effort is

(1− δR)(ũ(w∗)− c)+ δR(1− φ(H,R))V̄2

9. Review strategies not only provided some of the earliest positive results in public monitoring
games, they now play a significant role in private monitoring games.
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and from choosing low effort is

(1− δR)ũ(w∗)+ δR(1− φ(L,R))V̄2.

Hence, high effort will be optimal if

V̄2 = (1− δR)(ũ(w∗)− c)
(1− δR(1− φ(H,R))) ≥

(1− δR)c
δR[φ(L,R)− φ(H,R)] .

For sufficiently large R, φ(H,R) can be made arbitrarily close to 0 and φ(L,R)−
φ(H,R) to 1. In other words, by choosing R large, this looks like a game with perfect
monitoring, and for large R the incentive constraint is satisfied for all large δ. Finally,
by choosing δR sufficiently close to 1, and then choosing δ sufficiently close to 1 and
R large, V̄2 can be made arbitrarily close to v∗2 with the principal’s payoff approaching
v∗1 in the process. Hence, review strategies can come arbitrarily close to attaining the
efficient payoff v∗.

Review strategies are effective in this case because we have forced the agent
to make a single effort choice at the beginning of the review phase that is binding
throughout the review. In this case, the review strategies effectively convert the stage
game of length 1, with imperfect monitoring, into a stage game of length R with very
nearly perfect monitoring. It is then no surprise that we can achieve nearly efficient
outcomes.

When the agent’s choices are not constrained to be constant over the review phase,
review strategies give rise to two sources of inefficiency. First, an agent who is in the
middle of a review phase and who has had bad luck, obtaining a relatively large number
of failures, may despair of passing the review (exceeding the threshold) and switch to
low effort for the remainder of the phase. To make sure that this does not impose too
large a cost, the principal must not set the threshold too high. However, an agent who
has had good luck, obtaining a relatively large number of successes, is quite likely to
pass the review and is tempted to coast on her past success by switching to low effort.
To avoid this, the threshold must not be set too low.10

Fix ξ ∈ (1/2, 1) and set

T = λR
and S = pR − Rξ ,

with R and λ > 0 chosen so that T and S are positive integers. The only restriction on
ξ is that it lie in the interval (1/2, 1). A review strategy requires a specification of both
R and λ.

We now show that there exist equilibria, with the principal using review strategies
with this structure, that give payoffs arbitrarily close to v∗ when players are patient. We
have seen that such payoffs could be obtained if we could ensure that the agent would
always exert high effort during the review phase, but this is not possible. Nothing
can prevent the agent from lapsing into low effort when either far ahead or far behind

10. If the agent only observes the R signals at the end of each review phase but chooses an effort
in each period, the incentive constraints are effectively pooled, improving incentives (Abreu,
Milgrom, and Pearce 1991).
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the target for passing the review. However, by setting the threshold less than pR, the
proportion of successes expected from always exerting high effort and then letting the
review phase be very long, we can make it quite unlikely that the agent gets discouraged
and abandons high effort. Moreover, as the review phase grows longer, we can set a
smaller gap between pR and the proportion required to pass the review, while still
constraining the losses from a discouraged agent. The agent will often get sufficiently
far ahead of the target to coast into a favorable review with low effort, but allowing the
target to approach pR ensures that the principal’s losses from such behavior are small.

The key result is the following lemma.

Lemma

11.4.1
There exists λ > 0 and η > 0 such that for any ε ∈ (0, η), there existsRε such that
for anyR ≥ Rε, there exists δ(R,ε) < 1 such that for all δ ∈ (δ(R,ε), 1), the agent’s
best response to the review strategy given by (λ, Rε) gives the agent an expected
utility at least v∗2 − ε/4 and a probability of failing the review of at most ε.

Recall that for any fixed value of R, the principal’s participation in the review
strategy is optimal as long as the principal’s expected payoff is sufficiently close to
v∗1 and δ is sufficiently large. The lemma characterizes the result of any equilibrium
behavior on the part of the agent. We use the lemma to show that if we first let
δ→ 1, then R→∞, and finally ε→ 0, the principal’s expected payoff from the
review strategy, coupled with any best response from the agent, approaches v∗1 . This
ensures that if δ is sufficiently large, there exists an equilibrium with payoffs arbitrarily
close to v∗.

The principal’s expected equilibrium payoff satisfies

v1 ≥ (1− ε)[δR−pR+Rξ (1− δpR−Rξ )− (1− δR)w∗ + δRv1]
+ ε[(1− δR)(−w∗)+ δR(1− δλR)(p − w̃)+ δ(1+λ)Rv1].

The first term on the right (multiplied by 1− ε) is a lower bound on the principal’s
payoff if the agent passes the review. In this case, there must have been at least
pR− Rξ successes, which (in the worst case) occurred in the last pR− Rξ periods,
and the payment w∗ is made in every period. The second term (multiplied by ε) is
a lower bound on the payoff in the event of a failure, which can at worst feature no
successes at all.

Hence, v1 is bounded below by

(1− ε)(δR−pR+Rξ − δR − (1− δR)w∗)+ ε(δR(1− δλR)(p − w̃)− (1− δR)w∗)
1− δR(1− ε)− δ(1+λ)Rε .

For fixed ε andR, this lower bound approaches (as δ approaches 1, applying l’Hôpital’s
rule)

(1− ε)(p − Rξ−1)− w∗ + ελ(p − w̃)
1+ λε .

As R gets large and then ε gets small, this approaches the efficient payoff p − w∗.
Our argument is then completed by proving the lemma.

Proof of Lemma 11.4.1 Fix ε > 0. If the principal plays a review strategy characterized
by R, T (= λR) and S (= pR− Rξ ), then the agent’s equilibrium payoff, written
as a function of δ, is given by
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v2(δ) = (1− δ)
R∑
t=1

δt−1ut2 + φ[δR(1− δT )ṽ2 + δR+T v2(δ)]

+ (1− φ)δRv2(δ)

= (1− δ)∑R
t=1 δ

t−1ut2 + φδR(1− δT )ṽ2

1− φδR+T − (1− φ)δR , (11.4.6)

where φ is the probability of failing the review and ut2 is the expected payoff
received in period t during the review phase of the strategy profile.

One possibility open to the agent is to play the efficient action of high effort
throughout the review phase. Using (11.4.6), this gives an expected payoff of

v∗2(δ) =
(1− δR)v∗2 + φ∗δR(1− δT )ṽ2

1− φ∗δR+T − (1− φ∗)δR ,

where φ∗ is the probability of failing the review under this strategy.
Let κ = p(1− p). Then κ is the variance of the outcome produced by high

effort (taking a success to be 1 and a failure 0). It then follows from Chebychev’s
inequality that11

φ∗ ≤ Rκ

R2ξ
= κ

R2ξ−1
.

As a result, φ∗ converges to 0 as R gets large. Using this and T = λR, we can
then find a value R′ such that for any value R ≥ R′ and for all δ we have12

v∗2(δ) > v∗2 − ε
4 . (11.4.7)

Hereafter restricting attention to values R ≥ R′, this provides the first part of the
lemma, ensuring that the agent can earn a payoff against the review strategy of at
least v∗2 − ε/4.

It remains to show that under the agent’s best response, the probability of failing
the review is sufficiently small. The approach here is to calculate an upper bound
on player 2’s payoff, as a function of the failure probability φ. We then show
that if this failure probability is too large, the upper bound on the agent’s payoff
must fall sufficiently short of v∗2 as to contradict the possibility result established
by (11.4.7).

For an arbitrary strategy for the agent, denote by φ the implied failure proba-
bility and by et the expected effort in period t . The expected payoff to the agent

11. Let f be the realized number of failures. The probability of failing the review is the probability
that f exceeds R − (pR− Rξ ). The variance of f is Rκ , and since the expected value of f is
(1− p)R, φ∗ is the probability that f − (1− p)R exceeds Rξ .

12. Uniformity in δ follows from

lim
δ→1

v∗2 (δ) =
v∗2 + φ∗λṽ2

1+ φ∗λ
and lim

φ∗→0
v∗2 (δ) = v∗2 .
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in period t during the review phase under this strategy is

ut2 = ũ(w∗)− cet = v∗2 + c(1− et ).

This allows us to rewrite (11.4.6) as

v2(δ) = (1− δR)v∗2 + (1− δ)c
∑R
t=1 δ

t−1(1− et )+ φδR(1− δT )ṽ2

1− φδR+T − (1− φ)δR . (11.4.8)

The number of expected successes over the course of the review period, se, can
be written as

se =
R∑
t=1

(pet + q(1− et ))

= (p − q)
R∑
t=1

et + Rq,

and so,
∑R
t=1 e

t = (se − Rq)/(p − q). Hence, because 1− et ≥ 0,

R∑
t=1

δt−1(1− et ) ≤
R∑
t=1

(1− et ) = pR− se
p − q .

It takes pR− Rξ successes to pass the review, and the review is passed with prob-
ability 1− φ, so the expected number of successes must satisfy se ≥ (1− φ)×
(pR− Rξ ) or

pR− se ≤ φpR+ (1− φ)Rξ .
Combining these calculations with (11.4.8), we have

v2(δ) ≤ (1− δR)v∗2 + φδR(1− δT )ṽ2 + (1− δ)K[φpR+ (1− φ)Rξ ]
1− φδR+T − (1− φ)δR ,

where K = c/(p − q). Again applying l’Hôpital’s rule and noting that T = λR,
we can fix R and let δ→ 1 to find

v2(1) ≤ v∗2 + φλṽ2 +K[φp + (1− φ)Rξ−1]
1+ φλ .

Hence, for any value R ≥ R′, we can find δ′ ∈ (0, 1) such that for all larger
values of δ,

|v2(δ)− v2(1)| ≤ ε
4 . (11.4.9)

We now let φ be the probability of failing the review under the agent’s
optimal strategy, suppose φ ≥ ε and derive a contradiction. Fix a value η with
η/2 ∈ (0, v∗2 − ṽ2) (using the assumption that v∗2 − ṽ2 > 0). Choose λ so that
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λ ≥ 1+ 2Kp

2(v∗2 − ṽ2 − η/2) .

Then, if ε < η, we have λ(v∗2 − ṽ2 − ε
2 )− Kp+ KRξ−1 > 0 for all R. From our

bound for v2(1), for ε < η, because the inequality

v∗2 + φλṽ2 +K[φp + (1− φ)Rξ−1]
1+ φλ ≤ v∗2 −

ε

2

is equivalent to the following lower bound on φ, we have

φ ≥ KRξ−1 + ε
2

λ(v∗2 − ṽ2 − ε
2 )− Kp+ KRξ−1

⇒ v2(1) ≤ v∗2 −
ε

2
. (11.4.10)

Now fix a value Rε ≥ R′ such that for any R ≥ Rε,
KRξ−1 + ε

2

λ(v∗2 − ṽ2 − ε
2 )− Kp+ KRξ−1

< ε.

Given any such value R, let δ(R,ε) be a value δ ≥ δ′ such that (11.4.9) holds
for all δ ∈ (δ(R,ε), 1). We now note that if φ ≥ ε, then (11.4.10) implies that
v2(1) ≤ v∗2 − ε/2. Using (11.4.9), we then have v2(δ) ≤ v∗2 − ε/4. But this upper
limit on player 2’s equilibrium payoffs contradicts the fact, established in (11.4.7),
that a higher payoff is available from the strategy of always exerting high effort
during the review phase.

■

We can compare this efficiency outcome to inefficiency results for two similar set-
tings. Radner, Myerson, and Maskin (1986) examine a repeated partnership game with
imperfect monitoring in which equilibrium payoffs are bounded away from efficiency,
even as the discount factor gets large. Why are review strategies ineffective in this
case? There is imperfect monitoring on both sides of the game in Radner, Myerson,
and Maskin (1986). The review strategy argument uses the perfect observability of the
principal’s actions to ensure the principal’s adherence to the review strategy. We then
obtain the approximate efficiency result by using the payoff the agent receives when
always choosing high effort and playing against the review strategy to impose a bound
on the agent’s equilibrium payoff. Connecting to our previous results, the two-sided
imperfection in the monitoring also implies that the pairwise identifiability conditions
from section 9.4 fail.

Section 8.3.2 showed that equilibria in games where some long-lived players
are subject to binding moral hazard are necessarily inefficient. If the principal were
short-lived, then the agent in this section would be subject to binding moral hazard:
The agent’s payoff is maximized by an action profile in which the principal makes
payments to the agent, which is optimal for the principal only if the agent chooses
high effort, which is not a best response for the agent. However, a long-lived principal
need not play a stage-game best response in each period, and the game accordingly no
longer exhibits binding moral hazard. We again see the importance of being able to
use intertemporal incentives in inducing the principal to follow the review strategy.
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Part III

Games with Private Monitoring
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12 Private Monitoring

The next three chapters consider games with private monitoring. These games are the
natural setting for many questions. For example, Stigler’s (1964) story of secret price
cutting is one of private monitoring. Stigler argued that collusion between firms is hard
to sustain when other firms cannot observe discounts (deviations from collusion) that a
firm may offer customers. If each firm’s sales are themselves private, there is no public
signal (as in Green and Porter 1984), and so the arguments of the previous chapters
do not immediately apply. The construction of equilibria in general private monitoring
games requires significantly different techniques.

A broad theme of the techniques we have surveyed is that players can be induced
to not behave opportunistically (i.e., not play myopic best replies) through appropriate
use of intertemporal incentives. Moreover, because it is important that the behavior
be credible (sequentially rational), histories are used to coordinate the continuation
play providing these intertemporal incentives. As we saw in section 7.1.3, a major
motivation for the restriction to perfect public equilibria (PPE) in public monitoring
games is the need to ensure that statements like “histories credibly coordinate contin-
uation play” make sense. In contrast, it is not immediately clear what statements about
coordinating continuation play mean in private monitoring games.

12.1 A Two-Period Example

We begin with a two-period game (inspired by Bhaskar and van Damme 2002), inter-
preting the second period as a proxy for the ability to implement different continuation
values with future play in an infinitely repeated game. The first-period game is (yet
again) the prisoners’dilemma of figure 1.2.1, reproduced on the left in figure 12.1.1. In
the second period, the coordination game on the right is played. There is no discount-
ing. All payoffs are received at the end of the second period, so first-period payoffs
cannot convey information to the players.1 We are interested in supporting the choice
of E in the first period.

Consider first the case of imperfect public monitoring. Let ρ(y | a) be the proba-
bility that public signal y ∈ Y ≡ {y, ȳ} is observed if action profile a is chosen, where
the probability distribution is given by (7.2.1),

1. The formal development in section 12.2 assumes players receive an ex post payoff as a function
of their action and signal, and so again payoffs cannot convey additional information.

385
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E S

E 2, 2 −1, 3

S 3,−1 0, 0

G B

G 3, 3 0, 0

B 0, 0 1, 1

Figure 12.1.1 The first-period stage game is on the left with the
second-period stage game on the right.

z z̄

z (1−η) (1−ε) ε/2

z̄ ε/2 η(1−ε)

Figure 12.1.2 An almost public monitoring distribution π ,
where η = p if a1a2 = EE, q if a1a2 = ES or SE, and r if
a1a2 = SS.

ρ(ȳ | a) =



p, if a = EE,

q, if a = ES or SE,

r, if a = SS,

(12.1.1)

where 0 < r < q < p < 1.An obvious candidate for enforcing EE is a “trigger” profile
specifying EE in the first period and GG in the second period if the public signal is ȳ,
and BB in the second period if the signal is y. Such a strategy profile is a PPE if and
only if the first-period incentive constraint for cooperation is satisfied,

2+ 3p + (1− p) ≥ 3+ 3q + (1− q), (12.1.2)

that is, 2(p − q) ≥ 1. We assume 2(p − q) > 1, noting for later use that (12.1.2) then
holds strictly.

Our concern here is the case of private monitoring. Player i observes a private
signal zi drawn from the space {z, z̄}. For each a ∈ A, the probability that the private
signal vector (z1, z2) ∈ {z, z̄}2 is realized is given by π(z1z2 | a).

Private monitoring distributions that are highly correlated because they are close to
some public monitoring distribution constitute one extreme. For example, interpreting
z as y and z̄ as ȳ, the monitoring distribution π given in figure 12.1.2, is ε-close to the
ρ of (12.1.1) for any p, q, and r . The probability that the two players each observe the
same signal z under π is within ε of the probability that the corresponding signal y
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EE z2 z̄2

z1 ε2 (1− ε)ε
z̄1 (1− ε)ε (1− ε)2

SE z2 z̄2

z1 (1− ε)ε ε2

z̄1 (1− ε)2 (1− ε)ε

Figure 12.1.3 A conditionally independent private monitoring distribution for two action
profiles.

is realized under ρ. If ε is small, the two players’ private signals will then be highly
correlated, and so a player’s signal will be very informative about the other player’s
signal. We also say such a distribution is almost public.

At the other extreme, monitoring is conditionally independent if

π(z1z2 | a) = π1(z1 | a)π2(z2 | a), (12.1.3)

where πi(zi | a) is the marginal probability that player i observes zi given the action
profile a. An example of conditionally independent almost perfect monitoring for
the prisoners’ dilemma again has signal spaces Z1 = Z2 = {z, z̄}, but with marginal
distributions given by

πi(zi | a) =




1− ε, if zi = z̄ and aj = E, or

zi = z and aj = S, j �= i,
ε, otherwise,

(12.1.4)

and the joint distribution given by (12.1.3). For ε < 1/2, z̄ is a signal that the other
player is likely to have played E and z a signal that he is likely to have played S. The
joint distributions for EE and SE under (12.1.4) are given in figure 12.1.3. As this
figure makes clear, given the action profile, a player’s signal provides no information
whatsoever about the other player’s signal. Perfect monitoring is the special (if trivial)
case of ε = 0, and small ε corresponds to a particular form of almost perfect monitor-
ing. The critical difference between the two types of private monitoring is that under
almost public monitoring, the off-diagonal entries of the joint distribution are close to
0 relative to the diagonal elements (independent of the action profile), whereas this is
not true with conditional independence. As ε becomes small, the limits of the almost
public monitoring distributions and the conditionally independent almost perfect mon-
itoring distributions are typically very different. In figure 12.1.2, the limit is the public
monitoring distribution, and in figure 12.1.3, the limit is perfect monitoring.

12.1.1 Almost Public Monitoring

Almost public monitoring is the minimal perturbation of public monitoring in the
direction of private monitoring. Histories that are public in public monitoring games
(and so allow for the coordination of continuation play) are nearly so in almost public
monitoring games.
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Suppose the private monitoring is given by figure 12.1.2 and so is ε-close to the
public monitoring of (12.1.1). Consider the private strategy profile induced in the
private monitoring game by the trigger strategy, that is, both players play E in the first
period, and in the second period, player i plays G after observing the private signal z̄
and playsB after the private signalz. It should not be surprising that this private profile
is an equilibrium for ε sufficiently small when 2(p − q) > 1. Intuitively, payoffs are
continuous in ε, and so for small ε, the first-period incentives are close to those of the
public monitoring game, which hold strictly. Moreover, for small ε, the probability
that the two players observe the same value of the private signal is close to 1, and so the
second-period incentive constraints are also satisfied (in the public monitoring game,
second-period play after all histories is a strict Nash equilibrium).

We now provide the calculation underlying this intuition. The probability that
player 1 assigns to player 2 observing the private signal z when he observed z is

Pr{z2 = z | z1 = z} = π(zz | EE)

π(zz | EE)+ π(zz̄ | EE)
= 1− p − ε(1− p)

1− p − ε(1− 2p)/2
,

because player 1 knows that he chose E in the first period and he believes his partner
also followed the profile’s prescription. This fraction is larger than 3/4 for ε suffi-
ciently small. Consequently, if player 1 believes his partner will play B after privately
observing z2 = z, then he finds B a best reply after privately observing z1 = z. A
similar calculation shows that after observing z̄, players are also sufficiently confident
that their partner had observed the same signal. Summarizing, for ε small, the private
profile is sequentially rational in the second period. Note that this would hold for any
private monitoring distribution π for which the signals z1 and z2 were sufficiently
correlated.

Turning to the first-period incentives for player 1 (player 2’s are symmetric),
exerting effort yields the expected payoff

2+ 3π(z̄z̄ | EE)+ 0× π(z̄z | EE)+ 0× π(zz̄ | EE)+ π(zz | EE),

and shirking yields the payoff (we now suppress the zero terms)

3+ 3π(z̄z̄ | SE)+ π(zz | SE),

so deviating from the profile is not profitable if

1 ≤ 3{π(z̄z̄ | EE)− π(z̄z̄ | SE)} + {π(zz | EE)− π(zz | SE)}
= 3{p(1− ε)− q(1− ε)} + {(1− p)(1− ε)− (1− q)(1− ε)}
= 2(p − q)(1− ε).

Because 2(p − q) > 1 holds strictly, E is optimal in the first period for small ε.
Note that these calculations relied on the closeness of π to ρ, and not just high cor-
relation in the private signals. The closeness to the public monitoring distribution
guaranteed that the intertemporal incentive constraints in the private monitoring game
look sufficiently like those of the public monitoring game that similar conditions on
parameters are sufficient for equilibrium.

As this discussion indicates, private monitoring that is sufficiently close to public
monitoring does not introduce significantly new issues for finitely repeated games.
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On the other hand, infinitely repeated games introduce significant complications. We
provide an overview in section 12.3 and then devote chapter 13 to games with almost
public monitoring.

12.1.2 Conditionally Independent Monitoring

Even in our two-period example, full-support conditionally independent private mon-
itoring leads to a strikingly different conclusion. No matter how close to perfect
monitoring π is, if π is a full-support conditionally independent distribution, then
there is no pure strategy Nash equilibrium in which EE is played in the first period.

For simplicity, consider a profile similar to that analyzed for almost public moni-
toring: Player i plays E in the first period, G after z̄, and B after z. After playing E in
the first period, player 1 knows that 2 will observe the signal z̄ with probability 1− ε
and the signalzwith probability ε, and so under the hypothesized profile, player 1 faces
a second-period distribution of (1− ε) ◦G+ ε ◦ B. For small ε, player 1 then playsG
in the second period independently of the signal z1 he observes. That is, the beliefs of
player 1 about the play of player 2 in the second period (and so 1’s best replies) are
independent of the signals that 1 observes. This is the import of the assumption that the
monitoring is conditionally independent and ensures that it is not sequentially rational
for a player to respond to his private signals in the second period. But this implies that
using pure strategies, intertemporal incentives cannot be provided to induce players to
play E in the first period.2

The restriction to pure strategies (in particular in the first period) was critical in
the analysis just presented. Under pure strategies, the observed signals conveyed no
information about first-period behavior, which is assumed to match the equilibrium
specification. Once there is randomization in the first period, the signals can convey
information, so beliefs about continuation play may also depend on those realizations.

Suppose each player plays E in the first period with probability α and S with
probability 1− α. These mixtures can be viewed as inducing a joint distribution over a
type space T1 × T2, where a player’s type identifies the action the player took and the
signal the player receives. Hence, Ti = Ai × Zi and the joint distribution is given in fig-
ure 12.1.4. The mixing in the first period induces correlation in the type space T1 × T2.
This is most easily seen by letting ε→ 0 (holdingα constant), with the distribution over
types converging to the distribution given in figure 12.1.5. The limit distribution has
a block diagonal structure, so that Pr{Ez̄ | Ez̄} ≈ 1 and Pr{ti ∈ {Ez, Sz̄, Sz} | tj } ≈ 1
for all tj ∈ {Ez, Sz̄, Sz} and ε small. However, it is not diagonal, as would be implied
by almost public monitoring.

2. Bagwell (1995) makes a similar observation in the context of Stackelberg duopoly games.
Intertemporal incentives may exist if, conditional on EE, the players are indifferent between

G and B. In that event, the choice of G or B can depend on the realized signal, and so a
player’s deviation to S could lead to a disadvantageous change in the partner’s behavior. An
example is presented in Section 12.1.3. This possibility does not arise here. Each player can
only be indifferent if after EE, he expects his partner to play B with probability 3/4, giving a
payoff of 3/4. If ε = 1/4, the pure strategy for the partner of playing B after z̄ and G after z
makes the player indifferent betweenG and B (and so willing to follow the same strategy). Not
only is this ruled out by small ε, but shirking results in the more advantageous distribution of
ε ◦ B + (1− ε) ◦G.
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Ez̄ Ez Sz̄ Sz

Ez̄ α2(1− ε)2 α2ε(1− ε) α(1− α)ε(1− ε) α(1− α)ε2

Ez α2ε(1− ε) α2ε2 α(1− α)(1− ε)2 α(1− α)ε(1− ε)
Sz̄ α(1− α)ε(1− ε) α(1− α)(1− ε)2 (1− α)2ε2 (1− α)2ε(1− ε)
Sz α(1− α)ε2 α(1− α)ε(1− ε) (1− α)2ε(1− ε) (1− α)2(1− ε)2

Figure 12.1.4 The joint distribution over first-period histories under the conditionally
independent private monitoring of (12.1.4).

Consider now the strategy profile in which each player randomizes in the first
period, with probability α on E, and in the second period plays

σ 2
i (a

1
i , zi) =

{
G, if a1

i = E and zi = z̄,
B, otherwise.

Hence, each player chooses G in the second period only if the player exerted effort in
the first and received a signal suggesting the partner had also exerted effort. This will
be an equilibrium if sufficient correlation is induced in the distribution over types (and
the first-period incentive constraints are satisfied). This equilibrium is the “reduced
form” of the equilibrium of the infinitely repeated prisoners’ dilemma with private
monitoring discussed in section 12.4.3

Let T Bi = {Ez, Sz̄, Sz}, so that T Bi is the set of player i types who choose B in
the second period. Second period optimality requires

Pr{a1
j = E, zj = z̄ | a1

i = E, zi = z̄} =
α(1− ε)2

α(1− ε)+ (1− α)ε ≥
1

4
, (12.1.5)

Pr{(a1
j , zj ) ∈ T Bj | a1

i = E, zi = z} =
αε2 + (1− α)(1− ε)
αε + (1− α)(1− ε) ≥

3

4
, (12.1.6)

Pr{(a1
j , zj ) ∈ T Bj | a1

i = S, zi = z̄} =
α(1− ε)2 + (1− α)ε
α(1− ε)+ (1− α)ε ≥

3

4
, (12.1.7)

and

Pr{(a1
j , zj ) ∈ T Bj | a1

i = S, zi = z} =
αε(1− ε)+ (1− α)(1− ε)

αε + (1− α)(1− ε) ≥ 3

4
. (12.1.8)

These inequalities all hold for sufficiently small ε as long as α is bounded away from 1.

3. There is also an equilibrium (for ε small) in which the players randomize with approximately
equal probability on E and S in the first period, choosing B after Sz and G otherwise. This
is more efficient than the equilibrium discussed in the text, because GG occurs with higher
probability.
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Ez̄ Ez Sz̄ Sz

Ez̄ α2 0 0 0

Ez 0 0 α(1− α) 0

Sz̄ 0 α(1− α) 0 0

Sz 0 0 0 (1− α)2

Figure 12.1.5 The joint distribution over first-period
histories, taking ε→ 0.

For the mixed strategy to be optimal in the first period, we must have the payoff
from effort,

α{2+ 3(1− ε)2 + ε2} + (1− α){−1+ (1− ε)},

equal the payoff from shirking,

α{3+ (1− ε)} + (1− α){0+ 1}.

Solving for α gives

α = α(ε) = 1+ ε
2(1− ε)2 + 2ε2

.

As ε→ 0, α(ε)→ 1/2. Thus, there is an equilibrium with some first-period
cooperation for sufficiently small ε.

Notice, however, that even as ε becomes small, S must be played with significant
probability in the first period. As we have discussed, the randomization in the first
period is required for behavior in the second period to depend on the realization of the
private signals. This randomization does not require α close to 1/2. Indeed, for any
α < 1, for ε sufficiently small, inequalities (12.1.5)–(12.1.8) will continue to hold. The
action S receives a large equilibrium probability in the first period to lower the payoff
difference between E and S (because S in the first period necessarily leads to B in the
second), providing the necessary indifference. This suggests that if instead the expected
continuation payoff after S could be increased, then it may be possible to construct an
equilibrium in which E is played with very high probability in the first period.

Public correlation is the standard tool for achieving such goals (see also the dis-
cussion in sections 2.5.5 and 7.2.3). Suppose that in addition to their private signals,
players also observe a public signalω at the end of the first period, whereω is uniformly
distributed on [0, 1].4 The profile we consider has each player again randomize in the
first period, with probability α on E, and in the second period play

4. See remark 12.4.1, as well as Bhaskar and van Damme (2002) and Bhaskar and Obara (2002),
for more on the role of public correlation.
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σ 2
i (a

1
i , zi , ω) =

{
G, if a1

i = E and zi = z̄, or ω ≤ ω′,
B, otherwise.

Each player choosesG in the second period only if the player exerted effort in the first
and received a signal suggesting the partner had also exerted effort, or the public signal
had a realization less than ω′. In other words, the earlier strategy is modified so that on
the event whereB was played for sure, now player i randomizes betweenG andB, with
probability φ ≡ Pr{ω ≤ ω′} onG. Moreover (and this is important), playingG or B is
coordinated to the extent that both players’ types are in T B1 × T B2 . First, conditional on
ω > ω′, the calculations leading to the inequalities (12.1.5)–(12.1.8) are unchanged,
so they are all satisfied for ε small (given any α < 1). Turning to the first period, the
payoff from effort is now

α{2+ 3(1− ε)2 + 6ε(1− ε)φ + ε2(3φ + (1− φ))}
+ (1− α){−1+ (1− ε)(3φ + (1− φ))+ 3εφ},

whereas the payoff from shirking is,

α{3+ (1− ε)(3φ + (1− φ))+ 3εφ} + (1− α){0+ (3φ + (1− φ))}.

Equating the two and solving for α gives

α ≡ α(ε, φ) = 1+ ε − εφ
2(1− φ)(1− 2ε + 2ε2)

,

and as ε→ 0,

α(ε, φ)→ 1

2(1− φ) .

This is a well-defined interior probability for φ < 1/2, and can be made arbitrarily
close to 1 by making φ arbitrarily close to 1/2. Although we do not have efficiency in
the second period, we do obtain EE with arbitrarily large probability in the first.

In concluding the discussion of this example, we emphasize that the order of
quantifiers is crucial. For any α < 1 we can construct an equilibrium (with a public
correlating device) in which EE is played with probability at least α, as long as ε is
sufficiently small. However, EE cannot be played with probability 1 in the first period,
no matter how small is ε. Nontrivial updating requires α less than 1, and for any
given α < 1, (12.1.5)–(12.1.8) provide the relevant bounds on ε. We cannot fix ε and
take α to 1.

Section 12.4 uses such belief-based techniques to construct nearly efficient equi-
libria in the prisoners’ dilemma with (possibly conditionally independent) private
monitoring.

12.1.3 Intertemporal Incentives from Second-Period Randomization

Here we describe an example (from Kandori 1991a) illustrating the role of conditioning
behavior on histories when a player is indifferent between different actions.
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R2 P2

R1 3, 3 0, 2

P1 4,−2 −1,−1

Figure 12.1.6 The second-period stage game for
section 12.1.3.

We build on the example of section 12.1.2. We keep the first-period stage game
and conditionally independent private monitoring and replace the second period stage
game by the game in figure 12.1.6. This stage game has a unique mixed strategy
equilibrium in which each player randomizes with equal probability on each action.
The payoff from this mixed equilibrium is (3/2, 1/2).

The idea is to construct an equilibrium of the two-period game so that after EE
(i.e., on the equilibrium path), second-period behavior unconditionally looks like( 1

2 ◦ R1 + 1
2 ◦ P1,

1
2 ◦ R2 + 1

2 ◦ P2
)
, but after a deviation to S, the deviating player

faces a significantly increased probability of Pi .
The strategy for player i specifies E in the first period, and a probability of ξi on

Ri after z̄ and Pi for sure after z. If player 1 plays E in the first period, then he expects
R2 to be played with probability (1− ε)ξ2, and setting this equal to 1/2, gives

ξ2 = 1

2(1− ε) .

This is a well-defined probability for all ε ∈ [0, 1/2). The total payoff to player 1 from
following his strategy when his partner also follows the strategy is 2+ 3/2 = 7/2.

On the other hand, if player 1 deviates to S, then he expects R2 with probability
εξ2 in the next period and so plays the best response R1. The total payoff from this
deviation is 3+ 3ξ2ε, which is less than 7/2 for ε < 1/4, so the deviation is not
profitable. A similar calculation holds for player 2.

The key idea is that bothRi andPi are best replies for player i after both realizations
of the private signal. Player i’s choice between these best replies can then be arranged
as a function of his signal to provide incentives for player j . A similar idea was used to
construct equilibria in private strategies in the public monitoring two-period example
in section 10.2 and its belief-free infinite-horizon version in section 10.4.5 We will
see that in infinitely repeated games, as in section 10.4, the relevant payoff ties can be
endogenously obtained via appropriate mixing. We discuss an example in section 12.5
and study belief-free equilibria in chapter 14.

This equilibrium is fragile in that it cannot be purified (Harsanyi 1973), that is,
it cannot be approximated by any equilibrium in nearby games of incomplete infor-
mation. Each player is required to behave differently after different private histories,
yet the player has identical beliefs about the behavior of his partner after these two

5. First-period mixing makes the informative public signals more informative in section 10.2,
whereas here it is necessary if the private signals are to convey any information at all.
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histories.6 Suppose now that payoffs in the second period are perturbed: Each player
receives a small private payoff shock distributed independently of the signal.As a result,
the player is no longer indifferent (for some values of the payoff, he playsPi and for oth-
ers, he playsRi—there will be a cutoff payoff type for which he is indifferent); because
his beliefs about the opponent are independent of his private history, so almost surely is
his behavior. For more details, see Bhaskar (1998) and Bhaskar and van Damme (2002).

12.2 Private Monitoring Games: Basic Structure

The infinitely repeated game with private monitoring is the infinite repetition of a
stage game in which, at the end of the period, each player learns only the realized
value of a private signal. There are n long-lived players, with a finite stage-game
action set for player i ∈ {1, . . . , n} denotedAi . At the end of each period each player i
observes a private signal, denoted zi , drawn from a finite set Zi . The signal vector z ≡
(z1, . . . , zn) ∈ Z ≡ Z1 × · · · × Zn occurs with probability π(z | a) when the action
profile a ∈ A ≡∏i Ai is chosen. Player i’s marginal distribution over Zi is denoted
πi(· | a). Player i does not receive any information other than zi about the behavior of
the other players. All players use the same discount factor, δ.

Because zi is the only signal a player observes about opponents’ play, we assume
(as usual) that player i’s ex post payoff after the realization (z, a) is given by u∗i (zi , ai).
Ex ante stage game payoffs are then given by ui(a) ≡∑z u

∗
i (zi , ai)π(z | a). It will

be convenient to index games by the monitoring technology (Z, π), fixing the set of
players and action sets. In various examples, we will often fix ex ante stage-game
payoffs and consider various monitoring distributions without explicitly mentioning
the requisite adjustments to the payoffs u∗i .

Definition

12.2.1
A private monitoring game has ε-perfect monitoring if for each player i, there is
a partition of Zi , {Zi(a)}a∈A, such that for all action profiles a ∈ A,∑

zi∈Zi(a)
πi(zi | a) > 1− ε.

When taking ε to 0, we often refer to the private monitoring games with ε-perfect
monitoring as having almost perfect monitoring.

Remark

12.2.1
Private monitoring games include public (and so perfect) monitoring games as
the special case where Zi = Zj for all i and j , and the monitoring distribution
satisfies

∑
zi∈Zi π(zi, . . . , zi | a) = 1 for all a ∈ A, that is, all players always

observe the same realization of the signal.
◆

A behavior strategy for player i in the private monitoring game is a function
σi : Hi → �(Ai), where

Hi ≡ ∪∞t=0(Ai × Zi)t
is the set of private histories for player i.

6. Clearly, if it is required that play in such circumstances is independent of the private signal, then
only stage-game Nash equilibria can be played. See Matsushima (1991).
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Definition

12.2.2
A strategy is action free if, for all hti, ĥ

t
i ∈Hi satisfying zsi = ẑsi for all s < t ,

σi(h
t
i) = σi(ĥti ).

At first glance, action-free strategies are similar to public strategies, and indeed
they satisfy a similar property for a similar reason (and so we omit its proof ):

Lemma

12.2.1
Every pure strategy in a private monitoring game is realization equivalent to a pure
action-free strategy. Every mixed strategy is realization equivalent to a mixture
over action-free strategies.

Remark

12.2.2
As for public strategies in public monitoring games (see section 10.1), behavior
strategies realization equivalent to a mixed strategy will typically not be action-
free.

◆

In public monitoring games, the public history is sufficient to describe continuation
play when behavior is restricted to public strategies, and hence players have public best
responses. In private monitoring games, not only are the private signals informative
about the private history of the other players but player i’s updated beliefs about
player j ’s continuation play depend on i’s actions. In other words, even if players
j �= i are playing action-free strategies, it need not be true that i has a sequentially
rational best reply in action-free strategies (the failure of sequential rationality occurs
on histories reached by a deviation by player i and so does not contradict lemma 12.2.1).

If the marginal distributions of the private signals have full support, then the game
has no observable deviations. Just as in full-support public monitoring games, no devi-
ation by any player i is observed by the other players. (Note that full-support marginal
distributions are consistent with full-support public monitoring.) Consequently, every
Nash equilibrium outcome is the outcome of a profile satisfying stronger sequential
rationality requirements, such as sequential equilibrium (proposition 12.2.1). It is not
true, however, that Nash equilibria themselves need satisfy these requirements. In par-
ticular, Nash equilibria in action-free strategies need not be sequentially rational. We
provide a detailed example in section 12.3.2. This is in contrast to full-support public
monitoring games, where every Nash equilibrium in public strategies is a PPE.

Although sequential equilibrium was originally defined for finite extensive form
games (Kreps and Wilson 1982b), the notion has a straightforward definition in our
setting when all players’ marginal distributions have full support. When the game has
no observable deviations, given a strategy profile σ , after any private history hti , player
i’s belief over the private histories of the other players is necessarily given by Bayes’
rule (even if player i had deviated in the historyhti). Consequently, player i’s belief over
the continuation play of the other players after any private history hti is determined.

Definition

12.2.3
Suppose πi(zi | a) > 0 for all zi ∈ Zi and all a ∈ A. A strategy profile σ is a
sequential equilibrium of the repeated game with private monitoring if for all
private histories hti , σi |hti is a best reply to E[σ−i |ht−i

∣∣hti], where σ−i |ht−i =
(σ1|ht1 , . . . , σi−1|hti−1

, σi+1|hti+1
, . . . , σn|htn).

Because private monitoring games with πi(zi | a) > 0 for all i, zi ∈ Zi and all
a ∈ A have no observable deviations, a Nash equilibrium σ fails to be sequential only if
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the behavior specified by σi (say) is suboptimal after a historyhti in which i has deviated
(see proposition 12.3.2 for an example). But because the profile is Nash, replacing that
part of σi with an optimal continuation strategy cannot destroy ex ante incentives. This
suggests the following proposition. See Sekiguchi (1997, proposition 3) or Kandori
and Matsushima (1998, appendix) for a proof.

Proposition

12.2.1
Suppose πi(zi | a) > 0 for all i, zi ∈ Zi and all a ∈ A. Every Nash equilibrium
outcome is the outcome of a sequential equilibrium.

Remark

12.2.3
Automata Every behavior strategy can be represented by an automaton with a
set of states Wi , an initial state w0

i , a decision rule fi : Wi → �(Ai) specifying
a distribution over action choices for each state, and a transition function τi :
Wi × Ai × Zi → Wi . In the first period, player i chooses an action according to
the distribution fi(w0

i ). At the end of period 0, the realized vector of actions,
a0, then generates a vector of private signals z0 according to the distribution
π(· | a0), and player i observes the signal z0

i . In period 1, player i chooses an
action according to the distribution fi(w1

i ), where w1
i = τi(w0

i , a
0
i z

0
i ), and so on.

In the representation of a pure action-free strategy, i’s decision rule maps into
Ai , and his transition function is τi : Wi × Zi → Wi . Any action-free strategy
requires at most the countable set Wi = ∪∞t=0Z

t
i .

Any collection of pure action-free strategies can be represented by a set of
states Wi , a decision rule fi , and a transition function τi (the initial state indexes
the pure strategies). One class of action-free mixed strategies is described by
(Wi , µi, fi, τi), whereµi is a probability distribution over the initial statew0

i , and
Wi is countable. Not all mixed strategies can be described in this way because the
set of all pure strategies is uncountable (which would require Wi to be uncount-
able). An illustration of the automaton representation for private monitoring is
provided later in figure 12.4.2.

◆

Remark

12.2.4
Automata and beliefs Using automata, we can describe player i’s beliefs about
the other players’ continuation behavior as follows. Suppose σj is described by
the automaton (Wj , w

0
j , fj , τj ) for j �= i. Then, player j ’s continuation play after

htj , σj |htj , is given by (Wj , w
t
j , fj , τj ), wherewtj = τj (w0

j , h
t
j ) is j ’s private state

after the private history htj (recall remark 2.3.2). Consequently, player i’s beliefs
over the continuation play of the other players can be described by a probability
distribution β over

∏
j �=i Wj , the potential initial states of the continuation profile.

◆

In repeated games with private monitoring, calculating beliefs after all private
histories can be a difficult (if not impossible) task. It is often easier to show that a
profile is a Nash equilibrium and then appeal to proposition 12.2.1.

There are some cases in which it is possible to show that a profile is sequential, and
in those cases the one-shot deviation principle is again useful. A one-shot deviation for
player i from the strategy σi is a strategy σ̂i �= σi with the property that there exists a
unique private history h̃ ti ∈Hi such that for all hsi �= h̃ ti ,

σi(h
s
i ) = σ̂i (hsi ).
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The proofs of the next two propositions are straightforward modifications of their
perfect monitoring counterparts (propositions 2.2.1 and 2.4.1), and so are omitted.

Proposition

12.2.2
The one-shot deviation principle Suppose πi(zi | a) > 0 for all i, zi ∈ Zi and
all a ∈ A. A strategy profile σ is a sequential equilibrium if and only if there are
no profitable one-shot deviations.

In private monitoring games, there is typically no nontrivial history that can serve
to coordinate continuation play of different players. This is to be contrasted with
perfect monitoring games (where any history can coordinate continuation play) and
public monitoring games (where any public history can coordinate continuation play).
As a consequence, sequential equilibria do not have a simple recursive formulation and
so the statement of the private monitoring analog to proposition 2.4.1 is complicated.
(A similar comment applies, of course, to sequential equilibria in private strategies of
public monitoring games.) A simple example illustrating the use of proposition 12.2.3
is provided in section 12.3.1.

Proposition

12.2.3
Suppose πi(zi | a) > 0 for all i, zi ∈ Zi and all a ∈ A. Suppose the strategy
profile σ is described by the automata {(Wj , w

0
j , fj , τj ) : j = 1, . . . , n}. Let

Vi(w1, . . . , wn) be player i’s average discounted value under the profile when
player j is in initial statewj . For all hti ∈Hi , let βi(· | hti) be the beliefs of i over∏
j �=i Wj after hti implied by the profile σ . The strategy profile σ is a sequential

equilibrium if, and only if, for all hti ∈Hi , fi(τ (w0
i , h

t
i)) maximizes

∑
w−i


(1− δ)ui(ai, f−i (w−i ))
+ δ

∑
a−i

∑
z∈Z

Vi(τi(wi, aizi), τ−i (w−i , a−iz−i ))π(z | a)
∏
j �=i

fj (aj | wj)



× β(w−i | hti).

Remark

12.2.5
The introduction of public communication recovers a recursive structure in private
monitoring games. See, for example, Compte (1998) and Kandori and Matsushima
(1998).

◆

12.3 Almost Public Monitoring: Robustness in the Infinitely
Repeated Prisoners’ Dilemma

This section considers almost public monitoring (see section 12.1.1). We work with
the prisoners’ dilemma in the left panel of figure 12.1.1. The public signal space is
Y = {y, ȳ} and the distributionρ is given by (12.1.1) but only requiring 0 < q < p < 1
and 0 < r < p. Following Mailath and Morris (2002), we investigate the robustness
of the forgiving PPE of section 7.2.2 and the grim trigger PPE of section 7.2.1 to the
introduction of small degrees of private monitoring.
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In the game with private monitoring, player i has two signals, z and z̄, with
distribution π , where (for z1z2 ∈ {z, z̄}2)

π(z1z2 | EE) ≡ πEE
z1z2

, π(z1z2 | SS) ≡ πSS
z1z2

,

and
π(z1z2 | ES) = π(z1z2 | SE) ≡ πES

z1z2
.

We are interested in the case where π is ε-close to ρ:∣∣π(z̄z̄ | a)− ρ(ȳ | a)∣∣ < ε, ∀a ∈ A,
and

∣∣π(zz | a)− ρ(y | a)∣∣ < ε, ∀a ∈ A.

Note that when π is ε-close to ρ, for z1 �= z2, π(z1z2 | a) < 2ε.

12.3.1 The Forgiving Profile

In this subsection, we assume q = r in ρ and πES = πSS .7 Recall that the forgiving
strategy profile of section 7.2.2 is described by the following automaton. There are
two states, W = {wEE, wSS}, initial state w0 = wEE , output function f (wEE) = EE
and f (wSS) = SS, and transition function

τ(w, y) =
{
wEE, if y = ȳ,

wSS , if y = y.

This is an equilibrium of the game with public monitoring if (7.2.12) and (7.2.13)
are satisfied. Because q = r , (7.2.13) always holds strictly, and (7.2.12) becomes
δ ≥ [3(p − q)]−1. Moreover, the PPE is strict if this inequality is strict, that is,

δ >
1

3(p − q) . (12.3.1)

Let δ denote a lower bound for δ satisfying (12.3.1), and assume δ > δ.
A notable feature of this profile is that the strategies have bounded (in fact, one-

period) recall. The period t actions of the players depend only on the realization of the
signal in the previous period. For this reason, we identify the statewEE with the signal
ȳ, and the state wSS with y. Consider now the same profile in the game with private
monitoring: player i exerts effort in each period t if the player observed signal z̄ in the
previous period, and otherwise shirks.

If player 1 (say) observes z̄, then for π sufficiently close to ρ, player 1 attaches a
relatively high probability to the event that player 2 also observed z̄. Because actions
depend only on this last signal, player 1 thus attaches a relatively large probability
(given the candidate equilibrium strategies) to player 2’s playing E. If the incentive
constraints in the PPE are strict, this should make E a best response for player 1.

7. These assumptions are inconsistent with the assumption that stage-game payoffs are expected
ex post payoffs (see note 7 on page 238). These assumptions are made only to simplify calcula-
tions and the points hold in general. For our purposes here, it is enough to assume that players
only observe their private signals but do not observe their ex ante payoffs.
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Suppose player 1 assigns a probability β to his partner having also observed z̄
after observing the private signal z̄ (we provide an explicit expression for β shortly).
We can write the incentive constraint for player 1 to follow the profile’s specification
of E as follows (recall πES = πSS ):

β
{
(1− δ)2+ δ[πEE

z̄z̄ V
z̄z̄
1 + πEE

z̄z V
z̄z

1 + πEE
zz̄ V

zz̄

1 + πEE
zz V

zz

1

]}
+ (1− β){(1− δ)(−1)+ δ[πSS

z̄z̄ V
z̄z̄
1 + πSS

z̄z V
z̄z

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

]}
≥ β{(1− δ)3+ δ[πSS

z̄z̄ V
z̄z̄
1 + πSS

z̄z V
z̄z

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

]}
+ (1− β){δ[πSS

z̄z̄ V
z̄z̄
1 + πSS

z̄z V
z̄z

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

]}
,

where V z1z2
1 is the continuation to player 1 under the profile when player 1 is in state

(has just observed) z1 and player 2 is in state z2. This expression simplifies to

βδ
{(
πEE
z̄z̄ − πSS

z̄z̄

)
V z̄z̄1 +

(
πEE
z̄z − πSS

z̄z

)
V
z̄z

1 +
(
πEE
zz̄ − πSS

zz̄

)
V
zz̄

1 +
(
πEE
zz − πSS

zz

)
V
zz

1

}
≥ (1− δ). (12.3.2)

The continuation values satisfy:

V z̄z̄1 = (1− δ)2+ δ
{
πEE
z̄z̄ V

z̄z̄
1 + πEE

z̄z V
z̄z

1 + πEE
zz̄ V

zz̄

1 + πEE
zz V

zz

1

}
,

V
z̄z

1 = −(1− δ)+ δ
{
πSS
z̄z̄ V

z̄z̄
1 + πSS

z̄z V
z̄z

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

}
,

V
zz̄

1 = (1− δ)3+ δ
{
πSS
z̄z̄ V

z̄z̄
1 + πSS

z̄z V
z̄z

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

}
,

and

V
zz

1 = δ
{
πSS
z̄z̄ V

z̄z̄
1 + πSS

z̄z V
zz

1 + πSS
zz̄ V

zz̄

1 + πSS
zz V

zz

1

}
.

Substituting V zz1 into the second and third equations, and using the result to simplify
the difference V z̄z̄1 − V zz1 yields

V z̄z̄1 − V zz1 =
(1− δ){2+ δ(πSS

z̄z − πEE
z̄z

)+ 3δ
(
πEE
zz̄ − πSS

zz̄

)}
1− δ(πEE

z̄z̄ − πSS
z̄z̄

) . (12.3.3)

Suppose the private monitoring distribution is given by πEE
z̄z̄ = p(1− 2ε), πSS

z̄z̄ =
q(1− 2ε), and πSS

z̄z = πEE
z̄z = πSS

zz̄ = πEE
zz̄ = ε (this π is 2ε-close to ρ, see section

12.1). Then (12.3.2) simplifies to

βδ(p − q)(1− 2ε)(V z̄z̄1 − V zz1 ) ≥ (1− δ),
and (12.3.3) simplifies to

V z̄z̄1 − V zz1 =
2(1− δ)

1− δ(p − q)(1− 2ε)
,

so that the incentive constraint for effort following signal z̄ is given by

(1+ 2β)(1− 2ε) ≥ 1

δ(p − q) .
A similar calculation for the incentive constraint describing behavior after z yields the
inequality

δ(p − q)(1− 2ε)(3− 2ζ ) ≤ 1,

where ζ = Pr(z2 = z | z1 = z).
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Finally, if the action a has been chosen in the previous period (using the assumption
on the parametric form of π in the second line and p > q in the third),

β = Pr(z2 = z̄ | z1 = z̄, a) = Pr(z2 = z̄, z1 = z̄ | a)
Pr(z1 = z̄ | a)

=



p(1−2ε)
p(1−2ε)+ε , if a = EE,
q(1−2ε)
q(1−2ε)+ε , if a �= EE,

≥ q(1− 2ε)

q(1− 2ε)+ ε .

Hence, β can be made uniformly close to 1 by choosing ε small (with a similar
argument for ζ ). Because δ satisfies (12.3.1), there is an ε̄ such that these incentive
constraints hold, and applying proposition 12.2.3, we have a sequential equilibrium,
for δ > δ and ε < ε̄.

We study public profiles with bounded recall in more detail in section 13.3.

12.3.2 Grim Trigger

We now turn to the grim trigger profile studied in section 7.2.1: W = {wEE, wSS},
w0 = wEE , fi(wEE) = E, fi(wSS) = S, and

τ(w, y) =
{
wEE, if w = wEE and y = ȳ,

wSS , otherwise.

We assume grim trigger is a strict PPE of the public monitoring game (i.e., (7.2.4)
holds).

In the game with private monitoring, the implied private profile has player i
playingE in the first period, continuing to playE as long as z̄ is observed and switching
to permanent S after the first z. We let wE and wS denote the states in the implied
private automaton. Behavior in grim trigger potentially depends on signals that occur
arbitrarily far in the past, so the situation is very different from that of the forgiving
profile.

We say private monitoring has full support if π(z | a) > 0 for all z ∈ {z, z̄}2 and
a ∈ A. For games with full-support private monitoring, if q > r , the implied private
profile is never a Nash equilibrium, even for π arbitrarily close to ρ.

Proposition

12.3.1
1. If q > r , there existsε > 0 such that for all ε ∈ (0,ε), the private profile implied

by grim trigger is not a Nash equilibrium in the repeated prisoners’ dilemma
with full-support private monitoring ε-close to ρ.

2. If q < r ,8 there exists ε > 0 such that for all ε ∈ (0,ε), the private profile
implied by grim trigger is a Nash equilibrium in the repeated prisoners’dilemma
with full-support private monitoring ε-close to ρ.

We begin with an initial observation. Because grim trigger is a strict PPE of the
public monitoring game, if player 1 (say) is sufficiently confident that player 2’s current

8. If q = r , the details of the private monitoring distribution determine whether the private profile
is an equilibrium.



12.3 ■ Almost Public Monitoring 401

private state is wE and the private monitoring is ε-close to ρ with ε sufficiently close
to 0, then E is the only optimal choice for 1 in the current period. Similarly, if 1 is
sufficiently confident that 2’s current state iswS and ε is sufficiently small, then S is the
only optimal choice for 1 in the current period.9 Therefore, if under grim trigger each
player always assigns arbitrarily high probability to the other player being in the same
state as himself, then grim trigger is a Nash equilibrium. This is an example of a more
general phenomenon: Though in general there is no one-shot deviation principle for
Nash equilibrium (recall the discussion just before example 2.2.3), profiles in almost
public monitoring games induced by strict PPE inherit a modified version of the no
one-shot deviation principle. See the proof of proposition 13.2.2.

We prove proposition 12.3.1 through two lemmas. The first lemma identifies the
critical deviation that precludes grim trigger from being Nash when q > r .

Lemma

12.3.1
Suppose q > r . There exists ε̄ > 0, such that if π is ε-close to ρ for ε ∈ (0, ε̄),
then it is not optimal for player 1 to play S following a sufficiently long history
(Ez, Sz̄, Sz̄, Sz̄, . . .), as required by grim trigger.

For π close to ρ, immediately following the signalz, player 1 assigns a probability
very close to 0 to player 2 being in the private statewE (because with probability close
to 1, player 2 also observed the signal z). Thus, playing S in the subsequent period is
optimal. However, because π has full support, player 1 is not sure that player 2 is in
state wS , and observing the signal z̄ after playing S is an indication that player 2 had
played E (recall that ρ(z̄ | SE) = q > r = ρ(z̄ | SS)). This makes player 1 less sure
that 2 was in state wS . Furthermore, if player 2 was in state wE and observes z̄, then 2
will still be in state wE . Eventually, player 1 believes that player 2 is almost certainly
in state wE and so will have an incentive to exert effort.

Proof Suppose player 1 initially assigns prior probability η to player 2 being in statewE .
Write ϕπ(η | a1z1) for the posterior probability that he assigns to player 2 being
in statewE one period later, if he chooses action a1 and observes the private signal
z1, believing that his opponent is following grim trigger. Then,

ϕπ(η | Sz̄) = π(z̄z̄ | SE)η

{π(z̄z̄ | SE)+ π(z̄z | SE)}η + {π(z̄z̄ | SS)+ π(z̄z | SS)}(1− η) .

If π is ε-close to ρ (using π(z̄z̄ | a)+ π(z̄z | a) = 1− π(zz | a)− π(zz̄ | a) <
1− π(zz | a)),

ϕπ(η | Sz̄) > (q − ε)η
(q + ε)η + (r + ε)(1− η) ≡ ϕ

π(η | Sz̄).

The function ϕπ(η | Sz̄) has a fixed point at ηε = (q − r − 2ε)/(q − r), with
ϕπ(η | Sz̄) ∈ (η, ηε) if η ∈ (0, ηε) and ϕπ(η | Sz̄) ∈ (ηε, η) if η ∈ (ηε, 1] and
with limε→0 ηε = 1. For any η̄ ∈ (0, 1), we can choose ε sufficiently small that

9. Because of discounting, the continuation payoffs from playingE or S when 1 assigns probability
1 to player 2 being initially in a state can be made arbitrarily close to their public monitoring
values by making ε sufficiently small. The strictness of the grim trigger PPE carries over to
the private monitoring game. We can then deduce the strict optimality of E (respectively, S)
when player 1 is sufficiently confident that player 2’s current private state is wE (resp., wS ).
Lemma 13.2.3 verifies this intuition.
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ηε > η̄. Then for any η ∈ (0, η̄], there exists a k such that after observing k signals
z̄, the posterior must exceed η̄ (k goes to infinity as η becomes small). This implies
that after a sufficiently long history (Ez, Sz̄, Sz̄, Sz̄, . . .), player 1 eventually
becomes very confident that player 2 is in fact in statewE , and so (for sufficiently
large η̄) no longer has an incentive to play S. Because (Ez, Sz̄, Sz̄, Sz̄, . . .) is a
history that occurs with positive probability under grim trigger, grim trigger is not
a Nash equilibrium.

■

Lemma

12.3.2
Suppose q < r . There exists ε̄ > 0, such that if π is ε-close to ρ for ε ∈ (0, ε̄),
then grim trigger is a Nash equilibrium of the game with full-support private
monitoring.

In this case, unlike the preceding, a signal of z̄ reinforces the belief of player 1 (in
state wS) that the player 2 had also chosen S and so also is in state wS . A signal of z,
on the other hand, now is a signal that player 2 chose E in the previous period (and
so was in state wE in the previous period). But for π close to ρ, player 1 also assigns
high probability to 2 observing z and so transiting to wS this period.

Proof For simplicity, we focus on player 1. Given any ξ > 0, we show that we can
choose ε > 0 such that for every history reached with positive probability under
grim trigger, if player 1 has observedz at least once, he assigns probability less than
ξ to player 2 being in statewE ; if he has always observed z̄, he assigns probability
at least 1− ξ to player 2 being in statewE . By choosing ξ and ε sufficiently small,
from the initial observation (given after the statement of proposition 12.3.1), grim
trigger will then be a Nash equilibrium (and the induced outcome is a sequential
equilibrium outcome).

Consider histories in which at least one z has been observed. The easy case
is a history in which z was observed in the last period. Then, as we argued just
before the proof, there exists ε′ such that for ε < ε′, immediately following such
a signal, player 1 assigns a probability of at least 1− ξ that 2 also observed z (and
so will be in state wS).

We now turn to histories in whichz has been observed and z̄was observed in the
last period. An application of Bayes’rule shows that after observingz, player 1 can
attach probability at most 2ε′/(1− p − ε′) ≡ η̄ to player 2’s being in state wE .
Intuitively, observing z̄ after playing S is a further indication that player 2 is in
state wS (this requires q < r). Because

ϕπ(η | Sz̄) < (q + ε)η
(q − ε)η + (r − ε)(1− η) ,

there exists ε̄ ∈ (0, ε′) such that for all π that are ε-close to ρ for ε < ε̄,
ϕπ (η | Sz̄) < η for all η ∈ (0, η̄) (set ε̄ < (1− η̄)(r − q)/2). So, irrespective
of the private signal a player observes, along every play path the player becomes
increasingly confident that his opponent is in state wS .

Finally, consider histories of the form (Ez̄, Ez̄, Ez̄, Ez̄, . . .). At first glance,
it would seem that after a sufficiently long history of z̄, a player should believe
that the partner has surely already observed at least one z and so i will wish to
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preemptively switch to S. However, this ignores the role that recent z̄ play in
reassuring i that j had not earlier switched to S.

The argument for this case is quite similar to that used in proving lemma 12.3.1.
The posterior on the relevant histories satisfies

ϕπ(η | Ez̄) > (p − ε)η
(p + ε)η + (q + ε)(1− η) ≡ ϕ

π(η | Ez̄). (12.3.4)

The function ϕπ(η | Ez̄) has a fixed point at ηε = (p − q − 2ε)/(p − q), with
ϕπ(η | Ez̄) ∈ (η, ηε) if η ∈ (0, ηε) and ϕπ(η | Ez̄) ∈ (ηε, η) if η ∈ (ηε, 1], and
with limε→0 ηε = 1. The prior probability attached to player 2 being in state wE
is 1. The posterior ϕπ(η | Ez̄) can fall as the history in question proceeds but can
never fall below the fixed point ηε. Choosing ε sufficiently small, and hence ηε
sufficiently close to 1, ensures that player 1 finds it optimal to play E.

■

Proposition

12.3.2
There existsε > 0 such that for all ε ∈ (0,ε), grim trigger is not a sequential equi-
librium in the repeated prisoners’ dilemma with full-support private monitoring
ε-close to ρ.

Proof For the case q > r , proposition 12.3.1 implies that grim trigger is not a Nash
equilibrium, and so clearly cannot be a sequential equilibrium. For q ≤ r , we
now argue that it is not sequentially rational to follow grim trigger’s specification
of S after long private histories of the form (Ez,Ez̄, Ez̄, Ez̄, . . .). For π ε-close
to ρ, player 1’s posterior satisfies ϕπ(η | Ez̄) > ϕπ(η | Ez̄), whereϕπ(η | Ez̄) is
defined in (12.3.4). Hence, by the argument following (12.3.4), after a sufficiently
long history (Ez,Ez̄, Ez̄, Ez̄, . . .), player 1 eventually becomes very confident
that player 2 is in fact still in state wE , and so 1 will find it profitable to deviate
and play E. Because grim trigger specifies S after such a history, grim trigger is
not a sequential equilibrium.

■

Propositions 12.3.1 and 12.3.2 illustrate an important feature of private monitoring
games (mentioned in section 12.2). Even if opponents are playing action-free strate-
gies, a player’s sequentially rational best reply may necessarily not be action-free.
Depending on player 1’s actions, the same signal history (z, z̄, z̄, z̄, . . .) for player 1
implies very different beliefs over player 2’s private state at the beginning of the next
period. As we saw in the proof of lemma 12.3.2, for q < r this signal history, when
coupled with the actions specified by grim trigger, leads to beliefs that assign proba-
bility close to 1 that 2 will be in state wS . On the other hand, if 1 deviates and always
plays E, this signal history leads to beliefs that assign probability close to 1 that 2
will be in state wE . That is, the interpretation of the signal is affected by the action
of player 1 that generated that signal. Because p > q, when a1 = E, z̄ is a signal that
a2 = E, whereas if q < r , then a1 = S implies z̄ is a signal that a2 = S. In the former
case, the continued play of S is not a best response, precluding the sequentiality of grim
trigger. Nonetheless, if q < r , propositions 12.2.1 and 12.3.1 imply that the outcome
produced by grim trigger is a sequential equilibrium outcome.
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Remark

12.3.1
Forgiving grim triggers As we discussed in section 7.2.1, as players become
patient, the payoffs from grim trigger converge to (0, 0). Section 7.7.1 studied
grim triggers in the public monitoring repeated prisoners’dilemma that were more
forgiving (i.e., profiles in which the specification of SS is absorbing, but the first
realization of z need not trigger SS).10 We analyze the implications of minimally
private monitoring on two examples of such profiles in examples 13.4.2 and 13.4.3.

◆

12.4 Independent Monitoring: A Belief-Based Equilibrium
for the Infinitely Repeated Prisoners’ Dilemma

Building on the ideas of section 12.1.2, Sekiguchi (1997) constructs a belief-based
equilibrium for some infinitely repeated prisoners’dilemmas that is arbitrarily efficient,
providing the first example of efficiency in private monitoring repeated games.11

We again work with the prisoners’dilemma of figure 12.1.1. This game is infinitely
repeated, and payoffs are discounted at rate δ. At the end of each period, each player
observes a conditionally independent private signal about his partner’s action in that
period, as described in (12.1.3) and (12.1.4). Recall that such monitoring is ε-perfect
(definition 12.2.1). Although some detailed calculations exploit the conditional inde-
pendence of the private monitoring, the following result (and method of proof ) actually
covers any private monitoring structure sufficiently close to perfect monitoring (see
Sekiguchi 1997 for details).

Proposition

12.4.1
For all ζ > 0, there exists ε > 0 and δ < 1 such that for all δ ∈ (δ, 1), if the con-
ditionally independent private monitoring is ε-perfect, then there is a sequential
equilibrium in which each player’s average payoffs are at least 2− ζ .

The remainder of this section proves the proposition. We construct a Nash
equilibrium, at which point proposition 12.2.1 delivers the result.12

The Nash equilibrium uses the following strategies as building blocks.13 Let σSi
denote the strategy of always shirking,

σSi (h
t
i) = S ∀hti,

and σTi denote the trigger strategy

σTi (h
t
i) =

{
E, if t = 0, or zsi = z̄ for 0 ≤ s ≤ t − 1,

S, otherwise.

10. This is the class of profiles studied by Compte (2002) for the conditionally independent private
monitoring case.

11. Sekiguchi (1997) imposed a restriction on the payoffs of the stage game that is satisfied in our
example—see note 16 on page 407.

12. See Bhaskar and Obara (2002) for an explicit description of the strategies in the sequential
equilibrium.

13. The strategy σTi is the action-free strategy realization equivalent to the grim-trigger strategy that
Sekiguchi (1997) uses.
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Clearly,
(
σS1 , σ

S
2

)
is a Nash equilibrium of the game with private monitoring,

because history is ignored and the static Nash equilibrium of the stage game is played
in each period.

On the other hand,
(
σT1 , σ

T
2

)
is not a Nash equilibrium of the private monitoring

game. After observingz in the first period, player i is supposed to play S in every future
period. But player i believes that player j played E and observed z̄ with probability
1− ε, and so is still exerting effort with probability 1− ε.14 By switching to S, player i
will trigger shirking by j in the next period with probability 1− ε. By playing E, i
maximizes the probability that player j continues to exert effort. For patient players
and low ε, the deviation is profitable.

As in section 12.1.2, randomization will be used to allow behavior to depend on
private histories. The equilibrium described in section 12.1.2 can be interpreted as the
reduced form of such a mixed equilibrium, where G is σTi and B is σSi . In particular,
each player will randomize between σTi and σSi . We first calculate the payoffs from
different strategy profiles. The payoff to a player from the profile

(
σS1 , σ

S
2

)
is clearly

0. The payoff to player 1 from
(
σS1 , σ

T
2

)
, vST

1 , solves

vST
1 = (1− δ)3+ δ

{
(1− ε)× 0+ εvST

1

}
,

and so

vST
1 =

3(1− δ)
1− εδ .

The payoff to 2 from
(
σS1 , σ

T
2

)
, vST

2 , solves

vST
2 = (1− δ)(−1)+ δεvST

2 ,

and so

vST
2 =

−(1− δ)
1− εδ .

Finally, the payoff to 1 (and 2) from
(
σT1 , σ

T
2

)
, vTT

1 , solves

vTT
1 = (1− δ)2+ δ{(1− ε)2vTT

1 + ε(1− ε)
(
vST

1 + vTS
1

)}
,

and so

vTT
1 = 2(1− ε2δ)(1− δ)

(1− δ(1− ε)2)(1− εδ) .

For δ > 1/3 and ε small, vTT
1 > vST

1 , and we always have vST
1 > 0 > vTS

1 . Hence
the players are essentially playing the coordination game in figure 12.4.1 when they
choose betweenσTi andσSi .15 In addition to the two strict equilibria of this coordination
game,

(
σS1 , σ

S
2

)
and

(
σT1 , σ

T
2

)
, there is a mixed strategy equilibrium, with probability

14. Note that this is essentially the argument from the beginning of section 12.1.2 showing that there
is no pure strategy equilibrium with EE in the first period of the two-period example.

15. This coordination game only captures first-period incentives. As we have argued, the pure profile(
σT1 , σ

T
2

)
is not a Nash equilibrium of the repeated game, because some incentive constraints

after the first period are violated.
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σ T
2 σ S

2

σ T
1 vTT

1 , vTT
2 vTS

1 , vTS
2

σ S
1 vST

1 , vST
2 0, 0

Figure 12.4.1 The coordination game.

ξ(ε, δ) = 1− δ(1− ε)2
2δ(1− 2ε)

(12.4.1)

on σTi and (1− ξ(ε, δ)) on σSi . Note that the randomization only occurs in period 1.
The following lemma is key in the construction. Unlike the final equilibrium, this

asserts the existence of an approximately efficient equilibrium for a very limited range
of discount factors.

Lemma

12.4.1
For all ξ ′ < 1, there exist constants η′′ > η′ > 0 and ε > 0 such that for all δ ∈
(1/3+ η′, 1/3+ η′′), there is a Nash equilibrium of the private monitoring game
in which player i plays σTi with probability ξ(ε, δ) > ξ ′ and σSi with probability
(1− ξ(ε, δ)).

Proof Player i’s candidate equilibrium strategy is ξ(ε, δ) ◦ σTi + (1− ξ(ε, δ))σSi . The
lower bound δ = 1/3 is the critical discount factor at which a player is indifferent
between σTi and σSi when the partner is playing σTj for sure and ε = 0 (i.e., from
(12.4.1), ξ(0, 1/3) = 1). Because ξ is a continuous function, for ε small and δ
close to 1/3, ξ(ε, δ) is close to 1 (in particular, larger than ξ ′). Because ξ is
decreasing in δ and increasing in ε, the lower bound η′ ensures that ξ is bounded
away from 1 for all ε small, so a bound on ε can be chosen independently of δ
(the discussion at the end of section 12.1.2 on the order of limits applies here as
well). That is, for η′, η′′, and ε̃ sufficiently small, if δ ∈ (1/3+ η′, 1/3+ η′′) then
ξ ′ < ξ(0, 1/3+ η′′) < ξ(ε, δ) < ξ(ε̃, 1/3+ η′) < 1 for all 0 < ε < ε̃.

After the first period, it is best to think of the strategy of player i as being
described by a two-state automaton (we suppress the player index because the
description of the automaton is the same for both players), with state space
{wE, wS}, output function f : {wE,wS} → {E, S} given by f (wa) = a for
a ∈ {E, S}, and transition function

τ(w, z) =
{
wE, if w = wE and z = z̄,
wS, otherwise.

The strategy σTi has initial state wE , and σSi has initial state wS .
Under the profile of the proposition, the initial state of each player is randomly

determined, with an initial probability of ξ on wE . As each player accumulates
his private histories, he updates his beliefs about the current private state of his
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partner. We denote the probability that player i assigns to player j being in private
state wE in period t by φti . Thus φ0

i = ξ .
The probability that player i assigns to player j being in state wE last period,

given a belief φi last period and after the signal z̄ is

(1− ε)φi
(1− ε)φi + ε(1− φi) ,

whereas after the signal z,

εφi

εφi + (1− ε)(1− φi) .

Player j is still in the state wE this period if he was in that state last period and
received the signal z̄, which depends on the behavior of i last period, so i’s belief
about j ’s state this period is, if i observed z̄ and chose E,

ϕi(φi | Ez̄) = (1− ε) (1− ε)φi
(1− ε)φi + ε(1− φi) , (12.4.2)

and if i chose S,

ϕi(φi | Sz̄) = ε (1− ε)φi
(1− ε)φi + ε(1− φi) .

Before we check for sequential rationality, we show that for δ < 2/5, after any
private history that leads to player i having a belief satisfying φti ≤ 1/2, player
i’s best reply in that period is to play S.16 The payoff to player i from playing S
in the current period is bounded below by (because i can guarantee a continuation
value of at least 0 by always playing S)

ui(S) ≡ φ3(1− δ),
and the payoff from playing E is bounded above by (using the bounds of 3 if j
is always playing E—even if i plays S in the future—and 0 from i detecting for
sure that j is playing σSj )

ūi (E) ≡ φ(2(1− δ)+ 3δ)+ (1− φ)(−(1− δ)).
If player i is sufficiently impatient (δ < 2/5) and sufficiently pessimistic (φ ≤
1/2), ui(S) > ūi(E). If players are patient, on the other hand, even a large proba-
bility that the partner is already inwS may not be enough to ensure that the player
shirks. One more observation before the player commits himself may be quite
valuable, and the cost of inadvertently triggering the partner’s transition fromwE

to wS too costly.

16. Though this upper bound on δ is larger than the lower bound for
(
σT1 , σ

T
2

)
to be an equilibrium

of the game in figure 12.4.1 (1/3 for this parameterization of the prisoners’ dilemma), this is not
true for all prisoners’ dilemmas. The argument presented here requires the upper bound exceed
the lower bound. Bhaskar and Obara (2002) show that the restriction on the class of prisoners’
dilemmas can be dropped.
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There are four classes of histories that arise with positive probability under the
profile, to check for sequential rationality when δ < 2/5:

1. (Ez). Will player i, after starting with grim trigger, immediately switch to
always shirk after observingz in the first period? After seeingz, player i assigns
probability of at least 1/2 to j having played S in the initial period (and so being
in private statewS) if ε is taken to be less than 1− ξ (from our discussion at the
beginning of the proof, ξ is bounded away from 1 for ε small). In that case, by
the above observation, i does indeed find it optimal to play S. Note, moreover,
that by so playing, in the next period i believes j will observe z with high
probability and so, even if j ’s private state had been wE , he will transit to wS .

2. (Ez̄, Ez̄, . . . , Ez̄). If a player has been exerting effort for a long time and has
always observed z̄, will i continue to exert effort? The intuition for this case
matches that encountered in proving lemma 12.3.2. From (12.4.2),

φ′ ≡ 1− 2ε − ε(1− ε)
1− 2ε

is a fixed point of ϕi(· | Ez̄). For 0 < φi < φ′ (if ε < 1/2), φi < ϕi(φi | Ez̄) <
φ′, and for φ′ < φi ≤ 1, φ′ < ϕi(φi | Ez̄) < φi . For ξ(ε, δ) > φ′, player i’s
beliefs fall over time in response to the positive signal due to the current imper-
fections in the monitoring. However, beliefs are bounded below by φ′, which is
close to 1 for ε small. Taking ε small enough that min{φ′, ξ(ε, δ)} is sufficiently
close to 1, E will be optimal after any history (Ez̄, Ez̄, . . . , Ez̄).

3. (Ez̄, Ez̄, . . . , Ez̄, Ez). Will a player shirk as soon asz is observed, after having
observed z̄? To clarify the nature of the argument, we first suppose player i
observes (Ez̄, Ez) = (E0

i z̄
0
i , E

1
i z

1
i

)
. There are two possibilities: Player j is still

in wE but i received an erroneous signal, and player j received an erroneous
signal in the previous period (in which case j is now in wS). Intuitively, these
two events are of equal probability because they each involve one erroneous
signal, and so i assigns probability approximately 1/2 to j still being in state
wE . More formally, considering the most optimistic case, where player j is in
state wE in period 0,

Pr
(
w2
j = wE | E0

i z̄
0
i , E

1
i z

1
i

) = Pr
(
z̄0
j z̄

1
j | E0

i z̄
0
i , E

1
i z

1
i

)
= Pr

(
z̄0
j | E0

i z̄
0
i , E

1
i z

1
i ; z̄1

j )Pr(z̄1
j | E0

i z̄
0
i , E

1
i z

1
i

)
= Pr

(
z̄0
j | E0

i ,z
1
i

)
Pr
(
z̄1
j | E1

i

)
= Pr

(
z̄0
j | E0

i ,z
1
i

)
(1− ε),

where the penultimate equality follows from the conditional independence of
the monitoring and the last from (12.1.4). Now,

Pr
(
z̄0
j | E0

i ,z
1
i

)
= Pr

(
z̄0
j ,z

1
i | E0

i

)
Pr
(
z1
i | E0

i

)
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EEEw EESw ESSw SSSw

SEEw ESEw SESw SSEw

z

z

z

z

zz,

zz,

z z

z

zz, z

zz,

Figure 12.4.2 The automaton representation for the case N = 3. The
decision rule is fi(wabc) = a. The initial distribution µ over
W = {wEEE, wEES , wESE, wSEE, wESS , wSSE, wSES , wSSS } is given
by µ(wabc) = ξ�(1− ξ)3−�, where � is the number of times E
appears in abc.

= Pr
(
z1
i | E0

i , z̄
0
j

)
Pr
(
z̄0
j | E0

i

)
Pr
(
z1
i | E0

i , z̄
0
j

)
Pr
(
z̄0
j | E0

i

)+ Pr
(
z1
i | E0

i ,z
0
j

)
Pr
(
z0
j | E0

i

)
= Pr

(
z1
i | E1

j

)
Pr
(
z̄0
j | E0

i

)
Pr
(
z1
i | E1

j

)
Pr
(
z̄0
j | E0

i

)+ Pr
(
z1
i | S1

j

)
Pr
(
z0
j | E0

i

) = ε(1− ε)
2ε(1− ε) =

1

2
,

where the antepenultimate equality follows from the structure of the profile.
Thus i assigns probability less than 1/2 to player j being inwE after (Ez̄, Ez),
so i does indeed find it optimal to play S. For longer histories of the form
(Ez̄, Ez̄, . . . , Ez̄, Ez), player i can only be more pessimistic about the current
state of j (as an earlier transition to wS may have occurred), and so i again
finds it optimal to play S.

4. (Ez̄, . . . , Ez̄, Ez, Sz̄, . . . , Sz̄). Will a player continue to shirk, when the player
is already in the private statewS and the player observes the signal z̄ (suggesting
that in fact the partner is not in wS)? The player still finds it optimal to shirk in
the future, because he believes that his choice of shirk this period triggers a tran-
sition to the shirk private state by his partner with probability of at least 1− ε.

■

It remains to construct an equilibrium for large δ. Following Ellison (1994), the
repeated game is divided into N distinct “games,” with game k consisting of periods
k + tN , where t ∈ N0 ≡ N ∪ {0}. This gives an effective discount rate of δN on each
game. The profile consists of playing ξ(ε, δN) ◦ σTi + (1− ξ(ε, δN)) ◦ σSi on each of
the N games. The automaton representation for this profile for N = 3 is illustrated in
figure 12.4.2. Setting

δ ≡ 1+ 3η′

1+ 3η′′
,

for every δ > δ, there is an N such that17

17. The desired value of N satisfies δN > 1/3+ η′ > δ(N+1).
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1

3
+ η′ < δN <

1

3
+ η′′.

By lemma 12.4.1, the result is a Nash equilibrium of the original game. Note that the
lower bound δ may be significantly larger than 1/3+ η′′.

Remark

12.4.1
Public correlation Fix ξ ′ < 1 and the implied η′, η′′, and ε from lemma 12.4.1.
As Bhaskar and Obara (2002) emphasize, public correlation can lower the lower
bound δ on the discount factor for the purposes of constructing these equilibria.
More precisely, for any δ ∈ (1/3+ η′, 1/3+ η′′), if players have access to a public
correlating device, we can extend the equilibrium of lemma 12.4.1 to all δ′ > δ as
follows. For any such δ′, let θ = δ/δ′ < 1 and consider the profile that begins with
ξ(ε, δ) ◦ σTi + (1− ξ(ε, δ)) ◦ σSi , i = 1, 2, and, at the beginning of each period,
conditions on a public randomization. With probability θ play continues under the
existing specification, and with probability 1− θ , each player begins again with
ξ(ε, δ) ◦ σTi + (1− ξ(ε, δ)) ◦ σSi . The effective discount rate is θδ′ = δ, and so
the profile is an equilibrium.

◆

12.5 A Belief-Free Example

The product choice game, which we analyzed in section 7.6, provides a convenient
context to illustrate belief-free equilibria (previewed in section 12.1.3 and the subject
of chapter 14). The stage game payoffs are reproduced in figure 12.5.1. Recall, from
section 7.6.1, that for δ ≥ 1/2, the following profile is a subgame-perfect equilibrium
of the repeated game with perfect monitoring: There are two states, W = {wL,wH },
with initial state w0 = wH , output functions,

f1(w) = 1

2
◦H + 1

2
◦ L, and

f2(w) =
{
αh(H) ◦ h+ (1− αh(H)) ◦ �, if w = wH ,

αh(L) ◦ h+ (1− αh(L)) ◦ �, if w = wL,

where αh(H) = αh(L)+ 1/(2δ) and transitions,

τ(w, a) =
{
wH, if a1 = H ,

wL, if a1 = L.

h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 12.5.1 The product choice game from section 7.6. Player 1 is
long-lived, and player 2 is short-lived.
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2w ′′ 2w′

2z ′′
2z′

0
2w

2z′

2z ′′

Figure 12.5.2 An automaton representation of player 2’s strategy.

The profile is illustrated in figure 7.6.2, where the states are labeled γ L and γH

rather thanwL andwH . Moreover, when αh(H) = 1, this profile yields the maximum
equilibrium payoff of 2 for player 1.

Because player 1’s behavior is independent of history, we can construct a simi-
lar equilibrium in the game with private monitoring. For our example, we consider
conditionally independent private monitoring. Player i has private signal space Zi =
{z′i , z′′i }, with marginal distributions

π1(z1 | a) =




1− ε, if z1 = z′1 and a2 = �, or

z1 = z′′1 and a2 = h,

ε, otherwise,

and

π2(z2 | a) =




1− ε, if z2 = z′2 and a1 = L, or

z2 = z′′2 and a1 = H ,

ε, otherwise,

and joint distribution π(z | a) = π1(z1 | a)π2(z2 | a).
Consider the profile described by the two automata (Wi , w

0
i , fi, τi), i = 1, 2.

Player 1’s automaton is trivial: W1 = {w1}, w0
1 = w1, f1(w1) = 1

2 ◦H + 1
2 ◦ L,

and τ1(w, a1z1) = w1. Player 2’s automaton, illustrated in figure 12.5.2, has W2 =
{w′2, w′′2}, w0

2 = w′′2 ,

f2(w2) =
{
α′′ ◦ h+ (1− α′′) ◦ �, if w2 = w′′2 ,

α′ ◦ h+ (1− α′) ◦ �, if w2 = w′2,

and

τ2(w2, a2z2) =
{
w′′2 , if z2 = z′′2,

w′2, if z2 = z′2.

That is, as in the perfect monitoring profile, player 1 randomizes in every period
with probability 1/2 on H . If player 2 observes z′′2, player 2 randomizes, putting
probability α′′ on h. If player 2 observes z′2, then she randomizes, putting probability
α′ on h.

Note that as in the equilibrium of the perfect monitoring game, behavior in
this profile is independent of player 2’s earlier actions. Moreover, given player 1’s
behavior, player 2 is always indifferent between h and �. It remains to verify that
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player 1 is indifferent between H and L, irrespective of the private history, ht1, that 1
observes.

A belief-based approach, like that of the previous sections, would require us to
verify that player 1’s behavior was optimal, given the beliefs that he has over W2 after
each private history ht1 (recall remark 12.2.4). The set of private histories increases
without bound, so this is a daunting task.

The approach of belief-free equilibria, on the other hand, asks that for all private
histories, ht1 ∈H1, player 1’s behavior is a best reply to player 2’s continuation strategy
for all possible private histories ht2 ∈H2 that 2 could have observed (and not just
against the expected continuation under the beliefs β(· | ht1) ∈ �(W2)). Equivalently,
we must show that player 1 is indifferent between H and L regardless of player 2’s
current state. At the same time, player 1 will prefer player 2 to be in state w′′2 , and
the fact that playing L makes a transition to w′2 more likely lies behind player 1’s
indifference. Belief freeness, a stronger condition than simply requiring player 1 play
a best response, is simpler to check and suffices to prove a partial folk theorem in some
settings (see chapter 14).

LetV ε1 (a1, w2) be the value to player 1 from playing a1 in the current period, when
player 2’s current private state is w2, and future play is determined by the profile.18

Then,

V ε1
(
H,w′′2

) = (1− δ)α′′2+ δ(1− ε){1

2
V ε1
(
H,w′′2

)+ 1

2
V ε1
(
L,w′′2

)}
(12.5.1)

+ δε
{

1

2
V ε1
(
H,w′2

)+ 1

2
V ε1
(
L,w′2

)}
,

V ε1
(
L,w′′2

) = (1− δ){α′′3+ (1− α′′)}
+ δε

{
1

2
V ε1
(
H,w′′2

)+ 1

2
V ε1
(
L,w′′2

)}
(12.5.2)

+ δ(1− ε)
{

1

2
V ε1
(
H,w′2

)+ 1

2
V ε1
(
L,w′2

)}
,

V ε1
(
H,w′2

) = (1− δ)α′2+ δ(1− ε){1

2
V ε1
(
H,w′′2

)+ 1

2
V ε1
(
L,w′′2

)}
(12.5.3)

+ δε
{

1

2
V ε1
(
H,w′2

)+ 1

2
V ε1
(
L,w′2

)}
,

and

V ε1
(
L,w′2

) = (1− δ){α′3+ (1− α′)}
+ δε

{
1

2
V ε1
(
H,w′′2

)+ 1

2
V ε1
(
L,w′′2

)}
(12.5.4)

+ δ(1− ε)
{

1

2
V ε1
(
H,w′2

)+ 1

2
V ε1
(
L,w′2

)}
.

We are interested in randomizations by player 2 that have the property that

V ε1
(
H,w′′2

) = V ε1 (L,w′′2) ≡ V ε1 (w′′2)
18. We emphasize, however, that apart from the initial period, player 1 does not know player 2’s

private state.
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and
V ε1
(
L,w′2

) = V ε1 (H,w′2) ≡ V ε1 (w′2).
Equating the right sides of (12.5.1) and (12.5.2) gives

V ε1
(
w′′2
)− V ε1 (w′2) = (1− δ)

δ(1− 2ε)
.

Subtracting (12.5.3) from (12.5.1),

V ε1
(
w′′2
)− V ε1 (w′2) = 2(1− δ)(α′′ − α′).

Solving these two equations,

α′′ − α′ = 1

2δ(1− 2ε)
. (12.5.5)

Because player 1’s myopic incentive to play L is independent of player 2’s action,
(12.5.4) is implied by (12.5.1)–(12.5.3).

Hence, for probabilities α′ and α′′ satisfying (12.5.5), we have constructed a
belief-free equilibrium. Moreover, in this equilibrium, for ε small behavior is close
to the equilibrium of the perfect monitoring game discussed at the beginning of this
section, and for α′′ close to 1 player 1’s payoff is close to 2.

As in the mixed equilibria of the perfect monitoring game, player 1 is indifferent
between L, the myopically dominant action, and H , due to the implied change in
the distribution of continuation values. In particular, a play of H is rewarded in the
next period by a probability (1− ε)α′′ + εα′ on h, rather than the lower probability
εα′′ + (1− ε)α′.

Remark

12.5.1
Long-lived player 2 Player 1’s history-independent behavior implies that the
belief-free equilibrium constructed in this section remains a sequential equilibrium
if player 2 is long-lived.

◆
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13 Almost Public Monitoring Games

Although games with private monitoring have no public histories to coordinate con-
tinuation play, games with almost public monitoring have histories that are almost
public. In this chapter, pursuing ideas introduced in section 12.3, we explore the extent
to which it is possible to coordinate continuation play for such games.

We ask when an equilibrium strategy profile in a public monitoring game induces
an equilibrium in a corresponding game whose private monitoring is almost public.
After describing the sense in which private monitoring games can be almost public,
we present two central results: It is always possible to coordinate continuation play
by requiring behavior to have bounded recall (i.e., there is a bound L such that in any
period, the last L signals are sufficient to determine behavior). Moreover, in games
with general almost public private monitoring, this is essentially the only behavior
that can coordinate continuation play. The structure of a public strategy profile is thus
important in determining whether it remains an equilibrium in the private monitoring
game. This chapter is accordingly focused more on the nature of equilibrium behavior
than on equilibrium payoffs, though it does conclude with a folk theorem.

The benchmark public monitoring game is as described in chapter 7, with finite
action and signal spaces. We use a ˜ to denote payoffs in the public monitoring
game. Hence, player i’s payoff after the realization (y, a) is given by ũ∗i (y, ai).
Stage game payoffs in the game with public monitoring are then given by ũi (a) ≡∑
y ũ
∗
i (y, ai)ρ(y | a). We omit ˜ for payoffs in the private monitoring game.

In this chapter, by the phrase public profile, we will always mean a strategy profile
for the public monitoring game that is itself public. Given a pure public profile (and
the associated automaton), continuation play after any history is determined by the
public state reached by that history. In games with private monitoring, by contrast, a
sufficient statistic for continuation play after any history is the vector of current private
states, one for each player (remark 12.2.4). A private profile is a strategy profile in the
private monitoring game.

13.1 When Is Monitoring Almost Public?

When taking ε to 0 in the following definition, we often refer to private monitoring
distributions ε-close (under some ξ ) to the public monitoring distribution as being
almost public.

415
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Definition

13.1.1
The private monitoring distribution (Z, π) is ε-close under ξ to a full-support
public monitoring distribution (Y, ρ), where ξ = (ξ1, . . . , ξn) is a vector of signal
interpretations ξi : Zi → Y , if

1. for all y ∈ Y , zi ∈ ξ−1
i (y), and all a ∈ A with πi(zi | a) > 0,

π({z−i : ξj (zj ) = y for all j �= i}|(a, zi)) ≥ 1− ε,
and

2. for each a ∈ A and y ∈ Y ,∣∣π({z : ξi(zi) = y for all i}|a)− ρ(y|a)∣∣ ≤ ε.

The private monitoring distribution (Z, π) is ε-close to the full-support public
monitoring distribution (Y, ρ) if it is ε-close under some signal interpretations ξ
to (Y, ρ).

Under this definition, every private signal is interpretable as some public signal.
The first condition guarantees that conditional on a player’s private signal mapped into
the public signal y, he assigns very high probability to every other player having also
observed a private signal mapped into the same public signal y. The second condition
guarantees that the probability that all players observe some private signal consistent
with the public signal y is close to the probability of y under ρ. For sufficiently small ε,
this condition requires that every player has at least one private signal mapped to each
public signal.

Say the monitoring is minimally private ifZi = Y and ξi is the identity.1 We denote
minimally private monitoring distributions by (Y n, π). In this case, the second con-
dition implies the first for ε small and full-support public monitoring (lemma 13.1.1).
The vector (1, . . . , 1) is denoted 1, whose dimension will be obvious from context.
Thus, π(y, . . . , y | a) is written as π(y1 | a).

Lemma

13.1.1
Fix a full-support public monitoring distribution (Y, ρ) and ε > 0. There exists
η > 0 such that for all distributions π ∈ �(Yn), if |π(y1 | a)− ρ(y | a)| < η

for all y ∈ Y and all a ∈ A, then the minimally private monitoring distribution
(Y n, π) is ε-close to (Y, ρ).

Proof Fix the action profile a ∈ A. The probability that player i observes the private
signal zi = y is

∑
y−i π(y, y−i | a) and this probability is smaller than

(ρ(y | a)+ η)+
∑

y−i �=y1

π(y, y−i | a) < ρ(y | a)+ η +
∑
ỹ∈Y

∑
y−i �=ỹ1

π(ỹ, y−i | a)

< ρ(y | a)+ η +

1−

∑
ỹ∈Y

π(ỹ1 | a)



< ρ(y | a)+ η(1+ |Y |).
Thus, the probability player i assigns to the other players observing the same signal
y, π(y1 | a, zi = y), is at least as large as π(y1 | a){ρ(y | a)+ η(1+ |Y |)}−1

> (ρ(y | a)− η){ρ(y | a)+ η(1+ |Y |)}−1. Thus, by choosing

1. Mailath and Morris (2002) use the term almost public monitoring without qualification for
minimally private monitoring.
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η < min
a∈A,y∈Y

ερ(y | a)
2+ |Y | − ε(1+ |Y |) , (13.1.1)

we have π(y1 | a, zi = y) > 1− ε for all a.
■

Remark

13.1.1
Full support The assumption that the public monitoring distribution ρ in
lemma 13.1.1 has full support is necessary for the conclusion that all minimally
private monitoring distributions π satisfying |π(y1 | a)− ρ(y | a)| < η for all
y ∈ Y and all a ∈ A, for some η, are ε-close. It is apparent from (13.1.1) that if
some signal y has zero probability under an action profile a, then for any η, we
can construct a π violating the first part of definition 13.1.1.

◆

Example

13.1.1
We now return to the prisoners’ dilemma example of section 12.3, but with a
richer set of private signals for player 1, Z1 = {z1, z̄

′
1, z̄
′′
1}. Player 2 still has

two signals, Z2 = {z2, z̄2}. The probability distribution of the signals is given
in figure 13.1.1. This private monitoring distribution is

√
ε-close to the public

monitoring distribution of (7.2.1) (reproduced in (12.1.1)) under the signal inter-
pretations ξ1(z1) = ξ2(z2) = y and ξ2(z̄2) = ξ1(z̄

′
1) = ξ1(z̄

′′
1) = ȳ, as long as ε is

sufficiently small (relative to min{ζ ′, ζ − ζ ′, 1− ζ }).
●

The condition of ε-closeness in definition 13.1.1 can be restated as follows. An
event is p-evident if whenever it is true, everyone assigns probability at least p to
it being true (Monderer and Samet 1989). The following lemma is a straightforward
application of the definitions, so we omit the proof.

Lemma

13.1.2
Suppose ξi : Zi → Y , i = 1, . . . , n, is a collection of signal interpretations. The
private monitoring distribution (Z, π) is ε-close under ξ to the public monitoring
distribution (Y, ρ) if and only if for each public signal y, the set of private signal

z2 z̄2

z1 (1− ζ ) (1− 3ε) ε

z̄′1 ε ζ ′ (1− 3ε)

z̄′′1 ε
(
ζ − ζ ′) (1− 3ε)

Figure 13.1.1 The probability distribution of private signals
for example 13.1.1. The distribution is given as a function
of the action profile a, where ζ = p if a = EE, q if a = ES
or SE, and r if a = SS (analogously, ζ ′ is given by p′, q ′, or
r ′ as a function of a).
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profiles {z : ξi(zi) = y for all i} is (1− ε)-evident (conditional on any action
profile) and has probability within ε of the probability of y (conditional on that
action profile).

13.2 Nearby Games with Almost Public Monitoring

This section provides the tools for associating behavior in a public monitoring game
with behavior in a nearby private monitoring game.

13.2.1 Payoffs

We say that public monitoring and private monitoring games are close if their signals
and payoffs are close.

Definition

13.2.1
A private monitoring game (u∗, (Z, π)) is ε-close under ξ to a public monitoring
game (ũ∗, (Y, ρ)) if (Z, π) is ε-close under ξ to (Y, ρ) and |ũ∗i (ξi(zi), ai)−
u∗i (zi , ai)| < ε for all i, ai ∈ Ai , and zi ∈ ξ−1

i (Y ).

The ex ante stage game payoffs of any almost public monitoring game are close
to the ex ante stage game payoffs of the benchmark public monitoring game.

Lemma

13.2.1
For all η > 0, there is an ε > 0 such that if (u∗, (Z, π)) is ε-close to (ũ∗, (Y, ρ)),
then for all i and all action profiles a,∣∣∣∣∣ ∑

z1,...,zn

u∗i (zi , ai)π(z1, . . . , zn | a)−
∑
y

ũ∗i (y, ai)ρ(y | a)
∣∣∣∣∣ < η.

Proof Suppose (u∗, (Z, π)) is ε-close to (ũ∗, (Y, ρ)) under (ξ1, . . . , ξn). Then, for all a,∣∣∣∣∣ ∑
z1,...,zn

u∗i (zi , ai)π(z1, . . . , zn | a)−
∑
y

ũ∗i (y, ai)ρ(y | a)
∣∣∣∣∣

≤

∣∣∣∣∣∣∣
∑
y

∑
z1∈ξ−1

1 (y),...,zn∈ξ−1
n (y)

u∗i (zi , ai)π(z1, . . . , zn | a)− ũ∗i (y, ai)ρ(y | a)

∣∣∣∣∣∣∣
+ |Y |εmax

zi ,ai
|u∗i (zi , ai)|

≤

∣∣∣∣∣∣∣
∑
y

ũ∗i (y, ai)




∑
z1∈ξ−1

1 (y),...,zn∈ξ−1
n (y)

π(z1, . . . , zn | a)− ρ(y | a)



∣∣∣∣∣∣∣

+ ε + |Y |εmax
zi ,ai
|u∗i (zi , ai)|

≤ 2|Y |εmax
zi ,ai
|u∗i (zi , ai)| + ε + ε2|Y |,

where the first inequality follows from
∑
y π({z : ξi(zi) = y for each i}|a) >

1− ε|Y | (an implication of definition 13.1.1(2)); the second equality follows
from |ũ∗i (y, ai)− u∗i (zi , ai)| < ε for all i, ai ∈ Ai , and zi ∈ ξ−1

i (y); and the
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third inequality follows from definition 13.1.1(2) and maxy,ai |ũ∗i (y, ai)| ≤
maxzi ,ai |u∗i (zi , ai)| + ε. The last term can clearly be made smaller than η by
appropriate choice of ε.

■

13.2.2 Continuation Values

Fix a public profile (W , w0, f, τ ) of a full-support public monitoring game (ũ∗, (Y, ρ))
and an ε-close private monitoring game (u∗, (Z, π)), under ξ . The public profile
induces a private profile in the private monitoring game in a natural way. Player i’s strat-
egy is described by the automaton (W , w0, fi, τi), where τi(wi, zi) = τ(wi, ξi(zi))
for all zi ∈ Zi and wi ∈ W . The set of states, initial state, and decision function are
from the public profile. The transition function τi is well defined, because the signal
interpretations all map into Y . If W is finite, each player can be viewed as following
a finite state automaton.

This private strategy is action-free, and so i’s state is well defined for private
histories reached by i deviating, because the state is only a function of the pri-
vate signals. We recursively calculate the states of player i as w1

i = τ(w0, ξi(z
0
i )) =

τi(w
0, z0

i ), w
2
i = τi(w1

i , z
1
i ), and so on. Thus, for any private history hti , we write

wti = τi(w0, hti) (though, because the profile is action-free, i’s past actions do not
affect i’s state transitions). When we can take the initial state as given, we write
wti = τi(w0, hti) = τi(hti). Though all players are in the same private state in the first
period, because the signals are private, after the first period, different players may be in
different private states. The private profile is the translation to the private monitoring
game of the public profile (of the public monitoring game).

Consider now a strategy σi for i in a private monitoring game ε-close under ξ
to a public monitoring game. The strategy is measurable with respect to the parti-
tion on Zi induced by ξi if, for all hti, ĥ

t
i ∈Hi , if ξi(zsi ) = ξi(ẑsi ) for all s < t , then

σi(h
t
i) = σ(ĥti ). For brevity, we write σi is measurable under ξi . (With minimally

private monitoring, all strategies are measurable under ξi , because ξi is the identity.)
In this case, σi induces a strategy σ̃i in the game with public monitoring: For all histo-
ries h̃ti ∈ (Ai × Y )t−1, σ̃i (h̃ti ) = σi(hti), wherehti ∈ (Ai × Zi)t−1 is the private history
given by asi = ãsi and zsi ∈ Zi is some private signal satisfying ξi(zsi ) = ysi (because
σi is measurable under ξi , the particular choice of zsi is irrelevant).

Recalling remark 12.2.4, if player i believes that the other players are following a
strategy induced by the public profile (W , w0, f, τ ), a sufficient statistic of hti for the
purposes of evaluating continuation strategies is player i’s private state and i’s beliefs
over the other players’ private states, that is, (wti , β

t
i ), where βti ∈ �(W n−1).

Suppose (u∗, (Z, π)) is ε-close to (ũ∗, (Y, ρ)). Fix a public profile, represented by
the automaton (W , w0, f, τ ). Let Ũi(σ̃i | w) be the expected value of the strategy σ̃i
in the public monitoring game when players j �= i follow the automaton (W , w, f, τ )

(note that the initial state is now w, not w0). Denote by Ui(σi | hti) the continuation
value of the strategy σi in the private monitoring game, conditional on the private
history hti , when players j �= i follow the private strategies induced by (W , w0, f, τ ).

If a player is sufficiently confident that all the other players are in the same private
state w, then his payoff from any strategy measurable under ξi is close to the payoff
from the comparable strategy in the nearby public monitoring game.
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Lemma

13.2.2
Fix a public profile (W , w0, f, τ ) of the public monitoring game (ũ∗, (Y, ρ)) with
discount factor δ. For all υ > 0, there exists η > 0 and ε > 0, such that for all
(u∗, (Z, π)) ε-close under ξ to (ũ∗, (Y, ρ)) and all i if the posterior belief implied
by the induced private profile and the private history ĥti satisfies βi(w1 | ĥti ) >
1− η for some w ∈ W , then for any σi , with σi |ĥti measurable under ξi ,

∣∣Ui(σi | ĥti )− Ũi(σ̃i | w)∣∣ < υ, (13.2.1)

where σ̃i is the strategy in the public monitoring game induced by σi |ĥti .

Proof For fixed i andw ∈ W , let σ̃ w−i denote the public profile for players j �= i described
by the automaton (W , w, f, τ ), and σw−i the induced private profile. Then,

Ui(σi | ĥti ) is calculated assuming players j �= i have been following the pro-
file induced by (W , w0, f, τ ) from the initial period, and not that the continuation
play of j �= i is σwj , where w = τ(w0, ĥti ). The latter value, that is, the continua-

tion value of σi after ĥti , conditional on the continuation play of j �= i being given
by σwj , is denoted Ui(σi | ĥti , w1). We then have (using obvious notation),

Ui(σi | ĥti ) = Ui(σi | ĥti , w1)βi(w1 | ĥti )
+ Ui(σi | ĥti , w−i �= w1){1− βi(w1 | ĥti )}.

Payoffs are bounded, so there exists η sufficiently small (independent of i and σi),
such that, if βi(w1 | ĥti ) > 1− η, then

∣∣Ui(σi | ĥti )− Ui(σi | ĥti , w1)
∣∣ < υ

3 . (13.2.2)

For fixed δ < 1, there is a T such that the continuation value from T + 1 on is
less than υ/3.

For any λ > 0, there exists ε > 0 (independent of i and σi), such that for any
π ε-close to ρ, for all T -period sequences of public signals (y1, . . . , yT ), the
probability of the private monitoring event

{(z1, . . . , zT ) ∈ ZT : ξi(zti ) = yt , for all i and t = 1, . . . , T }

under σ is within λ > 0 of the probability of (y1, . . . , yT ) under σ̃ . Moreover, by
choosing λ sufficiently small, we can ensure that conditional on all players j �= i
being in the same private statew in period t , the expected discounted value of the
firstT periods of play underσ is withinυ/3 of the expected discounted value of the
first T periods of play under σ̃ . Hence, from the determination of T , conditional
on all players j �= i being in the same private state w in period t , the expected
discounted value of play under σ is within υ/3 of the expected discounted value
of play under σ̃ , that is,∣∣Ui(σi | ĥti , w1)− Ũi(σ̃i | w)

∣∣ < 2υ
3 ,

which, with (13.2.2), implies (13.2.1).
■
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13.2.3 Best Responses

Consider a strict PPE of a public monitoring game, (W , w, f, τ ). Suppose player i
is very confident that all the other players are in the same common private state w.
Then, because the incentive constraints (as described by corollary 7.1.1) are strict as
long as player i is sufficiently confident that the other players are in the same state w,
fi(w) should still be optimal: Lemma 13.2.2 implies that the payoff implications of
small perturbations in the continuation play of the opponents (reflecting both a player
not being in the private state w and receiving future private signals inconsistent with
those observed by i) are small (at least when i’s continuation strategy is measurable
under ξi). The next lemma formalizes the intuition of note 9 on page 401.

Lemma

13.2.3
Suppose the public profile (W , w0, f, τ ) is a strict PPE of the public moni-
toring game (ũ∗, (Y, ρ)) with discount factor δ. For all w ∈ W , there exists
η > 0 and ε > 0, such that for all (u∗, (Z, π)) ε-close under ξ to (ũ∗, (Y, ρ)), if
βi(w1 | ĥti ) > 1− η for some ĥti ∈Hi , then for anyσi , if the continuation strategy
σi |ĥti is a best reply at ĥti and is measurable under ξi , then σi(ĥti ) = fi(w).

Proof Fix a state w′ ∈ W and private history ĥti and strategy σi for player i. Suppose

σi(ĥ
t
i ) �= fi(w′) and σi |ĥti is measurable under ξ . Denote by σ̃i the public strategy

induced by σi |ĥti and by σ̃ ′i the strategy for player i described by (W , w′, fi, τ ).
Because the public profile is a strict PPE, the payoff loss from not choosing fi(w′)
in the current period, when the public profile is in state w′, is at least 3υ > 0 for
some υ (corollary 7.1.1), and so,

Ũi(σ̃
′
i | w′)− Ũi(σ̃i | w′) > 3υ.

Let σ ′i denote the strategy in the private monitoring game induced by σ̃ ′i , and let
σ ∗i be the strategy given by

σ ∗i (hsi ) =
{
σi(h

s
i ), if s < t ,

σ ′i (ȟ
s−t
i ), if s ≥ t , where hsi = (hti , ȟs−ti ).

In other words, for s ≥ t , σ ∗i ignores the first t periods of the history and plays
as if play began in period t with initial state w′. Applying lemma 13.2.2, for
sufficiently small η and ε, if βi(w′1 | ĥti ) > 1− η and (u∗, (Z, π)) is ε-close
under ξ to (ũ∗, (Y, ρ)), then (because σ̃ ′i is the public strategy induced by σ ∗i |ĥti )

Ui(σ
∗
i | ĥti )− Ui(σi | ĥti ) ≥ Ui(σ ∗i | ĥti )− Ũi(σ̃ ′i | w′)

+ (Ũi(σ̃ ′i | w′)− Ũi(σ̃i | w′))
+ Ũi(σ̃i | w′)− Ui(σi | ĥti )
≥ υ.

Thus, σi |ĥti cannot be a best reply at ĥti .
■

13.2.4 Equilibrium

Our bookkeeping lemmas, lemmas 13.2.2 and 13.2.3, immediately give us a simple
and intuitive sufficient condition for when a strict PPE induces an equilibrium in nearby
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games with private monitoring: After all private histories hti ∈Hi , player i must be
sufficiently confident that all other players are in the same private state as himself, that
is, in τi(hti) = τi(w0, hti). Because we need the bounds on η and ε to apply for all states
w ∈ W of the automaton, we strengthen strict to uniformly strict (definition 7.1.4). Any
strict PPE with finite W is uniformly strict.

Proposition

13.2.1
Suppose the public profile (W , w0, f, τ ) is a uniformly strict PPE of the public
monitoring game (ũ∗, (Y, ρ)) with discount factor δ. For all κ > 0, there exists
η > 0 and ε > 0, such that for all (u∗, (Z, π)) ε-close under ξ to (ũ∗, (Y, ρ)), if
βi(τi(h

t
i)1 | hti) > 1− η for all hti ∈Hi , then the private profile is a sequential

equilibrium of the game with private monitoring for the same δ, and the expected
payoff in that equilibrium is within κ of the public equilibrium payoff.

Proof From proposition 12.2.3, it is enough to show that no player has a profitable one-
shot deviation. Because the private profile is measurable under ξ , this follows from
lemma 13.2.3. The uniform strictness of the PPE allows us in lemma 13.2.3 to
choose η and ε independently of w ∈ W . The κ-closeness of equilibrium payoffs
follows from lemma 13.2.2.

■

A version of the one-shot deviation principle implies that private profiles induced
by uniformly strict PPE are Nash equilibria.

Proposition

13.2.2
Suppose the public profile (W , w0, f, τ ) is a uniformly strict PPE of the public
monitoring game (ũ∗, (Y, ρ)) with full support ρ and discount factor δ. For all
κ > 0, there exists η > 0 and ε > 0, such that for all (u∗, (Z, π)) ε-close to
(ũ∗, (Y, ρ)), if βi(τi(hti)1 | hti) > 1− η for all hti consistent with the induced
private profile, then the private profile is a Nash equilibrium of the game with
private monitoring for the same δ, and the expected payoff in that equilibrium
is within κ of the public equilibrium payoff. Moreover, if πi(zi | a) > 0 for all i,
zi ∈ Zi , and a ∈ A, there is a realization-equivalent sequential equilibrium.

Proof Let σ be the private profile induced by the public profile σ̃ ≡ (W , w, f, τ ). Let
σ ∗i �= σi be a deviation for player i, with Ui(σ ) �= Ui(σ ∗i , σ−i ). Then there exists
some private history hti ∈Hi consistent with the strategy profile σ such that
σ ∗i (h

t
i) �= σi(hti). Let σ ∗∗i denote the strategy that agrees with σ ∗i at hti and agrees

with σi otherwise (σ ∗∗i is a one-shot deviation from σi). Observe that because σ̃
is a PPE, the continuation strategy implied by σ̃ ∗∗i is a best reply to the behavior
of the other players in periods after hti . Therefore,

Ũi(σ̃
∗
i |hti

∣∣ τ(hti)) ≤ Ũi(σ̃ ∗∗i |hti ∣∣ τ(hti)).
Because the public profile is a uniformly strict PPE, there exists υ > 0 (indepen-
dent of hti) such that

Ũi(σ̃
∗∗
i |hti

∣∣ τ(hti)) < Ũi(σ̃i |hti
∣∣ τ(hti))− 3υ.

Finally, we have (from lemma 13.2.2), for small η and ε,

Ui(σ
∗
i

∣∣hti) < Ũi(σ̃
∗
i |hti

∣∣ τ(hti))+ υ
≤ Ũi(σ̃ ∗∗i |hti

∣∣ τ(hti))+ υ
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< Ũi(σ̃i |hti
∣∣ τ(hti))− 2υ

< Ui(σi | hti)− υ,

so that σ ∗i is not a profitable deviation. Thus (W , w0, f, τ ) induces a Nash
equilibrium of the game with private monitoring.

Finally, when the marginals of π have full support we can apply proposi-
tion 12.2.1 to conclude that any Nash equilibrium outcome can be supported by a
sequential equilibrium.

■

In section 13.4, we provide conditions under which the private profile induced by
a strict PPE is not a Nash equilibrium in nearby almost public monitoring games. In
principle, this is a more difficult task than showing a profile is a Nash equilibrium. In
the latter task, the hope is that the game with almost public monitoring is close enough
that incentives carry-over to the private monitoring game essentially unchanged (and
this is the content of propositions 13.2.1 and 13.2.2). In the former task, we have no
such hope. However, proposition 12.3.1, on the failure of grim trigger to induce a
Nash equilibrium, suggests that in some cases the game with almost public monitoring
is close enough that incentives carry-over for deviations. And, indeed, lemma 13.2.3
immediately implies the following useful proposition.

Proposition

13.2.3
Suppose the public profile (W , w0, f, τ ) is a uniformly strict equilibrium of the
public monitoring game (ũ∗, (Y, ρ)) for some δ. There exists η > 0 and ε > 0
such that for any private monitoring game (u∗, (Z, π)) ε-close to (ũ∗, (Y, ρ)), if
there exists a player i, a positive probability private history for that player hti , and
a statew such that fi(w) �= fi(τi(hti)) and βi(w1 | hti) > 1− η, then the induced
private profile is not a Nash equilibrium of the game with private monitoring for
the same δ.

13.3 Public Profiles with Bounded Recall

As we saw in proposition 12.3.1, a grim trigger PPE need not induce equilibria of
almost public monitoring games because the public state in period t is determined in
principle by the entire history ht . Section 12.3.1, on the other hand, described how
an equilibrium is induced in nearby games by a particular profile in which the last
realized signal is sufficient to determine behavior. More generally, this section shows
that equilibria in bounded recall strategies induce equilibria in almost public monitoring
games.

Definition

13.3.1
A public profile σ has L bounded recall if for all ht = (y0, . . . , yt−1) and ĥt =
(ŷ0, . . . , ŷt−1), if t ≥ L and ys = ŷs for s = t − L, . . . , t − 1, then

σ(ht ) = σ(ĥt ).

The following characterization of bounded recall is useful.
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Lemma

13.3.1
The public profile induced by the minimal automaton (W , w0, f, τ ) hasL bounded
recall if and only if for all w,w′ ∈ W reachable in the same period and for all
h ∈ Y∞,

τ(w, hL) = τ(w′, hL).
Proof Suppose for all w,w′ ∈ W reachable in the same period and for all h ∈ Y∞,

τ(w, hL) = τ(w′, hL).

Then for all w,w′ ∈ W reachable in the same period and for all h ∈ Y∞,

f (τ(w, ht )) = f (τ(w′, ht )), ∀t ≥ L+ 1.

If w = τ(w0, y1, . . . , yt−L−1) and w′ = τ(w0, ŷ1, . . . , ŷt−L−1), then for ht and
ĥt as specified in definition 13.3.1,

σ(ht ) = f (τ(w, yt−L, . . . , yt−1))

= f (τ(w′, yt−L, . . . , yt−1))

= f (τ(w′, ŷt−L, . . . , ŷt−1)) = σ(ĥt ),

and thus σ has L bounded recall.
Suppose now the profile σ has L bounded recall. Let (W , w0, f, τ ) be a min-

imal representation of σ . Suppose w and w′ are two states reachable in the same
period. Then there exists hs and ĥs such thatw = τ(w0, hs) andw′ = τ(w0, ĥs).
For all h ∈ Y∞, hsht and ĥsht agree for the last t periods, and so if t ≥ L, they
agree for at least the last L periods, and so

f (τ(w, ht )) = σ(hsht )
= σ(ĥsht ) = f (τ(w′, ht )).

Minimality of the representing automaton then implies that for all h ∈ Y∞ and
w,w′ ∈ W reachable in the same period, τ(w, hL) = τ(w′, hL).

■

Proposition

13.3.1
Fix a public monitoring game (ũ∗, (Y, ρ)) with discount factor δ and a strict
PPE σ̃ , with bounded recall L. There exists ε > 0 such that for all private mon-
itoring games (u∗, (Z, π)) ε-close under ξ to (ũ∗, (Y, ρ)), the induced private
profile is a sequential equilibrium of the private-monitoring game with the same δ.

Proof Fix a strict PPE with bounded recall, (W , w0, f, τ ). Fix a private monitoring
technology (Z, π) ε-close under ξ to (Y, ρ). Denote the private state reached
after a private history hti by wi(hti), and note that by lemma 13.3.1, the private
state depends only on t and the last L realizations of the private signals in hti .

BecauseL is finite, the PPE is trivially uniformly strict. Moreover, for allη > 0,
ε can be chosen such that all players assign at least probability 1− η to all the
other players observing sequences ofL private signals that are consistent with their
own sequence of L private signals, that is, for all hti ∈Hi , βi(wi(hti)1 | hti) >
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1− η. Lemmas 13.2.2 and 13.2.3 then imply that for ε sufficiently small, the
profile (σ̂1, . . . , σ̂n) is a sequential equilibrium where σ̂i is the strategy

σ̂ ti (h
t
i) = fi(wi(hti))

and wi(h0
i ) = w0.

■

Remark

13.3.1
Uninterpretable signals Even if there is some small chance that players observe
an uninterpretable signal, bounded recall PPE can be extended to sequential equi-
libria of nearby private monitoring games (Mailath and Morris 2006).

◆

Remark

13.3.2
Scope of bounded recall strategies A characterization of the set of PPE payoffs
achievable using bounded recall strategies is still unavailable. Cole and Kocher-
lakota (2005) show that for some parameterizations of the prisoners’ dilemma,
the set of PPE payoffs achievable by bounded recall strongly symmetric profiles
is degenerate, consisting of the singleton {u(SS)}, whereas the set of strongly
symmetric PPE with unbounded recall is strictly larger.

◆

13.4 Failure of Coordination under Unbounded Recall

This section shows that we quite generally cannot coordinate behavior with unbounded
recall strategies. We begin with three examples in the repeated prisoners’ dilemma.

13.4.1 Examples

Example

13.4.1
From proposition 12.3.1, the implied private profile from grim trigger is a
Nash equilibrium in minimally private almost public monitoring games only
if q < r . We now argue that under the private monitoring of example 13.1.1,
even if q < r , the implied profile is not a Nash equilibrium in some nearby
games with almost public monitoring. Suppose 0 < r ′ < q ′ < q < r . Under
this parameter restriction and for ε sufficiently small, the signal z̄′′1 after S is
a signal that player 2 also played S (i.e., π1(z̄

′′
1 | SS) = ε + (r − r ′)(1− 3ε) >

ε + (q − q ′)(1− 3ε) = π1(z̄
′′
1 | SE)). However, the signal z̄′1 after S is a signal

that player 2 played E (i.e., π1(z̄
′
1 | SS) < π1(z̄

′
1 | SE)), and so there is a βε < 1

with limε→0 βε = 1 so that, whenever Pr(wt2 = wEE) < βε,2

Pr(wt+1
2 = wEE | z̄′1, a1 = S) = Pr(wt+1

2 = wEE, z̄
′
1 | a1 = S)

Pr(z̄′1 | a1 = S)

2. Following the notational convention of this chapter, we label the states in players’ private
automata with their labels in the corresponding public automaton, in contrast to section 12.3.2.
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= Pr(z̄′1z̄2, w
t
2 = wEE | a1 = S)

Pr(z̄′1 | a1 = S)
= π(z̄′1z̄2 | SE)Pr(wt2 = wEE)

π1(z̄
′
1 | SE)Pr(wt2 = wEE)+ π1(z̄

′
1 | SS)Pr(wt2 = wSS)

= q ′(1− 3ε)Pr(wt2 = wEE)

ε + (1− 3ε)[q ′Pr(wt2 = wEE)+ r ′Pr(wt2 = wSS)]
> Pr(wt2 = wEE).

Hence a sufficiently long history of the form (Ez1, Sz̄
′
1, Sz̄

′
1, . . . , Sz̄

′
1) will lead to

a posterior for player 1 assigning a probability close to 1 (for sufficiently small ε)
that player 2’s private state is still wEE , and so by proposition 13.2.3, the profile
is not a Nash equilibrium.

●

Example

13.4.2
We return to the minimally private monitoring game of section 12.3 and consider
the forgiving profile in figure 13.4.1. This profile is a strict PPE for sufficiently
large δ if 3p − 2q > 1 (that is, if (7.2.5) holds). As for grim trigger, this profile
does not induce a Nash equilibrium in any nearby minimally-private monitoring
game if q > r . However, the analysis for the q < r case now breaks into two
subcases, because isolated observations of zi do not lead to a private state of
wi = wSS . For histories in which player i observes either two consecutive or no
zi , the arguments in the proof of lemma 12.3.2 show that player i has no profitable
deviation. The remaining histories are those with isolated observations of zi . The
critical history, because it contains the largest fraction of zi’s consistent withE, is
(Ezi, Ez̄i, Ezi, Ez̄i , . . . , Ezi, Ez̄i), that is, alternating zi and z̄i . If p(1− p) >
q(1− q), such a history indicates that the other player is still playing E, and
conditional on both players being in one ofwEE or ŵEE , a player assigns very high
probability to the other player being in the same state (the state being determined by
the last signal). The profile thus induces a Nash equilibrium in nearby minimally-
private monitoring games if q < r and p(1− p) > q(1− q). On the other hand,
ifp(1− p) < q(1− q), histories of the form (Ezi, Ez̄i, Ezi, Ez̄i , . . . , Ezi, Ez̄i)

indicate that the other player is playing S and so player i strictly prefers not to
follow the profile after a sufficiently long such history.

●

EEw EEŵ

y
y

y

y
0w

SSw

yy,

Figure 13.4.1 A forgiving profile in which two consecutive observations
of y are needed to trigger permanent SS. As usual, the decision rule is
given by f (wa) = a.
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EEw EEŵ

y

y

y

y
0w

SSw

yy,

Figure 13.4.2 A forgiving profile in which two nonconsecutive
observations of y trigger permanent SS.

Example

13.4.3
Our final forgiving profile in the context of the minimally private monitoring game
of section 12.3 is displayed in figure 13.4.2. As for the profile from example 13.4.2,
this profile is a strict PPE for sufficiently large δ if (7.2.5) holds. This PPE never
induces a Nash equilibrium in any nearby minimally private monitoring game.
Consider the player 1 private history (Ez̄1, Ez̄1, . . . , Ez̄1) for T periods, followed
by Ez1. Under the profile in figure 13.4.2, player 1 is supposed to transit to the
private state ŵEE and play E. But for large T , it is significantly more likely
that player 2 has observed z2 in exactly one of the first T periods than having
observed z̄2 in every period. Consequently, for largeT , player 1 assigns probability
arbitrarily close to 1 that 2’s private state is wT2 = ŵEE .3 The signal z1 then leads
player 1 to assign a probability arbitrarily close to 1 that 2’s private state is now
wT+1

2 = wSS , and so by lemma 13.2.3, 1 finds S uniquely optimal.
●

13.4.2 Incentives to Deviate

The examples in section 13.4.1 illustrate that the updating in almost public monitoring
games can be very different than would be expected from the underlying public mon-
itoring game. We now build on these examples to show that when the set of signals
is sufficiently rich (in a sense to be defined), many profiles fail to induce equilib-
rium behavior in almost public monitoring games (proposition 13.4.1). This will occur
whenever a player’s beliefs can be manipulated through the selection of a private his-
tory so that the hypotheses of proposition 13.2.3 can be satisfied. In particular, we are
interested in the weakest independent conditions on the private monitoring distribu-
tions and on the strategy profiles that would allow such manipulation. These conditions
will need to rule out the drift in beliefs that disrupted the putative equilibrium of exam-
ple 13.4.3, because such drift precludes the belief manipulation that lies at the heart of
proposition 13.4.1 (and examples 13.4.1 and 13.4.2).

Fix a PPE of the public monitoring game and a nearby almost public monitoring
game. The logic of example 13.4.1 runs as follows: Consider a player i in a private
state ŵ who assigns strictly positive (albeit small) probability to all the other
players being in some other common private state w̄ �= ŵ (full-support private
monitoring ensures that such an occurrence arises with positive probability). Let
ã = (fi(ŵ), f−i (w̄)) be the action profile that results when i is in state ŵ and all

3. This drift in beliefs can arise when players choose the same action in different states.
Example 13.4.6 is a richer illustration.
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A B C

A 3, 3 0, 0 0, 0

B 0, 0 2, 2 0, 0

C 0, 0 0, 0 3, 3

Figure 13.4.3 The stage game
for examples 13.4.4–13.4.6.

the other players are in state w̄. Suppose that if any other player is in a different private
statew �= w̄, then the resulting action profile differs from ã. Suppose, moreover, there
is a signal y such that ŵ = τ(ŵ, y) and w̄ = τ(w̄, y), that is, any player in the state
ŵ or w̄ observing a private signal consistent with y stays in that private state (and so
the profile cannot have bounded recall; see lemma 13.3.1). Suppose finally there is a
private signal zi for player i consistent with y that is more likely to have come from ã

than any other action profile, that is, zi ∈ ξ−1
i (y) and

πi(zi | ã) > πi(zi | (fi(ŵ), a′−i )) ∀a′−i �= f−i (w̄).

Then, after observing the private signal zi , player i’s posterior probability that all the
other players are in w̄ should increase. Moreover, because players in ŵ and w̄ do not
change their private states, we can make player i’s posterior probability that all the
other players are in w̄ as close to one as we like. If fi(ŵ) �= fi(w̄), an application of
proposition 13.2.3 shows that the induced private profile is not an equilibrium.

13.4.3 Separating Profiles

The suppositions in the logic in section 13.4.2 can be weakened in two ways, culminat-
ing in proposition 13.4.1. The first weakening concerns the nature of the strategy profile.
The logic assumed that there is a signal y such that ŵ = τ(ŵ, y) and w̄ = τ(w̄, y). If
there were only two states, ŵ and w̄, it would clearly be enough that there be a finite
sequence of signals such that the automaton with initial state ŵ (or w̄) returns to ŵ
(or w̄) under the sequence, as we now illustrate. We say that ŵ and w̄ cycle under the
sequence of signals.

Example

13.4.4
The stage game is given in figure 13.4.3. In the public-monitoring game, there are
two public signals, ȳ and y, with distribution (0 < q < p < 1)

ρ(ȳ | a) =
{
p, if a1 = a2,

q, otherwise.
(13.4.1)

The first profile we consider is illustrated in figure 13.4.4. This profile does not have
bounded recall, and the states wAA and wCC cycle under both ȳ and y. The profile
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AAw CCw

y
y

y

y

0w

Figure 13.4.4 A simple cycling profile for the game from
figure 13.4.3. As usual, the decision rule is given by f (wa) = a.

AAw AAŵ

CCw

y

y

y

y

0w

y

y

Figure 13.4.5 A more complicated cycling profile for the game from
figure 13.4.3. As usual, the decision rule is given by f (wa) = a.

is trivially a strict PPE, because the payoffs from AA and CC are identical. As y
is an indication of miscoordination in behavior, the profile does not even induce a
Nash equilibrium in nearby games with minimally private almost public monitor-
ing: After a sufficiently long history of the form (Ay1, Cy1, Ay1, Cy1, . . . , Ay1),4

player 1 (say) is supposed to play C but assigns probability close to 1 that player
2 is in state wAA.

●

Example

13.4.5
Consider now the profile in figure 13.4.5. This profile, a modification of the profile
of figure 13.4.4, also does not have bounded recall. A sequence of private signals
yy . . .y cannot differentiate between wAA and ŵAA, because behavior is identical
in these two states. Under the sequence of signals ȳȳ . . . ȳ, the states wAA and
wCC do both cycle, and behavior is different in both states. However, under
public monitoring (and so under minimally private monitoring as well), ȳ is a
signal that the players have coordinated. Suppose instead that the almost public
monitoring is not minimally private. Similar to example 13.1.1, player 1’s private
signal space is Z1 = {z1, z̄

′
1, z̄
′′
1}, player 2’s signal space is Z2 = {z2, z̄2}, and the

joint distribution is given by Figure 13.4.6.
As in example 13.4.1, when q ′ > p′, the signal z̄′1 is a signal to player 1 that

player 2 had chosen a different action. It is then intuitive that if player 1 is in private

4. Because the monitoring is minimally private, Zi = Y .
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z2 z̄2

z1 (1− ζ ) (1− 3ε) ε

z̄′1 ε ζ ′ (1− 3ε)

z̄′′1 ε
(
ζ − ζ ′) (1− 3ε)

Figure 13.4.6 The probability distribution of private signals for
example 13.4.5. The distribution is given as a function of the action
profile a, where ζ = p and ζ ′ = p′ if a1 = a2, and q or q ′ otherwise.

state w1 = wAA and observes z̄′1, he then assigns a higher posterior to player
2 being in private state w2 = wCC . After sufficiently many observations of z̄′1,
player 1 should then assign arbitrarily high probability to w2 = wCC , at which
point we can apply proposition 13.2.3. This intuition is correct, but potentially
incomplete because of state ŵAA. In the presence of nontrivial private moni-
toring, player 1 cannot rule out the possibility that player 2 observes a signal
(or sequence of signals) that leaves her in private state w2 = ŵAA, a state that
does not cycle under ȳ. However, it turns out that the logic of the intuition is
saved by the observation that under ȳ, the profile takes ŵAA into a state that
does cycle (namely, wCC ). Consequently, in the long run, the possibility that
player 2 is in state ŵAA does not affect significantly 1’s updating under histories
Az̄′1, Az̄′1, . . . , Az̄′1.

●

Summarizing the examples, to find a private history that both leaves a player in
some private state ŵ and after which that player assigns arbitrarily high probability
to all the other players being in some other state w̄ �= ŵ, it is enough to find a finite
sequence of signals under which (1) w̄ and at least one other distinct state cycle; (2)
for any states that cycle, the actions chosen potentially allow the signals to reveal that
the states are different from w̄;5 and (3) any states that don’t cycle are taken into the
cycling states by the finite sequence of signals.

Let Wt be the set of states reachable in period t , Wt ≡ {w ∈ W : w = τ(w0,

y0, y1, . . . , yt−1) for some (y0, y1, . . . , yt−1)}. Define R(w̃) as the set of states that
are repeatedly reachable in the same period as w̃ (i.e.,R(w̃) = {w ∈ W : {w, w̃} ⊂ Wt

infinitely often}).
Definition

13.4.1
A public profile is cyclically separating if there is a finite sequence of signals
ȳ0, . . . , ȳm, a collection of states Wc, and a state w̄ ∈ Wc such that

1. τ(w, ȳ0, . . . , ȳm) = w for all w ∈ Wc;
2. τ(w, ȳ0, . . . , ȳm) ∈ Wc for all w ∈ R(w̄);

5. In example 13.4.2, taking w̄ = wSS and the cycle ȳy shows that it not necessary that all cycling
states be revealed to be distinct.
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3. ∀w ∈ Wc\{w̄}, ∀i ∃k, 0 ≤ k ≤ m, such that

fi(τ (w, ȳ
0, . . . , ȳk) �= fi(τ (w̄, ȳ0, . . . , ȳk);

and
4. |Wc| ≥ 2.

Mailath and Morris (2006) show that this is, for finite public profiles, equivalent to
the weaker property of separating. Given an outcome path h∞ ≡ (y1, y2, . . .) ∈ Y∞,
let sh∞ ≡ (ys, ys+1, . . .) ∈ Y∞ denote the outcome path from period s, so that h∞ =
(hs,sh∞) and shs+t = (ys, ys+1, . . . , ys+t−1).

Definition

13.4.2
The public strategy profile is separating if there is some state w̃ and an outcome
pathh∞ ∈ Y∞ such that there is another statew ∈ R(w̃) that satisfies τ(w, ht ) �=
τ(w̃, ht ) for all t , and for all s andw ∈ R(τ(w̃, hs)), if τ(w,shs+t ) �= τ(w̃, hs+t )
for all t ≥ 0, then

fi(τ (w,
shs+t )) �= fi(τ (w̃, hs+t )) infinitely often, for all i.

Clearly, a separating profile cannot have bounded recall. Example 13.4.6 presents
a PPE that neither has bounded recall nor is separating. Every other PPE in this book
either has bounded recall or is separating. Example 13.4.6 also illustrates drift in beliefs
and how drift is a distinct cause for the failure to induce Nash equilibrium in nearby
games. Further discussion of separation can be found in Mailath and Morris (2006).

Example

13.4.6
The public profile is illustrated in figure 13.4.7. It is easily verified that this profile
is again a strict PPE. This profile is not separating. Under any path in which ȳ
appears in any period before the last, all states transit to the same state. Under
the remaining paths, only wAA and ŵAA appear. The definition of separation fails
because play is the same at states wAA and ŵAA.

The profile is also not robust to even minimally private monitoring, because
of a drift in beliefs. To get a handle on the evolution of beliefs, we consider the
minimally private distribution π obtained by the compound randomization where
in the first stage a value of y is determined according to the ρ of (13.4.1), and
then in the second stage, that value is reported to player i with probability (1− ε)

AAw AAŵ

CCw

y

y

y

y

0w

BBw
y

y yy

Figure 13.4.7 The strategy profile for example 13.4.6.
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and the other value with probability ε. Conditional on the realization of the first
stage, the second-stage randomizations are independent across players. For ε = 0,
the monitoring is public.

We now consider the evolution of player 1’s beliefs about the private state of
player 2, as player 1 continually observes y1 and plays A. Let βt (w) be the belief
that player 1 assigns to player 2 being in state w in the beginning of period t on
such a history. The probability that player 1 observes y1 at the end of period t is

[(1− p)(1− ε)+ pε](βt (wAA)+ βt (ŵAA))

+ [(1− q)(1− ε)+ qε](βt (wBB)+ βt (wCC))

= [(1−p)(1− ε)+pε]βAA
t +[(1− q)(1− ε)+ qε](1− βAA

t ) ≡ ξ(βAA
t ),

where βAA
t ≡ βt (wAA)+ βt (ŵAA). Bayes’ rule then implies

βt+1(wAA) = ξ(βAA
t )−1{[(1− p)(1− ε)2 + pε2]βt (ŵAA)

+ [(1− q)(1− ε)2 + qε2](1− βAA
t )},

βt+1(ŵAA) = ξ(βAA
t )−1[(1− p)(1− ε)2 + pε2]βt (wAA),

βt+1(wBB) = ξ(βAA
t )−1ε(1− ε)βt (wAA),

and
βt+1(wCC) = ξ(βAA

t )−1ε(1− ε)(1− βt (wAA)).

These equations imply

βAA
t+1 = ξ(βAA

t )−1{[(1− p)(1− ε)2 + pε2]βAA
t

+ [(1− q)(1− ε)2 + qε2](1− βAA
t )}.

For ε small, the equation is a contraction, and so βAA
t → βAA∞ as t →∞. This

then implies that for small ε, βAA∞ is close to 1 and so for large t , βt (wAA) is close
to 1/2. Given these beliefs, the first observation of ȳ1 leads player 1 to assign
approximately equal beliefs to player 2’s private state being wBB and wCC , and
so the best reply is C (irrespective of player 1’s private state).

●

13.4.4 Rich Monitoring

We now address the second condition that appeared in section 13.4.2, the requirement
that for some player i, for every action profile there is a player i private signal that is
more likely to have come from that action profile than from any other. This is a much
stronger condition than is needed. This section presents a weaker sufficient condition,
that the monitoring be “rich.” Because this condition is technical, some readers may
prefer to proceed directly to section 13.4.5, substituting the stronger condition for
richness.

Recall that ã in section 13.4.2 is the action profile that results when player i is in
private state ŵ, whereas all the other players are in the common private state w̄. It is
not necessary that the same private signal zi be more likely to have come from ã than
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any other action profile. It is enough that for each action profile different from ã, there
is a private signal more likely to have come from ã than from that profile, as long as
the signal does not disrupt the inferences about other states too badly. For example,
suppose there are two players, with player 1’s beliefs to be manipulated. In addition to
state w̄, player 2 could be in state ŵ or w′, both of which cycle under y. Suppose also
A2 = {â2, a

′
2, ā2}. We would like the odds ratio Pr(w2 �= w̄ | ht1)/Pr(w2 = w̄ | ht1) to

converge to 0 as t →∞ for appropriate private histories. Let â1 = f1(ŵ), ā2 = f2(w̄),
â2 = f2(ŵ), and a′2 = f2(w

′) (note that ã = (â1, ā2)). Suppose, moreover, there are
two private signals z′1 and z′′1 consistent with the same public signal, satisfying

π1(z
′
1 | â1, a

′
2) > π1(z

′
1 | ã) > π1(z

′
1 | â)

and
π1(z

′′
1 | â) > π1(z

′′
1 | ã) > π1(z

′′
1 | â1, a

′
2).

Then, after observing the private signal z′1, we have

Pr(w2 = ŵ | ht1, z′1)
Pr(w2 = w̄ | ht1, z′1)

= π1(z
′
1 | â)

π1(z
′
1 | ã)

Pr(w2 = ŵ | ht1)
Pr(w2 = w̄ | ht1)

<
Pr(w2 = ŵ | ht1)
Pr(w2 = w̄ | ht1)

as desired, but Pr(w2 = w′ | ht1, z′1)/Pr(w2 = w̄ | ht1, z′1) increases.6 On the other
hand, the odds ratio Pr(w2 = w′ | ht1, z′′1)/Pr(w2 = w̄ | ht1, z′′1) falls after observing
the private signal z′′1, while Pr(w2 = ŵ | ht1, z′′1)/Pr(w2 = w̄ | ht1, z′′1) increases. How-
ever, it may be that the increases can be offset by appropriate decreases, so that,
for example, z′1 followed by two realizations of z′′1 results in a decrease in both
odds ratios. If so, a sufficiently high number of realizations of z′1z′′1z′′1 results in
Pr(w2 �= w̄ | ht1)/Pr(w2 = w̄ | ht1) being close to 0.

In terms of the odds ratios, the sequence of signals z′1z′′1z′′1 lowers both odds ratios
if, and only if,

π1(z
′
1 | â)

π1(z
′
1 | ã)

(
π1(z

′′
1 | â)

π1(z
′′
1 | ã)

)2

< 1

and
π1(z

′
1 | â1, a

′
2)

π1(z
′
1 | ã)

(
π1(z

′′
1 | â1, a

′
2)

π1(z
′′
1 | ã)

)2

< 1.

A richness condition on private monitoring distributions captures this idea. For a
private monitoring distribution, (Z, π), define γaa′−i (zi) ≡ ln πi(zi | ai, a−i )− ln πi
(zi | ai, a′−i ), and let γa(zi) = (γaa′−i (zi))a′−i∈A−i ,a′−i �=a−i denote the vector in R|A−i |−1

of the log odds ratios of the signal zi associated with different action profiles. The last
two displayed equations can then be written as 1

3γã(z
′
1)+ 2

3γã(z
′′
1) > 0, where 0 is the

2× 1 zero vector.7

6. Repeated observations of the signal z′1 will lead player 1 to assign high probability to player 2
being in private state w′, suggesting that we should simply focus on w′ instead of w̄. This
possibility would not arise if there were a fourth state that cycles under y and appropriate
inequalities on the probabilities are satisfied.

7. The convex combination is strictly positive (rather than negative) because the definition of γaa′−i
inverts the odds ratios from the displayed equations.
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Definition

13.4.3
A private monitoring distribution (Z, π) is rich for player i, if for all y ∈ Y
and a ∈ A, the convex hull of {γa(zi) : zi ∈ f−1

i (y) and πi(zi | ai, a′−i ) > 0 for

all a′−i ∈ A−i} has a nonempty intersection with R
|A−i |−1
++ .

Trivially, if for each action profile there is a private signal more likely to have come
from that profile than any other profile, then the private monitoring distribution is rich.
It will be useful to quantify the extent to which the conditions of definition 13.4.3 are
satisfied. Because the space of signals and actions are finite, there are a finite number
of constraints in definition 13.4.3, and so for any rich private monitoring distribution,
the set of ζ over which the supremum is taken in the next definition is nonempty.8

Definition

13.4.4
The richness of a private monitoring distribution (Z, π) rich for i is the supre-
mum of all ζ > 0 satisfying: for all y ∈ Y and a ∈ A, the convex hull of the
set of vectors {γa(zi) : zi ∈ f−1

i (y) and πi(zi | ai, a′−i ) ≥ ζ for all a′−i ∈ A−i}
has a nonempty intersection with R

|A−i |−1
ζ ≡ {x ∈ R

|A−i |−1
++ : xk ≥ ζ for k =

1, . . . , |A−i | − 1}.

13.4.5 Coordination Failure

It remains to ensure that under private monitoring, players may transit to different
states. It suffices to assume the following, weaker than full support condition:

Definition

13.4.5
A private monitoring distribution (Z, π) that is ε-close to a public monitoring
distribution (Y, ρ) has essentially full support if for all (y1, . . . , yn) ∈ Yn,

π{(z1, . . . , zn) ∈ Z : ξi(zi) = yi} > 0.

Mailath and Morris (2006) then prove the following result.

Proposition

13.4.1
Fix a separating strict finite PPE of a full-support public monitoring game
(ũ∗, (Y, ρ)). For all ζ > 0, there exists ε′ > 0 such that for all ε < ε′, if
(u, (Z, π)) is a private monitoring game ε-close to (ũ∗, (Y, ρ)) with (Z, π) hav-
ing richness at least ζ for some i and essentially full support, then the induced
private profile is not a Nash equilibrium of the private monitoring game.

We direct the reader to the original publication for the (long) proof. It is worth
noting that the bound on ε is only a function of the richness of the private monitoring.
It is independent of the probability that a disagreement in private states arises.

13.5 Patient Players

We now seek a folk theorem for almost public monitoring games. Proposition 13.3.1
showed that any strict (bounded recall) PPE of a public monitoring game induces
a sequential equilibrium in any ε-close private monitoring game. The difficulty in

8. The bound ζ appears twice in the definition. Its first appearance ensures that for all ζ > 0, there
is uniform upper bound on the number of private signals satisfying πi(zi | ai, a′−i ) ≥ ζ in any
private monitoring distribution with a richness of at least ζ .
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building a folk theorem on this result is that as players become patient and for any
bounded recall strategy profile, values become equalized across states (see remark 7.2.1
for an example). This forces to 0 the value differences that support the construction
in proposition 13.3.1, so that the implied bound on ε goes to 0 as δ goes to 1. At the
same time, when players become increasing patient, the incentive to deviate is also
disappearing. This section identifies conditions under which the balance between these
forces allows strict equilibria in public monitoring games to carry over into equilibria
or nearby private monitoring games for arbitrarily patient players.

13.5.1 Patient Strictness

A public profile is finite if the minimal representing automaton has a finite state space
(see remark 7.1.3). We first rewrite the incentive constraints of the public monitoring
game. Recall, from corollary 7.1.1, that (W , w0, f, τ ) is a strict equilibrium if, for all i,
w ∈ W and all ai �= fi(w),

Ṽi(w) > (1− δ)ui(ai, f−i (w))+ δ
∑
y

Ṽi(τ (w, y))ρ(y | ai, f−i (w)),

where

Ṽi(w) = (1− δ)ui(f (w))+ δ
∑
y

Ṽi(τ (w, y))ρ(y | f (w)). (13.5.1)

The incentive constraints at w can be written more transparently, focusing on the
transitions between states, as

Ṽi(w) > (1− δ)ui(ai, f−i (w))+ δ
∑

w′
θww′(ai, f−i (w))Ṽi(w′), (13.5.2)

where θww′(a) is the probability of transiting from state w to state w′ under the action
profile a,

θww′(a) =
∑
{y∈Y :τ(w,y)=w′} ρ(y | a)

(the sum is 0 if τ(w, y) �= w′ for all y ∈ Y ). Using (13.5.1) to substitute for Ṽi(w)
in (13.5.2) and rearranging yields (writing θ̂ww′ for θww′(f (w)) and θ̂ww′(ai) for
θww′(f−i (w), ai)),

δ
∑

w′
(θ̂ww′ − θ̂ww′(ai))Ṽi(w

′) > (1− δ)(ui(ai, f−i (w))− ui(f (w))).
For any w̄ ∈ W , because probabilities sum to 1, this is equivalent to

δ
∑

w′
(θ̂ww′ − θ̂ww′(ai))(Ṽi(w

′)− Ṽi(w̄))
> (1− δ)(ui(ai, f−i (w))− ui(f (w))). (13.5.3)

The property of connectedness now plays a critical role.9

9. Mailath and Morris (2002, section 3.2) discusses an example in which connectedness fails and
players place significant probability on disagreement after long histories in nearby almost public
monitoring games.
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Definition

13.5.1
A public profile is connected if for allw,w′ ∈ W , there exists hm ∈ Ym for somem
and w̄ ∈ W such that

τ(w, hm) = w̄ = τ(w′, hm).

Lemma

13.5.1
For any connected finite public profile, there is a finite sequence of signals hm ∈
Ym and a state w̄ such that

τ(w, hm) = w̄, ∀w ∈ W .

Proof We prove this for |W | = 3; the extension to an arbitrary finite number of states
being a straightforward iteration. Fix w1, w2, and w3. Let hm be a sequence that
satisfies τ(w1, hm) = τ(w2, hm) ≡ w. Because the profile is connected, there is a
sequence of signals ĥm

′
such that τ(w, ĥm

′
) = τ(w′, ĥm′), wherew′ ≡ τ(w3, hm).

The desired sequence of signals is the concatenation hmĥm
′
.

■

We need the following standard result (see, for example, Stokey and Lucas 1989,
theorem 11.4). If (Z , R) is a finite-state Markov chain with state spaceZ and transition
matrix R, then Rn is the matrix of n-step transition probabilities and r(n)ij is the ijth
element of Rn. For a vector x ∈ Rm, define ‖x‖� ≡∑j |xj |.

Lemma

13.5.2
Suppose (Z , R) is a finite-state Markov chain. Let η(n)j = mini r

(n)
ij and η(n) =∑

j η
(n)
j . Suppose that there exists � such that η(�) > 0. Then, (Z , R) has a unique

stationary distribution φ∗ and, for all φ ∈ �(Z ),

‖φRk� − φ∗‖� ≤ 2(1− η(�))k.

If the profile is finite and connected and ρ has full support, the Markov chain on
W implied by the profile is ergodic, and so has a unique stationary distribution. As
a consequence, limδ→1 Ṽi(w) is independent of w ∈ W , so simply taking δ→ 1 in
(13.5.3) yields 0 ≥ 0. The next lemma implies that we can instead divide by (1− δ)
and then evaluate the constraint.

Lemma

13.5.3
Suppose the public monitoring has full support, and the public profile is finite and
connected. The value of state w ∈ W for large δ, limδ→1 Ṽi(w), is independent
of w. For any two states w, w̄ ∈ W ,

�ww̄Ṽi ≡ lim
δ→1

(Ṽi(w)− Ṽi(w̄))
(1− δ)

exists and is finite.

Proof Let � denote the matrix of transition probabilities on the finite state space W

induced by the public profile. The ww′th element is θww′(f (w)) = θ̂ww′ . If
ui(f ) ∈ RW and Ṽi ∈ RW are the vectors of stage payoffs and continuation values
for player i associated with the states, then

Ṽi = (1− δ)ui(f )+ δ�Ṽi .
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Solving for Ṽi yields

Ṽi = (1− δ)(IW − δ�)−1ui(f )

= (1− δ)
∞∑
t=0

(δ�)tui(f ),

where IW is the |W |-dimensional identity matrix. Let ew denote thewth standard
basis vector. Then,

Ṽi(w)− Ṽi(w̄) = (1− δ)
∞∑
t=0

(ew − ew̄)(δ�)tui(f )

= (1− δ)
∞∑
t=0

δt (ew�
t − ew̄�t )ui(f ).

Because the public profile is connected, for any two distributions on W , φ and
φ′, ‖φ�t − φ′�t‖� → 0 at an exponential rate (lemmas 13.5.1 and 13.5.2),
so Ṽi(w)− Ṽi(w̄)→ 0. Moreover,

∑∞
t=0(ew�

t − ew̄�t )ui(f (w)) is absolutely
convergent, so

(Ṽi(w)− Ṽi(w̄))
(1− δ)

has a finite limit as δ→ 1.
■

Hence, if a connected finite public profile is a strict equilibrium for discount factors
arbitrarily close to 1,∑

w′
(θ̂ww′ − θ̂ww′(ai))�w′w̄Ṽi ≥ (ui(ai, f−i (w))− ui(f (w))).

Strengthening the weak inequality to a strict one gives a condition that implies (13.5.3)
for δ large.

Definition

13.5.2
A connected finite PPE is patiently strict if for some w̄ ∈ W , all players i, states
w ∈ W , and actions ai �= fi(w),∑

w′
(θ̂ww′ − θ̂ww′(ai))�w′w̄Ṽi > (ui(ai, f−i (w))− ui(f (w))). (13.5.4)

The value of the left side of (13.5.4) is independent of w̄, because �w′w̄Ṽi +
�w̄w̃Ṽi = �w′w̃Ṽi . The next lemma is obvious.

Lemma

13.5.4
Suppose (ũ∗, (Y, ρ)) is a public monitoring game with full-support ρ. For any
patiently strict connected finite public profile, there exists δ < 1 such that for all
δ ∈ (δ, 1), the public profile is a strict PPE of the game with public monitoring.

13.5.2 Equilibria in Nearby Games

This section proves the following proposition. It is worth remembering that every
bounded recall public profile is both a connected finite public profile and induces
posterior beliefs in nearby almost public monitoring games that assign uniformly large
probability to agreement in private states. If monitoring is minimally private and we
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only impose the belief requirement after histories consistent with the strategy profile,
the profile would still be a Nash equilibrium (and the induced outcome sequential) in
the game with private monitoring (by proposition 13.2.2).

Proposition

13.5.1
Suppose the public profile (W , w, f, τ ) is a connected patiently strict PPE of
the public monitoring game (ũ∗, (Y, ρ)) with full-support ρ. For all κ > 0, there
exist δ < 1, η > 0, and ε > 0 such that for all (u∗, (Z, π)) ε-close under ξ to
(ũ∗, (Y, ρ)), if βi(τi(hti)1 | hti) > 1− η for all hti ∈Hi , and δ ∈ (δ, 1), then the
private profile is a sequential equilibrium of the game with private monitoring, and
the payoff under the private profile is within κ of the payoff of the public profile.

The finite public profile induces in the game with private monitoring a finite-state
Markov chain (Z ,Qπ), where Z ≡ W n and, for w,w′ ∈ Z ,

qπww′(a) =
∑

{z1:τ1(w1,z1)=w′1}
· · ·

∑
{zn:τn(wn,zn)=w′n}

π(z | a)

(as for θww′(a), the sum is 0 if for some i, τ(wi, y) �= w′i for all y ∈ Y , because in
that case, τi(wi, zi) �= w′i for all zi ∈ Zi). The value to player i at the vector of private
states w is

Vi(w) = (1− δ)ui(f (w))+ δ
∑
z

π(z | f (w))Vi(τ1(w1, z1), . . . , τn(wn, zn))

= (1− δ)ui(f (w))+ δ
∑
w′
qπww′(f (w))Vi(w

′)

= (1− δ)ui(f (w))+ δ
∑
w′
q̂πww′Vi(w

′),

where q̂πww′ ≡ qπww′(f (w)). We also define q̂πww′(ai) ≡ qπww′(ai, f−i (w)).
Analogous to lemma 13.5.3, we have the following:

Lemma

13.5.5
Suppose the public profile is finite and connected.

1. The value of state w ∈ Z for large δ, limδ→1 Vi(w), is independent of w. For
any two vectors of private states w, w̄ ∈ W n,

�ww̄Vi ≡ lim
δ→1

(Vi(w)− Vi(w̄))
(1− δ)

exists and is finite,
2. there exists ε > 0 such that for all (Z, π) ε-close to (Y, ρ), �ww̄Vi has an

upper bound independent of π , and
3. for any ζ > 0, there exists ε > 0 such that for all (Z, π) ε-close to (Y, ρ), and

any two states w, w̄ ∈ W , |�w1,w̄1Vi −�ww̄Ṽi | < ζ .

Proof The proof of the first assertion is identical to that of lemma 13.5.3, and also shows
that

�ww̄Vi =
∞∑
t=0

(ew(Q
π)t − ew̄(Q

π)t )ui(f (w)). (13.5.5)
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Because the public profile is finite and connected, for the purposes of applying
lemma 13.5.2, we can take � = m, independent of π , wherem is the length of the
finite sequence of signals from lemma 13.5.1. Moreover, there exists ε′ > 0 such
that for all (Z, π) ε′-close to (Y, ρ),

∑
w′

min
w
q
π,(m)

ww′ >
1

2

∑
w′

min
w
θ
(m)

ww′ ≡ η∗ > 0.

From lemma 13.5.2, for all (Z, π) ε′-close to (Y, ρ), | ew(Q
π)t − ew̄(Q

π)t |<
4(1− η∗)t for all t , which, with (13.5.5), implies the second assertion.

From the proof of lemma 13.5.3,

�ww̄Ṽi =
∞∑
t=0

(ew�
t − ew̄�t )ui(f (w)).

For a fixed ζ > 0, there exists T such that

∣∣∣∣∣
T∑
t=0

(ew�
t − ew̄�t )ui(f (w))−�ww̄Ṽi

∣∣∣∣∣ < ζ/3 (13.5.6)

and, for all (Z, π) ε′-close to (Y, ρ),

∣∣∣∣∣
T∑
t=0

(ew1(Q
π)t − ew̄1(Q

π)t )ui(f (w))−�w1,w̄1Vi

∣∣∣∣∣ < ζ/3. (13.5.7)

Order the states in (Z ,Qπ) so that the first |W | states are the states in which all
players’private states are in agreement. Then, we can write the transition matrix as

Qπ =
[
Qπ

11 Qπ
12

Qπ
21 Qπ

22

]
,

and [IW : 0]ui = ũi , where ui is the |Z |-vector with wth element ui(f (w)) and
ũi is the |W |-vector with wth element ui(f (w)). As π approaches ρ, Qπ

11 → �,
Qπ

12 → 0, and Qπ
22 → 0.

Now,
[(Qπ)2]11 = (Qπ

11)
2 +Qπ

12Q
π
21

and
[(Qπ)2]12 = Qπ

11Q
π
12 +Qπ

12Q
π
22.

In general,
[(Qπ)t ]11 = (Qπ

11)
t +Qπ

12[(Qπ)t−1]21

and
[(Qπ)t ]12 = Qπ

11[(Qπ)t−1]12 +Qπ
12[(Qπ)t−1]22.

Thus, for all t , [(Qπ)t ]11 → �t and [(Qπ)t ]12 → 0, asπ approachesρ. Hence,
there exists ε′′ > 0, ε′′ ≤ ε′, such that for all t ≤ T , if (Z, π) is ε′′-close to (Y, ρ),
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∣∣∣∣∣
T∑
t=0

(ew�
t − ew̄�t )ui(f (w))−

T∑
t=0

(ew1(Q
π)t − ew̄1(Q

π)t )ui(f (w))

∣∣∣∣∣ < ζ/3.

Combining this with (13.5.6) and (13.5.7) proves the third assertion.
■

We now show that this lemma implies that an inequality similar to (13.5.4) holds.

Lemma

13.5.6
If a connected finite public profile is patiently strict, then for any state w̄ and for
ε small, and (Z, π) ε-close to (Y, ρ), for all w,

∑
w′
(q̂πw1,w′ − q̂πw1,w′(ai))�w′,w̄1Vi > ui(ai, f−i (w))− ui(f (w)). (13.5.8)

Proof Let

ζ = 1

2
min
w

{∑
w′′
(θ̂ww′′ − θ̂ww′′(ai))�w′′w̄Ṽi − [ui(ai, f−i (w))− ui(f (w))]

}
.

Because the public profile is finite and patiently strict, ζ > 0 (recall the expression
being minimized is independent of w̄).

The left side of (13.5.8) is∑
w′′
(q̂πw1,w′′1 − q̂πw1,w′′1(ai))�w′′1,w̄1Vi +

∑
w′ �=w′′1,
w′′∈W

(q̂πw1,w′ − q̂πw1,w′(ai))�w′,w̄1Vi

and, by lemma 13.5.5, there exists ε > 0 such that for (Z, π) ε-close to (Y, ρ),∣∣∣∣∣∣∣∣
∑

w′ �=w′′1,
w′′∈W

(q̂πw1,w′ − q̂πw1,w′(ai))�w′,w̄1Vi

∣∣∣∣∣∣∣∣ < ζ/2.

Moreover, again by lemma 13.5.5, by choosing ε sufficiently small,∣∣∣∣∣∑
w′′
(θ̂ww′′ − θ̂ww′′(ai))�w′′w̄Ṽi −

∑
w′′
(q̂πw1,w′′1− q̂πw1,w′′1(ai))�w′′1,w̄1Vi

∣∣∣∣∣ < ζ/2,

so∑
w′
(q̂πw1,w′ − q̂πw1,w′(ai))�w′,w̄1Vi >

∑
w′′
(q̂πw1,w′′1 − q̂πw1,w′′1(ai))�w′′1,w̄1Vi − ζ/2

>
∑
w′′
(θ̂ww′′ − θ̂ww′′(ai))�w′′w̄Ṽi − ζ

> ui(ai, f−i (w))− ui(f (w)),

which is the desired inequality (13.5.8).
■
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The value player i assigns to being in state w, when she has beliefs βi over the
private states of her opponents, is

Vi(w;βi) =
∑

w−i
Vi(w,w−i )βi(w−i ),

and her incentive constraint in private state w is given by, for all ai �= fi(w),

Vi(w;βi) ≥
∑
w−i

{
(1− δ)ui(ai, f−i (w))+ δ

∑
w′
q̂πww−i ,w′(ai)Vi(w

′)
}
βi(w−i ).

If βi assigns probability close to 1 to the vector w1, this inequality is implied by

Vi(w1) > (1− δ)ui(ai, f−i (w))+ δ
∑

w′
q̂πw1,w′(ai)Vi(w

′).

Substituting for Vi(w1) yields

δ
∑

w′
(q̂πw1,w′ − q̂πw1,w′(ai))Vi(w

′) > (1− δ)(ui(ai, f−i (w))− ui(f (w))).

For any state w̄ ∈ W , this is equivalent to

δ
∑

w′
(q̂πw1,w′ − q̂πw1,w′(ai))(Vi(w

′)− Vi(w̄1))

> (1− δ)(ui(ai, f−i (w))− ui(f (w))).

For large δ, this is implied by (13.5.8). If player i assigns a probability close to 1 to
all her opponents being in the same private state as herself, the incentive constraint
for i at that private state holds. Because there are only a finite number of incentive
constraints, the bounds on δ and βi are independent of w̄ ∈ W .

Finally, it remains to argue that the payoff under the private profile can be made
close to that of the public profile. Denote the stationary distribution of the Markov
chain (W ,�) by µρ and of the Markov chain (Z ,Qπ) by µπ . From lemma 13.5.3,
limδ→1 Ṽi(w) is independent of w ∈ W , and so is given by

∑
w ui(f (w))µ

ρ(w).
Similarly, from lemma 13.5.5, limδ→1 Vi(w) is independent of w ∈ Z and is given by∑

w ui(f (w))µ
π(w). The proposition then follows from the observation that because

Qπ
11 → � as |π − ρ| → 0 (recall that the first |W | states of Z are the states in which

all players’ private states are in agreement), |µρ − [ IW : 0 ]µπ | → 0.

13.6 A Folk Theorem

We now apply the results of the last section to prove a mutual minmax pure-action folk
theorem for almost perfect almost public monitoring games.

Say that a public monitoring distribution (Y, ρ) is η-perfect if Y = A and
ρ(a | a) > 1− η. It is easy to see that any private monitoring distribution (Z, π)
ε-close to an η-perfect public monitoring distribution is (η + ε)-perfect, in the sense
of definition 12.2.1.
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Proposition

13.6.1
A private monitoring folk theorem Suppose A is finite. Fix ã ∈ A. If there exists
a ∈ A satisfying

max
ai∈Ai

ui(ai,a−i ) < ui(ã), for all i, (13.6.1)

then for all κ < 1, there exists δ̄ < 1 and η > 0, such that for all η-perfect public
monitoring distributions (Y, ρ), there exists ε > 0 such that for all private moni-
toring distributions (Z, π), ε-close to (Y, ρ), for all δ ∈ (δ̄, 1), there is a sequential
equilibrium of the repeated game with private monitoring with payoffs within κ
of u(ã).

Proof We first consider the perfect monitoring game. Similar to the mutual minmax-
ing profile of proposition 3.3.1, the profile specifies ã on the equilibrium path
of play, and any deviation results in L periods of a. We cannot simply use
the profile specified in the proof of proposition 3.3.1 because it does not have
bounded recall. However, inequality (13.6.1) implies that for all i and ai ∈ Ai ,
(ai,a−i ) �= ã, and for any weakly myopically profitable deviation by i from ã

(i.e., ui(ai, ã−i ) ≥ ui(ã)), (ai, ã−i ) �= a. Hence, any unilateral deviation from a

or weakly myopically profitable deviation from ã is “detected,” and so we can use
a profile withL period memory in which ã is specified afterL periods of ã ora, and
a otherwise. The bounded recall automaton has states W = {w(i) : i = 0, . . . , L},
initial state w0 = w(0), output function

f (w(�)) =
{
ã, if � = 0,

a, if � = 1, . . . , L,

and transition rule

τ(w(�), a) =



w(0), if � = 0 or � = L, and a = a or ã,

w(�+ 1), if 0 < � < L and a = a or ã,

w(1), otherwise,

where L satisfies

Lmini (ui(ã)− ui(a)) > M −mini ui(ã) (13.6.2)

(as usual, M = maxi,a ui(a)).
The direct verification that this automaton describes a subgame-perfect equi-

librium of the perfect monitoring game for large δ is identical to the proof of
proposition 3.3.1. We instead show that the profile is patiently strict (implying
it is a subgame-perfect equilibrium). Denote player i’s value of being in state
w ∈ W in the perfect monitoring game by V̂i(w). Then,

V̂i(w(0))− V̂i(w(1)) = ui(ã)− [(1− δL)ui(a)+ δLui(ã)]
= (1− δL)[ui(ã)− ui(a)],
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so

�w(0)w(1)V̂i ≡ lim
δ→1

Vi(w(0))− Vi(w(1))
(1− δ) = L[ui(ã)− ui(a)].

Consequently, using the observation that any weakly myopically profitable
deviation at w(0) takes the profile to w(1), (13.5.4) is

�w(0)w(1)V̂i > ui(ai, ã−i )− ui(ã),
which, because ui(ai, ã−i ) ≤ M , is implied by (13.6.2). For any ai satisfying
ui(ai, ã−i ) < ui(ã), the left side of (13.5.4) is at most 0 (because the deviation
may be ignored), but the right side is strictly negative. Similarly,

V̂i(w(�))− V̂i(w(1))
= (1− δL+1−�)ui(a)+ δL+1−�ui(ã)− [(1− δL)ui(a)+ δLui(ã)]
= δL+1−�(1− δ�−1)[ui(ã)− ui(a)],

and so for all � ≥ 2,

�w(�)w(1)V̂i ≡ lim
δ→1

Vi(w(�))− Vi(w(1))
(1− δ) > ui(ã)− ui(a).

Now using the observation that any deviation takes the profile to w(1), (13.5.4)
is now

�w(�)w(1)V̂i > ui(ai,a−i )− ui(a),
which immediately holds because ui(ã) > ui(ai,a−i ). Hence, the profile is
patiently strict.

The profile in any η-perfect public monitoring game trivially has bounded recall
and is connected. Thus, applying proposition 13.5.1 completes the proof once we
have argued that the profile in any η-perfect public monitoring game is patiently
strict for sufficiently small η. The profile has bounded recall, so the induced
Markov chain on the set of states W is ergodic, and we can apply the reasoning
of lemma 13.5.6 to show that the profile is patiently strict in the η-perfect public
monitoring game.

■

Remark

13.6.1
There is no straightforward extension of the result to a folk theorem using player-
specific punishments.10 The difficulty is that a unilateral deviation by player i
from player j ’s specific punishment may not be distinguishable from a unilateral
deviation by player � from player k’s specific punishment. In such a case, it is not
clear if there is a bounded recall version of the profile constructed in the proof of
proposition 3.4.1.

◆

10. Mailath and Morris (2002) incorrectly claim that the profile described in the proof of their
theorem 6.1 has bounded recall.
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14 Belief-Free Equilibria in Private
Monitoring Games

Chapter 13 and parts of chapter 12 focused on belief-based equilibria, in which players’
beliefs about their opponents’ histories play a central role. In this chapter, we study
belief-free equilibria, for which beliefs are in some sense irrelevant. This is a tremen-
dous computational advantage, because checking for equilibrium now does not involve
calculating posterior beliefs over the private states of players. We have already seen
an example of such an equilibrium in section 12.5. We do not require almost public
monitoring in this chapter, but we often require almost perfect monitoring.

The descriptive relevance of belief-free equilibria is open to question because they
typically require a significant amount of randomization. In particular, it is not clear
if such equilibria can be purified (Harsanyi 1973).1 However, belief-free equilibria
have been the focus of study for only a few years, since their introduction by Piccione
(2002) (simplified and extended by Ely and Välimäki 2002) and characterization by
Ely, Hörner, and Olszewski (2005), and it is too early to evaluate them. Belief-free
equilibria are important from a theoretical perspective because they play a key role in
private equilibria in public monitoring games (section 10.4.2) and in the folk theorem
for almost perfect private monitoring (remark 14.2.1).

14.1 Definition and Examples

The most natural definition of belief-free equilibria uses automata. Recall from
remark 12.2.3 that every behavior strategy can be represented by an automaton, rep-
resented by a set of states Wi , an initial state w0

i , a decision rule fi : Wi → �(Ai)

specifying a distribution over action choices for each state, and a transition func-
tion τi : Wi × Ai × Zi → Wi .2 We begin with a restriction on the class of profiles
to introduce the idea. For any history hti = (a0

i z
0
i , a

1
i z

1
i , . . . , a

t−1
i zt−1

i ) ∈ (Ai × Zi)t ,
the state reached in period t is denoted by τi(w0

i , h
t
i). For example, τi(w0

i , h
2
i ) =

τi(τi(w
0
i , a

0
i z

0
i ), a

1
i z

1
i ).

1. More specifically, it is not clear if in general a belief-free equilibrium can be approximated by any
strict equilibrium in nearby games of incomplete information, where the incomplete information
is generated by independently distributed (over time and players) payoff shocks. See also the
discussion in section 12.1.3.

2. As illustrated in section 10.4.2, it is sometimes easier to allow for random state transitions as
well (see also remark 7.1.2). Apart from obvious complications to notation, such representations
cause no difficulty.

445
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Definition

14.1.1
A strategy (Wi , w

0
i , fi, τi) is inclusive if there exists T so that for every t ≥ T

and every wi ∈ Wi , there exists a history hti = (a0
i z

0
i , a

1
i z

1
i , . . . , a

t−1
i zt−1

i ) with
asi ∈ supp fi(τ (w0

i , h
s
i )) for all s < t , such that wi = τi(w0

i , h
t
i).

Because the space of signals is finite, an inclusive strategy must have a finite
state space. Under full-support private monitoring, when player i follows an inclusive
strategy, after some period T , other players must assign strictly positive probability to
each of player i’s states in W . This observation motivates the following definition.

Definition

14.1.2
An inclusive strategy profile {(Wi , w

0
i , fi, τi) : i = 1, . . . , n} is a belief-free equi-

librium if for all w ∈∏jWj , and for all i, the strategy (Wi , wi, fi, τi) is a best
reply to the profile {(Wj , wj , fj , τj ) : j �= i}.

The critical feature of this definition is that for all specifications of player i’s initial state,
the strategy induced by his automaton must be optimal against the induced strategies
of the other players for all possible specifications of their initial states. As a result, the
automaton is a best reply for any beliefs that i might have about the private states of
the other players (and so about the private histories they may have observed). This
discussion also implies the following lemma.

Lemma

14.1.1
Suppose {(Wi , w

0
i , fi, τi) : i = 1, . . . , n} is an inclusive belief-free equilibrium.

Player i’s value from any vector of initial states w ∈∏jWj , Vi(w), is independent
of wi .

Proof Because (Wi , wi, fi, τi) is a best reply to {(Wj , wj , fj , τj ) : j �= i} for all wi ,
player i is indifferent over i’s initial states, and so i’s value is independent of wi .

■

Player i is thus indifferent over the various initial states in i’s automaton, regardless
of his beliefs about others’ states. However, player i will in general not be indifferent
over the initial states of his opponents, a fact crucial for the provision of nontrivial
incentives in belief-free equilibria.

Remark

14.1.1
Payoffs have a product structure Suppose {(Wi , w

0
i , fi, τi) : i = 1, . . . , n} is an

inclusive belief-free equilibrium. Let V be the set of continuation payoffs induced
by the equilibrium and let Vi be the projection of this set on player i’s payoffs.
Then, from lemma 14.1.1 V =∏n

i=1Vi .
◆

Belief-free equilibria in inclusive strategies trivially exist because the history-
independent play of the same stage-game Nash equilibrium is belief-free.

Using ideas from section 13.4.3, we now extend the definition. Let Wi,t be the
set of states reachable in period t , Wi,t ≡ {wi ∈ Wi : wi = τi(w0

i , h
t
i) for some hti =

(a0
i z

0
i , a

1
i z

1
i , . . . , a

t−1
i zt−1

i ) ∈H t
i , a

s
i ∈ supp fi(τ (w0

i , h
s
i )) for all s < t}.

Definition

14.1.3
A strategy profile {(Wi , w

0
i , fi, τi) : i = 1, . . . , n} is a belief-free equilibrium if

for all t and all w ∈∏jWj,t , and for all i, the strategy (Wi , wi, fi, τi) is a best
reply to the profile {(Wj , wj , fj , τj ) : j �= i}.
We have not made any assumptions about the nature of the monitoring. In partic-

ular, the notion applies to games with perfect or public monitoring, where it is a more
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E S

E 2, 2 −c, b

S b,−c 0, 0

Figure 14.1.1 The prisoners’ dilemma from figure 2.5.1, where
b > 2, c > 0, and b − c < 4.

stringent requirement than PPE (the equilibria described in section 12.5 are examples).
Any belief-free equilibrium profile is sequential.

We illustrate the definition with Ely and Välimäki’s (2002) example of a class of
symmetric belief-free equilibria in the repeated prisoners’dilemma with almost perfect
monitoring. Like the analysis of section 12.5, we first analyze symmetric belief-free
equilibria of the perfect monitoring game. We use the payoffs of figure 2.5.1, which
are reproduced in figure 14.1.1.

14.1.1 Repeated Prisoners’Dilemma with Perfect Monitoring

Ely and Välimäki (2002) construct a class of symmetric mixed-strategy equilibria with
one-period memory. Players randomize in each period with player i placing probability
αaiaj onE after the previous-period action profile aiaj , where j �= i. For i = 1, 2, the
class of automata is (Wi , w

0
i , fi, τi), where

Wi = {waiaji : aiaj ∈ {E, S}2}, w0
i ∈ Wi , (14.1.1)

fi(w
aiaj
i ) = αaiaj ◦ E + (1− αaiaj ) ◦ S, (14.1.2)

and

τi(w
aiaj
i , a′ia′j ) = w

a′i a′j
i . (14.1.3)

The profile is constructed so that irrespective of the initial state of his opponent, the
player is indifferent betweenE andS. The one-shot deviation principle then implies that
the player’s strategy is a best reply to the opponent’s strategy induced by any initial state.

Symmetry allows us to focus on the incentives facing player 2 when verifying
optimality. The requirement is then that for each a1a2, player 2 is indifferent between
playing E and S, when player 1 is in state wa1a2

1 and so is playing E with probability
αa1a2 . This yields the following system, where V a1a2

2 is the value to player 2 when
player 1 is in statewa1a2

1 , and the first equality gives V a1a2
2 when E is chosen, whereas

the second equality gives it when S is chosen, for all a1, a2 ∈ {E, S}:

V
a1a2
2 = (1− δ)(αa1a22+ (1− αa1a2)(−c))+ δ

{
αa1a2V EE

2 + (1− αa1a2)V SE
2

}
(14.1.4)

= (1− δ)αa1a2b + δ
{
αa1a2V ES

2 + (1− αa1a2)V SS
2

}
. (14.1.5)
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Subtracting (14.1.5) from (14.1.4) gives, again for all a1a2,

αa1a2
{
(1− δ)(2+ c − b)+ δ[(V EE

2 − V ES
2

)− (V SE
2 − V SS

2

)]}
− (1− δ)c + δ(V SE

2 − V SS
2

) = 0.

At least two of the probabilities differ (otherwise, there are no intertemporal incentives
and αa1a2 = 0 for all a1a2), so the constant term and the coefficient of αa1a2 are both 0,
that is,

V SS
2 = V SE

2 − (1− δ)c
δ

(14.1.6)

and

V ES
2 = V EE

2 − (1− δ)(b − c − 2)

δ
+ V SS

2 − V SE
2

= V EE
2 − (1− δ)(b − 2)

δ
. (14.1.7)

These two equations succinctly capture the trade-offs facing potentially random-
izing players. Suppose player 2 knew her partner was going to shirk this period. The
myopic incentive to also shirk is c, whereas the cost of shirking is that her continuation
value falls from V SE

2 to V SS
2 , reflecting the change in 1’s state. Equation (14.1.6) says

that these two should exactly balance. Suppose instead player 2 knew her partner was
going to exert effort this period. The myopic incentive to shirk is now b − 2, and the
cost of shirking is now that her continuation value falls from V EE

2 to V ES
2 . This time,

equation (14.1.7) says that these two should exactly balance. Notice that these two
equations imply that a player’s best replies are independent of the current realized
behavior of the opponent.3

A symmetric profile described by the four probabilities {αa1a2 : a1a2 ∈ {E, S}2}
is a belief-free equilibrium when (14.1.4) and (14.1.5) are satisfied for the four action
profiles a1a2 ∈ {E, S}2. At the risk of repeating the obvious, the four probabilities are
to be determined, subject only to (14.1.6) and (14.1.7) (because the value functions are
determined by the probabilities). This redundancy implies a two-dimensional indeter-
minacy in the solutions, and it is convenient to parameterize the solutions by V EE

2 = v̄
and V SE

2 = v (recall that we are focusing on symmetric equilibria).
Solving (14.1.4) for a1a2 = EE gives

αEE = (1− δ)c + v̄ − δv
(1− δ)(2+ c)+ δ(v̄ − v) , (14.1.8)

for a1a2 = SE gives

αSE = (1− δ)c + v − δv
(1− δ)(2+ c)+ δ(v̄ − v) , (14.1.9)

for a1a2 = ES (using (14.1.7)) gives

αES = (1− δ)(c − (b − 2)/δ)+ v̄ − δv
(1− δ)(2+ c)+ δ(v̄ − v) , (14.1.10)

3. This is the starting point of Ely and Välimäki (2002), who work directly with the values to a
player of having his opponent play E and S this period.
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and finally, for a1a2 = SS (using (14.1.6)) gives

αSS = (1− δ)c(1− 1/δ)+ v − δv
(1− δ)(2+ c)+ δ(v̄ − v) . (14.1.11)

We have described an equilibrium if the expressions in (14.1.8)–(14.1.11) are
probabilities. Before we provide conditions that guarantee this, we consider some
special cases. For example, if we set v̄ = 2 (the highest symmetric feasible payoff ),
then αEE = 1. In other words, if we start at EE, the outcome path is pure: Under
the profile, after EE, both players play E for sure. The outcome is supported by the
specification that if player 2, for example, deviated and played S, in the next period,
she will be punished by player 1, who now plays S in the next period with probability

1− αES = (1− δ)(b − 2)

δ((1− δ)c + 2− δv) > 0.

A particularly simple example arises when c = b − 2, that is, the myopic incentives to
shirk are independent of the partner’s action. In this case, if v̄ = v = v, the probabilities
for a player are independent of his own action and given by

αEE = αSE = v + c
2+ c

and

αES = αSS = δv − c(1− δ)
δ(2+ c) .

Proposition

14.1.1
There is a two-dimensional manifold of symmetric mixed equilibria of the infinitely
repeated perfect monitoring prisoners’ dilemma: Suppose 0 < v ≤ v̄ ≤ 2 satisfy
the inequalities

(1− δ)(b − 2)/δ + δv ≤ (1− δ)c + v̄ (14.1.12)

and

v − (1− δ)c
δ

≥ 0. (14.1.13)

For each pair of initial states, the automata described by (14.1.1)–(14.1.3), with
αa1a2 given by (14.1.8)–(14.1.11), are a belief-free equilibrium.

If (14.1.12) and (14.1.13) hold strictly, and v̄ < 2, then the probabilities from
(14.1.8)–(14.1.11) are interior.

From our parameterization (V EE
2 = v̄ and V SE

2 = v) and (14.1.6)–(14.1.7):

Corollary

14.1.1
Let v′ = v − (1− δ)c/δ and v̄′ = v̄ − (1− δ)(b − 2)/δ. Every payoff vector in
{v′,v, v̄′, v̄}2 is the payoff of a belief-free equilibrium.

The inequalities (14.1.12) and (14.1.13) are satisfied for any 0 < v < v̄ ≤ 2, for
δ sufficiently close to 1. Note that, setting V EE

2 = v̄ and V SE
2 = v, (14.1.13) is equiva-

lent to V SS
2 ≥ 0 (using (14.1.6)), whereas (given (14.1.13)) (14.1.12) is stronger than

V ES
2 ≥ 0 (using (14.1.7)). Also, using (14.1.5), the expressions for the probabilities

can be written as, for all a1a2,
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αa1a2 = V
a1a2
2 − δV SS

2

(1− δ)b + δ(V ES
2 − V SS

2 )
.

Proof We need only verify that if 0 < v ≤ v̄ ≤ 2, (14.1.12) and (14.1.13) imply that
the quantities described by (14.1.8)–(14.1.11) are probabilities because the belief-
free nature of the profile is guaranteed by its construction. It is immediate that
αES < αEE and αSS < αSE ≤ αEE , so the only inequalities we need to verify
are αES , αSS ≥ 0 and αEE ≤ 1, with the inequalities strict when claimed. Observe
first that the common denominator in (14.1.8)–(14.1.11) is strictly positive from
v ≤ v̄.

It is immediate that αEE ≤ 1, because v̄ ≤ 2, with the inequality strict when
v̄ < 2. We also have αES ≥ 0 because

(1− δ)(c − (b − 2)/δ)+ v̄ − δv ≥ 0

⇐⇒ (1− δ)c + v̄ ≥ (1− δ)(b − 2)/δ + δv,

which is (14.1.12), with strictness holding when claimed.
Finally, αSS ≥ 0 is equivalent to (14.1.13), with strictness trivially holding

when claimed.
■

Remark

14.1.2
We restricted attention to symmetric profiles for tractability only. There is a four-
dimensional manifold of belief-free equilibria, once we allow for asymmetries.

◆

Remark

14.1.3
A partial folk theorem This result is a partial folk theorem for the repeated
prisoners’ dilemma, in that any payoff in the square (0, 2)2 can be achieved as an
equilibrium payoff for sufficiently patient players. For any payoff vector (v1, v2) ∈
(0, 2)2 with v1 ≤ v2,4 set

v = v1 and v̄ = v2 + (1− δ)(b − 2)

δ
.

For δ sufficiently close to 1, the hypotheses of proposition 14.1.1 are satisfied,
so there is a belief-free equilibrium with discounted average payoffs (v1, v2). In
this profile, player 1’s initial state is wES

1 and 2’s initial state is wSE
2 . Belief-free

profiles of the type just constructed cannot achieve payoffs outside the square,
because players must be indifferent betweenE and S in every period, and playing
E in every period cannot give a payoff above 2. Ely and Välimäki (2002) extend
this type of profile to obtain payoffs outside of the square.

As an illustration, consider again the case c = b − 2, and suppose δ is close to 1.
The choices of v̄ = 2 and v = (1− δ)c/δ are the most extreme possible, given
the restrictions in proposition 14.1.1. For these choices, αEE = 1 and αSS = 0, so
both action profiles EE and SS are absorbing (the individual states wEE

i and wSS
i

are not absorbing and the pairs of states (wEE
1 , wEE

2 ) and (wSS
1 , w

SS
2 ) are).

4. Clearly, a symmetric argument applies for v1 > v2.
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period 1 2 6 11

EE 9.877× 10−2 0.1780 0.3665 0.4556

SE 1.235× 10−2 1.951× 10−2 2.283× 10−2 1.293× 10−2

ES 0.7901 0.6244 0.2442 7.593× 10−2

SS 9.877× 10−2 0.1780 0.3665 0.4556

Figure 14.1.2 The unconditional distribution over action profiles induced by the belief-free
equilibrium with player 1 in initial state wEE

1 and player 2 in initial state wSS
2 . These

calculations assume b − 2 = c = 1 and δ = 9/11, so that αES = 8/9 and αSE = 1/9.

Letting wEE
i be the initial state for both players gives payoffs (2, 2). It is also

the case that the asymmetric profile (0,2) is an equilibrium payoff with initial pure
actions ES and continuations

(
(1− δ)c

δ
, 2− (1− δ)c

δ

)
,

with player 1 assigning E the relatively high probability

1− (1− δ)c
2δ

and player 2 assigning E the relatively low probability

(1− δ)c
2δ

.

In figure 14.1.2, we have described the unconditional evolution of play under
this profile. The asymmetric payoff is generated by a process that has some per-
sistence at ES and with equal probabilities switches to EE or SS forever. The
potential transition to EE is needed to reward player 1 for having exerted effort
while 2 shirked, and the threatened transition to SS (caused by 1 putting positive
weight on S) is needed to provide incentives for 2 to put positive weight on E
(facilitating a potential transition to EE).

◆

14.1.2 Repeated Prisoners’Dilemma with Private Monitoring

We now consider almost perfect private monitoring (we do not assume the monitoring
is conditionally independent or almost public). For notational simplicity, we assume
symmetric private monitoring, so that Z1 = Z2 and π(z1z2 | a1a2) = π(z2z1 | a2a1).
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Given an ε-perfect monitoring distribution (Z, π), letZi(a) be the set of private signals
satisfying πi(Zi(a) | a) > 1− ε (see definition 12.2.1).

For i = 1, 2, the class of automata is (Wi , w
0
i , fi, τi), where

Wi =
{
w
ai âj
i : ai âj ∈ {E, S} × {Ê, Ŝ}

}
, w0

i ∈ W , (14.1.14)

fi
(
wai âj

) = αai âj ◦ E + (1− αai âj ) ◦ S, (14.1.15)

and

τi
(
w
ai âj
i , zi , a

′
i

) =

w

a′i Ê
i , if zi ∈ Zi(aiE),

w
a′i Ŝ
i , if zi ∈ Zi(aiS).

(14.1.16)

In other words, in each period, player i puts probability αai âj on E, where ai is i’s
last-period action choice, and âj = Ê (Ŝ, respectively) if i’s last-period private signal
was in the set Zi(ai, E) (Zi(ai, S), respectively). The monitoring is ε-perfect, so Ê
indicates that a signal from the (1− ε)-probability event Zi(ai, E) was observed.

As for the perfect monitoring case, symmetry allows us to focus on player 2’s
incentives. Let V a1â2

2 (a2) be the value (under the profile) to player 2 when player 1

is in the private state wa1â2
1 and player 2 plays a2. As in section 12.5, we look for

probabilities, αa1â2 , such that player 2 is indifferent between E and S at each of
player 1’s four private states, that is, V w1

2 (E) = V w1
2 (S) ≡ V w1

2 for allw1 ∈ {E, S} ×
{Ê, Ŝ}. If we are successful, the one-shot deviation principle implies that player 2’s
best replies will be independent of her beliefs about player 1’s private state. Because
the environment is symmetric, the resulting symmetric profile will be a belief-free
equilibrium.

The equations implied by the indifferences are for allw1 ∈ {E, S} × {Ê, Ŝ}, where
the first equality describes V w1

2 (E) while the second describes V w1
2 (S),

V
w1
2 = (1− δ)(αw12+ (1− αw1)(−c))+ δ{αw1

(
πEÊ1 V EÊ2 + (1− πEÊ1 )V EŜ2

)
+ (1− αw1)

(
πSÊ1 V SÊ2 + (1− πSÊ1 )V SŜ2

)}
(14.1.17)

= (1− δ)αw1b + δ{αw1
(
πEŜ1 V EŜ2 + (1− πEŜ1 )V EÊ2

)
+ (1− αw1)

(
πSŜ1 V SŜ2 + (1− πSŜ1 )V SÊ2

)}
, (14.1.18)

where πa1â2
1 = π1(Z1(a1a2) | a1a2) is the probability under a that player 1 observes

a private signal in Z1(a) (recall the interpretation of Ê and Ŝ from before). Observe
that these equations replicate (14.1.4) and (14.1.5) for perfect monitoring, because
π
a1â2
1 = 1 for all a1â2 when ε = 0.

Subtracting (14.1.18) from (14.1.17) gives a linear equation in αw1 . As in the
perfect monitoring case, the constant term and the coefficient of αw1 must both equal 0
(otherwise there are no intertemporal incentives and αw1 = 0 for allw1). The constant
term is 0 if

V SŜ2 = V SÊ2 − (1− δ)c
δ(πSÊ1 + πSŜ1 − 1)

, (14.1.19)
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and the coefficient equals 0 if

V EŜ2 = V EÊ2 − (1− δ)(b − 2− c)+ δ(πSÊ1 + πSŜ1 − 1)(V SÊ2 − V SŜ2 )

δ(πEÊ1 + πEŜ1 − 1)

= V EÊ2 − (1− δ)(b − 2)

δ(πEÊ1 + πEŜ1 − 1)
. (14.1.20)

Again following the approach from the perfect-monitoring case, we treat V EÊ2

and V SÊ2 as constants, use (14.1.19) and (14.1.20) to determine V EŜ2 and V SŜ2 , and use
equation (14.1.17) for w1 to determine αw1 .

Proposition

14.1.2
Suppose 0 < v ≤ v̄ < 2 satisfy the inequalities (14.1.12) and (14.1.13) strictly.
There exists ε > 0 such that if the repeated prisoners’ dilemma with symmetric
private monitoring has ε-perfect monitoring, then there exist probabilities αai âj

such that for any initial states, the automata described by (14.1.14)–(14.1.16) are

a belief-free equilibrium, with V EÊi = v̄ and V SÊi = v. Moreover, every payoff
vector in {v′,v, v̄′, v̄}2 is the payoff of a belief-free equilibrium, where v′ is given
by (14.1.19) and v̄′ is given by (14.1.20).

Proof Observe that we can make πa1â2
1 arbitrarily close to 1 for all a1â2 by making ε

sufficiently small. Let V SS
2 = v − (1− δ)c/δ and V ES

2 = v̄ − (1− δ)(b − 2)/δ.

Then, using V EÊ2 = v̄ and V SÊ2 = v, from (14.1.19) and (14.1.20), it is immediate

that for πa1â2
1 sufficiently close to 1 for all a1â2, V SŜ2 can be made arbitrarily close

to V SS
2 and V EŜ2 can be made arbitrarily close to V ES

2 . This in turn implies that

the solution αw1 to (14.1.17) for w1 ∈ {E, S} × {Ê, Ŝ} can be made arbitrarily
close to the corresponding probability in (14.1.8)–(14.1.11) by choosing ε small
enough. Moreover, because (14.1.12) and (14.1.13) are satisfied strictly and v̄ < 2,
the corresponding probability is interior (proposition 14.1.1), and so αw1 ∈ (0, 1).
By construction, each player is indifferent between E and S, conditional on the
other player’s private state.

■

Remark

14.1.4
A partial folk theorem for private monitoring Just as for perfect monitoring
(remark 14.1.3), this implies a partial folk theorem for the repeated prisoners’
dilemma, in that any payoff in the square (0, 2)2 can be achieved as an equilibrium
payoff for sufficiently patient players. Ely and Välimäki (2002) again extend this
type of profile to obtain payoffs outside of the square.

◆

14.2 Strong Self-Generation

For the case of two players, inclusive belief-free equilibria can be characterized in a
manner similar to Abreu, Pearce, and Stacchetti’s (1990) characterization of PPE in
section 7.3.
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Definition

14.2.1
For any V ≡ V1 × V2 ⊂ R2 and Â ≡ Â1 × Â2 ⊂ A , a mixed actionαj ∈ �(Âj )
supports Âi on Vi if there exists a mapping γi : Aj × Zj → Vi , such that for all
a′i ∈ Ai ,

V∗i (αj , γi) ≡ min
ai∈Âi

(1− δ)ui(ai, αj )+ δ
∑
zj

∑
aj

γi(aj , zj )πj (zj | aiaj )αj (aj )

≥ (1− δ)ui(a′i , αj )+ δ
∑
zj

∑
aj

γi(aj , zj )πj (zj | a′iaj )αj (aj ).

(14.2.1)

Because inequality (14.2.1) is required to hold for all a′i ∈ Ai , whenαj supports Âi
(with j “promising” the continuation γi), player i is indifferent over all actions in Âi ,
and weakly prefers any action in Âi to any other action. The critical feature of the
notion of a supporting mixed action αj is that the only constraint concerns player i,
and the promised continuation γi is a function of player j ’s signal and action only.

There is an equivalent definition that emphasizes the connection with the notion
of enforceability in definition 7.3.1.

Definition

14.2.2
For any V ≡ V1 × V2 ⊂ R2 and Â ≡ Â1 × Â2 ⊂ A , a mixed action profile α ∈∏
i�(Âi) is strongly enforceable on (V , Â) if there exist mappings γi : Aj ×

Zj → Vi , i = 1, 2, such that for all i and a′i ∈ Ai ,

(1− δ)ui(α)+ δ
∑
zj

∑
aj

γi(aj , zj )πj (zj | αiaj )αj (aj )

≥ (1− δ)ui(a′i , αj )+ δ
∑
zj

∑
aj

γi(aj , zj )πj (zj | a′iaj )αj (aj ),

with equality holding for all ai ∈ Âi .
The following is immediate.

Lemma

14.2.1
The mixed action αi supports Âj on Vj for i, j = 1, 2 and j �= i if and only if the
profile α = (α1, α2) is strongly enforced on (V , Â).

For the case of public monitoring, weakening the restriction on the product struc-
ture of V , taking Âi = Ai , and restricting attention to γi independent of aj , definition
14.2.2 agrees with the strong enforceability of Fudenberg, Levine, and Maskin (1994,
definition 5.2). This latter notion strengthens our definition 7.3.1 by replacing the
inequality in (7.3.1) with an equality. Lemma 9.2.2 effectively uses this version of
strong enforceability to determine continuations for some versions of the folk theorem.

Definition

14.2.3
A payoff vi is strongly decomposable on (Vi , Â), Â = Â1 × Â2, if vi = V∗i (αj , γi)
for some αj ∈ �(Âj ) supporting Âi on Vi by γi . A set of payoffs Vi is strongly
self-generating on Â if every vi ∈ Vi is strongly decomposable on (Vi , Â). A set
of payoff profiles V = V1 × V2 is strongly self-generating on Â if Vi is strongly
self-generating on Âi for i = 1, 2.

We emphasize that a player i payoff vi strongly decomposable on (Vi , Â) is
decomposed by player j ’s behavior and player j ’s promises of i’s continuations. By
construction, i is indifferent over every action in Âi , so i’s payoff is achieved through
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an appropriate combination of player j behavior and promises (with i’s behavior being
irrelevant). If Vi is strongly self-generating on Â, then these promises in turn are decom-
posed by further player j behavior and promises. We then have the following analogs
to propositions 7.3.1 and 7.3.2.

Proposition

14.2.1
If V ≡ V1 × V2 is strongly self-generating on Â = Â1 × Â2, then it is a set of
belief-free equilibrium payoffs.

Proof The proof that V is a set of belief-free equilibrium payoffs is similar in spirit to that
of proposition 7.3.1. For each i, denote the set of payoffs strongly decomposable
on (Vi , Â) by B

Â
(Vi ), and (similar to definition 7.3.3), define the pair

Q∗j : BÂ
(Vi )→ �(Âj ) and U∗i : BÂ

(Vi )→ (Vi )
Aj×Zj ,

so that Q∗j (vi) strongly enforces Âi on Vi using U∗i (vi), and V∗i (Q∗j (vi),
U∗i (vi)) = vi .

For player j , we now construct a collection of automata {(Wj , wj , fj , τj ) :
wj ∈ Wj }, where Wj = Vi (i.e., the set of states is j ’s promises of i’s
continuations), the decision function is

fj (vi) = Q∗j (vi)

for all vi ∈ Vi , and the transition function is

τj (vi, aj zj ) = U∗i (vi)(aj , zj )

for all (aj , zj ) ∈ Aj × Zj . Because V is strongly self-generating on Â, we have
Vi ⊂ B

Â
(Vi ) and the automata are well defined.

Player j ’s automata are designed to ensure that irrespective of i’s action (as long
as it is in Âi), i’s payoff is given by the initial state of j ’s automaton, which
is by construction a value for player i. It is straightforward to verify from the
definitions (using an argument similar to that of the proof of proposition 7.3.1)
that the automata have the desired property, and that they are belief-free, for all
choices of initial states.

■

Proposition

14.2.2
If {(Wi , w

0
i , fi, τi) : i = 1, 2} is an inclusive belief-free equilibrium, then

{(V1(w), V2(w)) : w ∈ W1 ×W2} is strongly self-generating on some set Â, where
Vi(w) is player i’s value from the pair of initial states w ∈ W1 ×W2.

Proof Let Âi = ∪wi∈Wi
supp fi(wi), and suppose vi = Vi(wj ) for some statewj (recall

from lemma 14.1.1 that Vi is independent of wi). Then, because the profile is
belief-free, fj (wj ) supports Âi on {Vi(wj ) : wj ∈ Wj } using the continuations

γi(aj , zj ) = Vi(τ (wj , aj zj )),
and so {Vi(wj ) : wj ∈ Wj } is strongly self-generating on Âi .

■

Remark

14.2.1
Further characterization and folk theorems In addition to developing the above
characterization, Ely, Hörner, and Olszewski (2005) characterize the set of belief-
free equilibrium payoffs as δ approaches 1. The prisoners’dilemma is quite special.
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Though belief-free equilibria can support a large set of payoffs, in most games
they are not sufficient to prove a folk theorem, even for vanishing noise. It is
possible, on the other hand, to build on belief-free behavior to construct folk
theorems. Matsushima (2004) extended the example of section 14.1.2 to the case of
conditionally independent but very noisy signals, using review strategies (review
strategies are discussed in section 11.4.5). Hörner and Olszewski (2005) prove
a general folk theorem for almost perfect private monitoring using profiles that
have some of the essential features of belief-free equilibria.

◆
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Reputations
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15 Reputations with Short-Lived Players

The word reputation appears throughout our discussions of everyday interactions.
Firms are said to have reputations for providing good service, professionals for working
hard, people for being honest, newspapers for being unbiased, governments for being
free from corruption, and so on. These reputation statements share two features. They
establish links between past behavior and expectations of future behavior—one expects
good service because good service has been provided in the past. In addition, they
involve behavior that one might not expect in an isolated interaction—one is skeptical
of a watch offered for sale by a stranger on a subway platform, but more confident of
a special deal on a watch from a jeweler with whom one has regularly done business.
Both characteristics make repeated games an ideal tool for studying reputations, and
both suggest that reputations may be an important part of long-run relationships.

15.1 The Adverse Selection Approach to Reputations

There are two approaches to reputations in the repeated games literature. In the first one,
an equilibrium of the repeated game is selected, involving actions along the equilibrium
path that are not Nash equilibria of the stage game. As usual, incentives to choose these
actions are created by attaching less favorable continuation paths to deviations. Players
who choose the equilibrium actions are then interpreted as maintaining a reputation
for doing so, with a punishment-triggering deviation interpreted as the loss of one’s
reputation. For example, players who exert effort in the repeated prisoners’ dilemma
are interpreted as maintaining a reputation for effort, whereas shirking destroys one’s
reputation. The firms in section 6.1 could be said to maintain (imperfect) reputations for
collusion, the government in section 6.2 to maintain a reputation for not expropriating
capital, and the consumers in section 6.3 to maintain a reputation for contributing to
those with low incomes. Barro and Gordon (1983) and Canzoneri (1985) offer early
examples of such reputations models, and Ljungqvist and Sargent (2004, Chapter
22) offer a more recent discussion. In this approach, the link between past behavior
and expectations of future behavior is an equilibrium phenomenon, holding in some
equilibria but not in others. The notion of reputation is used to interpret an equilibrium
strategy profile, but otherwise adds nothing to the formal analysis.

The second or adverse selection approach to reputations begins with the assump-
tion that a player is uncertain about key aspects of her opponent. For example,

459
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h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 15.1.1 The product-choice game.

player 2 may not know player 1’s payoffs or may be uncertain about what constraints
player 1 faces on his ability to choose various actions. This incomplete informa-
tion is a device that introduces an intrinsic connection between past behavior and
expectations of future behavior. Because incomplete information about players’ char-
acteristics can have dramatic effects on the set of equilibrium payoffs, reputations in this
approach do not describe certain equilibria but place constraints on the set of possible
equilibria.

In the course of introducing incomplete information, we have changed the game.
Perhaps it is no surprise that we can get a different set of equilibrium outcomes when
we examine a different game. Much of the interest in reputation models stems from
the fact that seemingly quite small departures from perfect information about types
can have large effects on the set of equilibrium payoffs.

Consider the product-choice game of figure 1.5.1, reproduced in figure 15.1.1,
infinitely repeated with perfect monitoring. Player 1 is a long-lived player and player 2
is short-lived. Every payoff in the interval [1, 2] is a subgame-perfect equilibrium for
a sufficiently patient player 1 (section 7.6.1).

High payoffs for player 1 require player 1 to frequently play H , so that 2 will
play her best response of h. Can player 1 develop a “reputation” for playing H by
persistently doing so? This may be initially costly for player 1 if player 2 is not
immediately convinced that 1 will play H and hence plays � for some time, but the
subsequent payoff could make this investment worthwhile for a sufficiently patient
player 1.

It seems intuitive that if player 1 consistently chooses H , player 2 will eventu-
ally come to expect such play. However, nothing in the repeated game captures this
intuition. Instead, repeated games have a recursive structure; the continuation game
following any history is identical to the original game. No matter how many times
player 1 has previously playedH , the theory of complete information repeated games
provides no reason for player 2 to believe that player 1 is more likely to play H now
than at the beginning of the game.

The adverse selection approach to reputations allows player 2 to entertain the pos-
sibility that player 1 may be committed to playingH . Suppose player 2 thinks player 1
is most likely to be a normal player 1 but assigns some (small) probability µ̂ > 0
to player 1 being a commitment type who always plays H . Even a tiny probability of
a commitment type introduces a necessary relationship between past play of H and
expectations of future play that can be magnified, over the course of repeated play, to
have large effects.
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Example

15.1.1
Suppose the product-choice game is played twice, with player 1’s payoffs added
over the two periods.1 In the perfect monitoring game of complete information,L�
in both periods is the unique equilibrium outcome. Suppose now player 2 assigns
some (small) probability µ̂ > 0 to player 1 being a commitment type who always
plays H and assigns complementary probability to 1 being as already described
(the normal type). The game still has perfect monitoring, so period 0 choices are
observed before period 1 choices are made. Consider the profile where the normal
type of player 1 plays L in both periods. Player 2 plays � in period 0 (because µ̂
is small). In period 1, after observing H , player 2 concludes that she is facing the
commitment type of player 1 and best responds with h. On the other hand, after
observing L, player 2 concludes that she is facing the normal type of player 1
(who will play L in period 1) and best responds with �. This profile is not an
equilibrium. By deviating and masquerading as the commitment type in period 0,
the normal player 1 sacrifices 1 in current payoff, but gains 2 in the next period.
The two period game does not have a pure strategy equilibrium. Example 15.3.1
describes a (pooling onH ) pure strategy equilibrium of the infinite horizon game.

●

The reputation argument begins in section 15.3 with a basic implication of the
link between current behavior and expectations of future behavior, introduced by the
uncertainty about player 1’s type. If a normal player 1 consistently plays like a commit-
ment type, player 2 must eventually come to expect such behavior from player 1 and
hence play a best response. The resulting payoff imposes a lower bound on player 1’s
equilibrium payoff. For a sufficiently patient normal player 1, this is as good as being
the commitment type.

Much now hinges on the specification of the commitment type’s behavior. If the
commitment type happens to be a Stackelberg type (committed to the action most favor-
able to player 1), then player 1 has effectively been transformed into a “Stackelberg
leader.” However, the argument does not depend on there being only a single possible
commitment type, nor on this commitment type having just the right behavior. The
result holds for a general set of possible commitment types, with player 1 essentially
choosing to develop a reputation for behaving as the most favorable type.

One interpretation of reputation results is that they provide a means of selecting
among equilibria, providing a welcome antidote to the multiple equilibria reflected
in the folk theorem. In our view, it is more useful to think of reputation results as an
examination of the robustness of repeated-game results to variations in the specification
of the game. In this sense, they provide an indication that a patient long-lived player
facing short-lived opponents may have advantages beyond those captured by the stan-
dard complete information model. At the same time, the importance of commitment
behavior directs attention to the need for a model of commitment types, a relatively
neglected topic in the theory of reputations. We return to this issue in chapter 18.

Section 15.4 extends the argument to imperfect monitoring games. Here, reputa-
tions have more dramatic implications. In perfect monitoring games, a sufficiently rich

1. The adverse selection approach to reputations was first studied in finitely repeated games, where
the effects can be particularly dramatic. See chapter 17.
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set of commitment types ensures the normal player 1 a payoff arbitrarily close to his
maximum equilibrium payoff in the complete information repeated game. Under impe-
rfect monitoring, if the normal player 1 is subject to binding moral hazard, he may be
assured a payoff in excess of any equilibrium payoff in the complete information game.

Section 15.5 shows that under general conditions in imperfect monitoring games,
the incomplete information that is at the core of the adverse selection approach to rep-
utations is a short-run phenomenon. Player 2 must eventually come to learn player 1’s
type and continuation play must converge to an equilibrium of the complete information
game.

How do we reconcile this finding with the nontrivial bounds on ex ante payoffs,
bounds that may push player 1 outside the set of equilibrium payoffs in the complete
information game? There may well be a long period of time during which player 2 is
uncertain of player 1’s type and in which play does not resemble an equilibrium of
the complete information game. The length of this period will depend on the discount
factor, being longer for larger discount factors, and in general being long enough as
to have a significant effect on player 1’s payoffs. Eventually, however, such behavior
must give way to a regime in which player 2 is (correctly) convinced of player 1’s type.

We thus have an order of limits calculation. For any prior probability µ̂ that the
long run player is the commitment type and for any ε > 0, there is a discount factor
δ sufficiently large that player 1’s expected payoff is ε-close to the commitment type
payoff. This holds no matter how small is µ̂. As a result, it is tempting to think that
even as the game is played and the posterior probability of the commitment type falls,
we should be able to choose a period, think of it as the beginning of the game, and
apply the standard reputation argument to conclude that uncertainty about player 1’s
type still has a significant effect. However, for any fixed δ and in any equilibrium,
there is a time at which the posterior probability attached to the commitment type has
dropped below the corresponding critical value of µ̂, becoming too small (relative to
δ) for reputation effects to operate. We are then on the path to revealing player 1’s type.

Which should command our interest, the ability of reputations to impose bounds
on ex ante payoffs or the fact that such effects eventually disappear? These results
reflect different views of a common model. Their relative importance depends on the
context in which the model is applied rather than arguments that can be made within
the model. We sometimes observe strategic interactions from a well-defined beginning,
focusing attention on ex ante payoffs. We also often encounter ongoing interactions
whose beginnings are difficult to identify, making long-run equilibrium properties a
potentially useful guide to behavior. If one’s primary interest is the long-lived player,
then ex ante payoffs may again be paramount. One may instead take the view of a
social planner who is concerned with the continuation payoffs of the long-run player
and with the fate of all short-run players, even those in the distant future, directing
attention to long-run properties. Finally, if one is interested in the steady state of a
model with incomplete information, long-run properties are important.

We view the finding that reputations are temporary as an indication that a model
of long-run reputations should incorporate some mechanism by which the uncertainty
about types is continually replenished. For example, Holmström (1982), Cole, Dow,
and English (1995), Mailath and Samuelson (2001), and Phelan (2001) assume that
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the type of the long-lived player is governed by a stochastic process rather than being
determined once and for all at the beginning of the game. In such a situation, reputations
can indeed have long-run implications. We return to this in chapter 18.

The reputation results in this chapter exploit the sharp asymmetry between players,
with player 1 being long-lived and arbitrarily patient and player 2 being short-lived
and hence myopic. In particular, short-lived player 2s allow us to move directly from
the fact that player 2 believes 1 is playing like the commitment type to the conclusion
that 2 plays a best response to the commitment type. There is no such direct link when
player 2 is also a long-lived player, as we discuss in chapter 16, leading to considerably
weaker reputation results.

15.2 Commitment Types

We consider the case of one long-lived player and one short-lived player, with the latter
representing either a succession of players who live for one period or a continuum of
small and anonymous infinitely lived players. The type of player 1 is unknown to
player 2. A possible type of player 1 is denoted by ξ ∈ �, where � is a finite or
countable set. Player 2’s prior belief about 1’s type is given by the distribution µ, with
support �.

We partition the set of types into payoff types, �1, and commitment types, �2 ≡
�\�1. Payoff types maximize the average discounted value of payoffs, which depend
on their type and which may be nonstationary,

u1 : A1 × A2 ×�1 × N0 → R.

Type ξ0 ∈ �1 is the normal type of player 1, who happens to have a stationary payoff
function, given by the stage game in the benchmark game of complete information,

u1(a, ξ0, t) = u1(a) ∀a ∈ A,∀t ∈ N0.

It is standard to think of the prior probability µ(ξ0) as being relatively large, so the
games of incomplete information are a seemingly small departure from the underlying
game of complete information, though there is no requirement that this be the case.

Commitment types (also called action or behavioral types) do not have payoffs
and simply play a specified repeated game strategy. For any repeated game strategy
from the complete information game, σ̂1 :H1 → �(A1), where H1 is the set of
histories observed by player 1, denote by ξ(σ̂1) the commitment type committed to
the strategy σ̂1. In general, a commitment type of player 1 can be committed to any
strategy in the repeated game. If the strategy in question plays the same (pure or
mixed) stage-game action in every period, regardless of history, we refer to that type
as a simple commitment type. For example, one simple commitment type in the product-
choice game is a player who always exerts high effort. We let ξ(a1) denote the (simple
commitment) type that plays the pure action a1 in every period and ξ(α1) denote the
type that plays the mixed action α1 in every period. Commitment types who randomize
are important because they can imply a higher lower bound on player 1’s payoff.
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Other commitment types for player 1 are committed to more complicated
sequences of actions. For example, in the repeated prisoners’ dilemma, a type can
play tit-for-tat, play E in every period up to and including t and then switch to S, or
play E in prime-numbered periods and S otherwise.

Remark

15.2.1
Payoff or commitment types The distinction between payoff and commitment
types is not clear-cut. For example, pure simple commitment types are easily
modeled as payoff types. The type ξ(a1) for pure stage-game action a1 can be
interpreted as the payoff type for whom playing a1 in every period is strictly
dominant in the repeated game by specifying

u1(a, ξ(a
′
1), t) =

{
1, if a1 = a′1,

0, otherwise.

The commitment type ξ ′ who plays a′1 in every period up to and including t , and
then switches to a′′1 , is the payoff type with payoffs

u1(a, ξ
′, τ ) =




1, if a1 = a′1 and τ ≤ t ,
or a1 = a′′1 and τ > t ,

0, otherwise.

A payoff type for whom an action a1 is a dominant action in the stage game is
typically not equivalent to a commitment type who invariably plays the action a1.
To recast the latter as a payoff type, we need the constant play of the action a1

to be a dominant strategy in the repeated game, a more demanding requirement.
For example, shirking is a dominant action in the prisoners’ dilemma but is not a
dominant strategy in the repeated game.

It is possible to interpret, as Fudenberg and Levine (1992) do, mixed commit-
ment types as payoff types as well. However, doing so requires an uncountable
type space if the commitment type’s strategy is to be strictly dominant in the
repeated game, with associated technical complications.

The choice between payoff and commitment types is one of taste. The con-
ceptual advantage of only having payoff types is that all types are expected
utility maximizers. On the other hand, interest in reputation games stems from
a belief that players may not be completely certain about the characteristics of
other players. Requiring expected utility maximization may be less plausible
than simply the belief that player 1 may be irrational or “crazy,” and indeed
this language has appeared in much of the literature. Alternatively, recognizing
that the games with which we work are models of a more complicated strategic
interaction, the uncertainty about a player’s characteristic may include the pos-
sibility that the player models the strategic interaction quite differently, leading
to payoffs that have no expected utility representation in the game in question.
The player may then be completely rational but best represented as a commitment
type.
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In this book, we maintain the commitment type interpretation for ξ(a1), so that
by assumption, a commitment type plays the specified strategy.

◆

Player 1’s pure-action Stackelberg payoff is defined as

v∗1 = sup
a1∈A1

min
α2∈B(a1)

u1(a1, α2), (15.2.1)

whereB(a1) is the set of player 2 myopic best replies to a1. If the supremum is achieved
by some action a∗1 , that action is an associated Stackelberg action,

a∗1 ∈ arg max
a1∈A1

min
α2∈B(a1)

u1(a1, α2).

This is a pure action to which player 1 would commit, if he had the chance to do so
(and hence the name Stackelberg action), given that such a commitment induces a best
response from player 2. If there is more than one such action for player 1, we can
choose one arbitrarily. The (pure-action) Stackelberg type of player 1 plays a∗1 and is
denoted by ξ(a∗1) ≡ ξ∗.

When player 2 is short-lived, any bound on player 1’s ex ante payoffs that can
be obtained using commitment types can be obtained using only simple commitment
types. Chapter 16 shows that more complicated commitment types can be important
when both players are long-lived.

Remark

15.2.2
Mixed-action Stackelberg types When considering perfect monitoring, we focus
on simple commitment types who choose pure actions. As we have seen in sec-
tion 2.7.2, it is advantageous in some games for a player to commit to a mixed
action. In the product-choice game, for example, a commitment by player 1 to
mixing between H and L, with slightly larger probability on H , induces player 2
to choose h and gives player 1 a larger payoff than a commitment toH . In effect, a
player 1 who always playsH spends too much to induce response h from player 2.

Accordingly, define the mixed-action Stackelberg payoff as

sup
α1∈�(A1)

min
α2∈B(α1)

u1(α1, α2), (15.2.2)

where B(α1) is the set of player 2’s best responses to α1. Typically, the supremum
is not achieved by any mixed action, so there is no mixed-action Stackelberg
type. However, there are mixed commitment types that if player 2 is convinced
she is facing such a type, will yield payoffs arbitrarily close to the mixed-action
Stackelberg payoff.

In perfect-monitoring games, it is simpler to verify the lower bound on equi-
librium payoffs implied by commitments to pure (rather than mixed) actions. In
the former case, we need only analyze the updating of the short-lived players’
beliefs on one path of informative actions, the path induced by the Stackelberg
commitment type. In contrast, commitments to mixed actions require considera-
tion of belief evolution on all histories that arise with positive probability. This
consideration involves the same issues that arise when studying reputations in
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imperfect monitoring games. As we discuss in remarks 15.3.4 and 15.4.3, the rep-
utation effects from mixed commitment types are qualitatively stronger than those
from pure commitment types. We consider mixed commitment types together with
imperfect monitoring in section 15.4.

◆

15.3 Perfect Monitoring Games

We begin by examining reputations in repeated games of perfect monitoring. We
assume that the action set A2 is finite, considering the case of an infinite A2 in
remark 15.3.6. Assumption 2.1.1 is otherwise maintained throughout. As usual, when
any player has a continuum action space, we only consider behavior in which that
player is playing a pure strategy (remark 2.1.1).

In section 2.7, we constructed equilibria with “high” payoffs for a long-lived player
facing short-lived opponents. The basic reputation result is a lower bound on equilib-
rium payoffs for the normal long-lived player, in the game of incomplete information
in which the short-lived player is uncertain about the characteristics of the long-lived
player.2

The set of histories in the complete information game, H , is the set of public
histories in the incomplete information game and is also the set of player 2 histories in
the incomplete information game. A history for player 1 in the incomplete information
game is an element of�×H , specifying player 1’s type as well as the public history.
A behavior strategy for player 1 in the incomplete information game is, using the
notation on commitment types from section 15.2,

σ1 :H ×�→ �(A1),

such that, for all commitment types ξ(σ̂1) ∈ �2,

σ1(h
t , ξ(σ̂1)) = σ̂1(h

t ) ∀ht ∈H .

A behavior strategy for player 2 is, as in section 2.7, a map σ2 :H → �(A2).
Given a strategy profile σ , U1(σ, ξ) denotes the type ξ long-lived player’s payoff

in the repeated game. As is familiar, a Nash equilibrium is a collection of mutual best
responses:

Definition

15.3.1
A strategy profile (σ̃1, σ̃2) is a Nash equilibrium of the reputation game with perfect
monitoring if for all ξ ∈ �1, σ̃1 maximizes U1(σ1, σ̃2, ξ) over player 1’s repeated
game strategies, and if for all t and all ht ∈H that have positive probability
under (σ̃1, σ̃2) and µ,

E[u2(σ̃1(h
t , ξ), σ̃2(h

t ))
∣∣ht ] = max

a2∈A2
E[u2(σ̃1(h

t , ξ), a2)
∣∣ht ].

Remark

15.3.1
Existence of equilibrium The existence of Nash equilibria when � is finite fol-
lows by observing that every finite-horizon truncation of the game has a Nash

2. This result is first established in Fudenberg and Levine (1989), which also considers an
uncountable �.
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equilibrium and applying standard limiting arguments to obtain an equilibrium of
the infinite horizon game (see, for example, Fudenberg and Levine 1983). When
� is countably infinite, existence is again an implication of Fudenberg and Levine
(1983) if every finite-horizon truncation of the game has an ε-Nash equilibrium.
To prove that the finite-horizon truncation of the game has an ε-Nash equilibrium,
arbitrarily fix the behavior of all but a finite number of types of player 1 (because
� is countable, the set of types whose behavior is not fixed can be chosen so that
its ex ante probability is close to 1). Then, in the finite-truncation game, all the
short-lived players are maximizing while player 1 is ε-maximizing (because he is
free to choose behavior for all but a small probability set of types).

If A1 is a continuum, these arguments may not yield an equilibrium in pure
strategies (contrasting with remark 2.1.1). In this chapter, we are concerned with
lower bounds on equilibrium payoffs. The existence results assure us that we are
bounding a nonempty set. Allowing for mixing by player 1 whenA1 is a continuum
introduces some tedious details in the definition of equilibrium, but does not alter
the nature of the bounds we calculate.

◆

Remark

15.3.2
Sequential equilibrium Because the lower bound on player 1’s payoff applies
to all Nash equilibria, we do not consider stronger equilibrium concepts.3 The
counterpart of a sequential equilibrium in this context is straightforward. Only
player 1 has private information, and therefore sequential rationality for player 1
is immediate: After all histories, the continuation strategy of player 1 (of any type)
should maximize his continuation payoffs. For player 2, after histories that have
zero probability under the equilibrium and involve a deviation by player 1, we
would simply require that her action be optimal, given some beliefs over �, with
subsequent player 2’s updating the same beliefs when possible.

The consistency condition of sequential equilibrium has a powerful implication
in the presence of commitment types. Should player 2 ever see an action that is
not taken by a commitment type, then player 2 must thereafter attach probability
zero to that commitment type, regardless of what she subsequently observes. This
follows immediately from the fact that no perturbed strategies can generate such
an outcome from the commitment type. The same is not the case with a payoff
commitment type.4

◆

Example

15.3.1
We continue with the product-choice game (figure 15.1.1). The pure Stackelberg
type of player 1 chooses H , with Stackelberg payoff 2. Suppose � =
{ξ0, ξ

∗, ξ(L)}. For δ ≥ 1/2, the grim trigger strategy profile of always playing
Hh, with deviations punished by Nash reversion, is a subgame-perfect equilib-
rium of the complete information game. Consider the following adaptation of this
profile in the incomplete information game:

3. The full strength of Nash equilibrium is not needed for the existence of reputation bounds. It
essentially suffices that player 1 knows that the player 2s play a best response (see Battigali and
Watson 1997).

4. Section 17.1 (see note 5 on page 552) presents an example where the stronger consistency
implication of commitment types ensures that there is a unique sequential equilibrium outcome
with a commitment type but not with an equivalent payoff type.
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σ1(h
t , ξ) =



H, if ξ = ξ∗,

or ξ = ξ0 and aτ = Hh for all τ < t ,

L, otherwise,

and

σ2(h
t ) =

{
h, if aτ = Hh for all τ < t ,

�, otherwise.

In other words, player 2 and the normal type of player 1 follow the strategies
from the Nash-reversion equilibrium in the complete information game, and the
commitment types ξ∗ and ξ(L) play their actions.

This is a Nash equilibrium for δ ≥ 1/2 and µ(ξ(L)) < 1/2. The restriction on
µ(ξ(L)) ensures that player 2 finds h optimal in period 0. Should player 2 ever
observe L, then Bayes’ rule causes her to place probability 1 on type ξ(L) (if L is
observed in the first period) or the normal type (if L is first played in a subsequent
period), making her participation in Nash reversion optimal. The restriction on δ
ensures that Nash reversion provides sufficient incentive to make H optimal for
the normal player 1. After observing a0

1 = H in period 0, player 2 assigns zero
probability to ξ = ξ(L). However, the posterior probability that 2 assigns to the
Stackelberg type does not converge to 1. In period 0, the prior probability isµ(ξ∗).
After one observation of H , the posterior increases to µ(ξ∗)/[µ(ξ∗)+ µ(ξ0)],
after which it is constant.5

Of more interest is the (im)possibility of a Nash equilibrium with a low payoff
for the normal player 1. This contrasts with the game of complete information,
where playing L� in every period is a subgame-perfect equilibrium with a payoff
of 1 to the normal player 1. It is an implication of proposition 15.3.1 that there
is no Nash equilibrium of the incomplete information game with a payoff to the
normal player 1 near 1. Here we argue that, if µ(ξ∗) < 1/3 and µ(ξ(L)) < 1/3,
the normal player 1’s payoff in any pure strategy Nash equilibrium is bounded
below by 2δ and above by 2. The bounds on µ(ξ∗) and µ(ξ(L)) imply that in any
pure strategy Nash equilibrium outcome, the normal player 1 and player 2 choose
either Hh or L� in each period, and so 2 is the upper bound on 1’s payoff.6 Fix a
pure strategy Nash equilibrium, and let t be the first period in which the normal
player 1 chooses L. If t = ∞ (i.e., 1 never chooses L in equilibrium), then the
normal player 1’s payoff is 2. Suppose t <∞. If the normal player 1 chooses H

5. We can complete player 2’s beliefs to be consistent with sequentiality by stipulating that an
observation of H in a history in which L has previously been observed causes her to place
probability one on the normal type of player 1.

6. Player 2 must either expect L in the first period with probability µ0(ξ(L))+ µ0(ξ0) or expect
H with probability µ0(ξ∗)+ µ0(ξ0), with a best response of � in the first case and h in the
second. In subsequent periods, positive probability can be attached to only one commitment
type. This probability must fall short of 1/2 in the second period (because µ(ξ∗) < 1/3 and
µ(ξ(L)) < 1/3) and, given that player 1 is normal, can never thereafter increase (because the
equilibrium is pure), ensuring that player 2 always plays a best response to the normal player 1.
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h �

H 3, 3 1, 2

L 2, 0 0, 1

h �

H 3, 3 3, 2

L 2, 0 0, 1

Figure 15.3.1 A payoff type of player 1 for whom H is dominant in
the stage game (left panel) and in the repeated game (right panel).

in period t and every subsequent period, then player 2 will choose h in period
t + 1 and every subsequent period, having concluded in period t that 1 is the
Stackelberg type and then having received no evidence to the contrary. Hence, a
lower bound on the normal player 1’s payoff is

2(1− δt )+ 0× (1− δ)δt + 2δt+1

= 2− 2(1− δ)δt
≥ 2− 2(1− δ)
= 2δ.

●

Example

15.3.2
Payoff types Continuing with the product-choice game (figure 15.1.1), we now
consider the set of types � = {ξ0, ξ1}, where ξ1 is the payoff type with payoffs
described in the left panel of figure 15.3.1. The lower bound from example 15.3.1
no longer holds, even though player 2 puts positive probability on player 1 being
a type ξ1 for whom the Stackelberg action is strictly dominant in the stage game.
It is possible, even for δ arbitrarily close to 1, to construct sequential equilibria
in which both types of player 1 receive a payoff arbitrarily close to their minmax
values of 1. For example, first consider the profile in which in the absence of a
deviation by player 1, both types of player 1 play L in even periods andH in odd
periods, and player 2 plays � in even periods and h in odd periods. Deviations by
player 2 are ignored, and any deviation by player 1 results in player 2 concluding
that player 1 is the normal type ξ0 (and never subsequently revising her belief) and
playing � in every subsequent period. After any deviation by player 1, the normal
type always plays L (while ξ1 playsH ), so the profile is sequential.7 Profiles with
lower payoffs can be constructed by increasing the frequency of L� on the path of
play (the result is still an equilibrium provided δ is large enough and the average
payoff to player 1 of both types exceeds 1). Figure 15.3.1 also presents the payoffs
for a payoff type who finds it a dominant strategy to playH after every history in
the repeated game. This type is equivalent to the Stackelberg type.

●

7. This profile has the feature that the assumed belief for player 2 after a deviation toH in an even
period is counterintuitive, because the deviation to ξ1’s most preferred action results in that type
receiving zero probability. We do not discuss such refinement issues here. See Kreps and Wilson
(1982a, p. 263) for further discussion.
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15.3.1 Building a Reputation

Our first step toward the reputation result is to demonstrate that when player 2 assigns
some probability to the simple type ξ(a′1) ≡ ξ ′, if the normal player 1 persistently plays
action a′1, then player 2 must eventually place high probability on that action being
played. Of course, it may take a while to build such a reputation for playing a′1, and
doing so may be quite costly in the meantime. However, this cost will be negligible if
player 1 is sufficiently patient. If this action is the Stackelberg action a∗1 , when player 1
is sufficiently patient, the resulting lower bound on player 1’s payoff is close to his
Stackelberg payoff v∗1 .

Let � ≡ �× (A1 × A2)
∞ be the space of outcomes. An outcome ω ∈ � takes

the formω = (ξ, a0
1a

0
2, a

1
1a

1
2, a

2
1a

2
2, . . .), specifying the type of player 1 and the actions

chosen in each period. Associated with any outcome ω is the collection of period t
public histories, one for each t , with ht = ht (ω) = (a0

1(ω)a
0
2(ω), a

1
1(ω)a

1
2(ω), . . . ,

at−1
1 (ω)at−1

2 (ω)) ∈H t .
A profile of strategies (σ1, σ2), along with the prior probability over types µ

(with support �), induces a probability measure on the set of outcomes �, denoted
by P ∈ �(�). Denote by �′ the event that the action a′1 is chosen in every period,
that is,

�′ = {ω : at1(ω) = a′1 ∀t} ⊂ � = �× (A1 × A2)
∞.

The event �′ contains a multitude of outcomes, differing in the type of player 1 and
actions of player 2. For example, the action a′1 in every period is consistent with
player 1 being the simple type ξ(a′1), but also with player 1 being the normal type, as
well as with a variety of other types and player 2 behavior.

Let qt be the probability that the action a′1 is chosen in period t , conditional on
the public history ht ∈H t , that is,

qt ≡ P(at1 = a′1 | ht ). (15.3.1)

Note that qt is a random variable, being a function of the form qt : �→ [0, 1]. Specif-
ically, qt (ω) = P(at1 = a′1 | ht (ω)). Because qt depends on ω through ht (ω), we will
often write qt (ht ) rather than qt (ω). Because qt is conditioned on the public history,
it provides a description of player 2’s beliefs about player 1’s play, after any history.

The normal player 1 receives a payoff of at least mina2∈B(a′1) u1(a
′
1, a2) in any

period t in which qt is sufficiently large that player 2 chooses a best response to a′1,
and player 1 in fact plays a′1. The normal player 1 has the option of always playing a′1,
so his payoff in any Nash equilibrium must be bounded below by the payoff generated
by always playing a′1. If there is a bound on the number of periods in which after
always observing a′1, player 2’s period t beliefs assign low probability to a′1, then there
is a lower bound on the normal player 1’s equilibrium payoff.

Hence, we are interested in the behavior of qt on the set �′.

Example

15.3.3
qt may decrease on �′ Consider the product-choice game (figure 15.1.1) with
a′1 = H (= a∗1 , the Stackelberg action). Let ξ̃t describe a commitment type who
plays H in every period τ < t , and L thereafter, independently of history. In
particular, ξ̃0 is ξ(L), the simple commitment type that plays L in every period,
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and ξ̃t is a nonsimple commitment type for t ≥ 1. Let ξ̂ denote the type that plays
H in period 0 and plays H thereafter if and only if player 2 plays h in period 0;
and otherwise playsL. The set of types is given by� = {ξ0, ξ

∗, ξ̂ , ξ̃0, ξ̃1, ξ̃2, . . .},
with prior µ.

Consider first the strategy profile in which the normal type always plays H
and player 2 always plays h. Recall that the set �′ is the set of all outcomes in
which player 1 always plays H . Then, q0 = 1− µ(ξ̃0) because all types except
ξ̃0 playH in period 0. There are two period 1 histories consistent with�′,Hh and
H�, but H� has zero probability under P (because 2 always plays h). Applying
Bayes’ rule,

q1(Hh) = 1− µ(ξ̃0)− µ(ξ̃1)

1− µ(ξ̃0)
.

Because q0 < q1(Hh) if and only if µ(ξ̃0)(1− µ(ξ̃0)) > µ(ξ̃1), qt need not be
monotonic on �′ in t .

●

If the short-run players are playing pure strategies, then the conditional belief qt

is constant on a full-measure subset of�′ (i.e., qt (ω) = qt (ω′) for all ω,ω′ ∈ �† with
P(�†) = P(�′)), because there is then only one positive probability period t history
ht consistent with �′. If the short-lived players are randomizing, however, then ht

may be a nondegenerate random variable on �′ and (because σ t1 is a function of the
short-lived players actions in earlier periods) so qt may also be.

Example

15.3.4
qt can vary with ht on �′ We continue with example 15.3.3. Consider now a
profile in which the normal type of player 1 always plays H and player 2 plays h
with probability 1/2 and �with probability 1/2 in the first period, and then always
plays h. Though our calculation of q0 is unchanged, things are very different in
period 1. Now, both period 1 histories consistent with �′, Hh and H�, receive
positive probability. So,

q1(Hh) = 1− µ(ξ̃0)− µ(ξ̃1)

1− µ(ξ̃0)
,

and

q1(H�) = 1− µ(ξ̂)− µ(ξ̃0)− µ(ξ̃1)

1− µ(ξ̃0)
.

Consequently, for fixed t , qt need not be constant as a function of ht on a full-
measure subset of �′.

●

Define nζ : �→ N0 ∪ {∞} to be the number of random variables qt

(t = 0, 1, . . .) for which qt ≤ ζ . That is, for each ω ∈ �, nζ (ω) = |{t : qt (ω) ≤ ζ }|
is the number of terms in the sequence of conditional probabilities {qt (ω)}∞t=1 that
do not exceed ζ . Denote the event that player 1 is type ξ ′, {ξ ′} × (A1 × A2)

∞,
by simply ξ ′.
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Lemma

15.3.1
Fix ζ ∈ [0, 1). Suppose µ(ξ(a′1)) ∈ [µ†, 1) for some µ† > 0 and a′1 ∈ A1. For
any profile (σ1, σ2),

P

{
nζ >

lnµ†

ln ζ

∣∣∣∣∣�′
}
= 0,

and for any outcome ω ∈ �′ such that all histories {ht (ω)}∞t=0 have positive
probability under P, P(ξ(a′1) | ht (ω)) is nondecreasing in t .

Thus, whenever player 2 observes ever longer strings of action a′1, eventually she must
come to expect action a′1 to be played with high probability.

The restriction to histories {ht (ω)}∞t=0 that have positive probability under P
precludes outcomes ω that are impossible under strategy profile σ .

An important feature of this lemma is that the bound on nζ is independent of P,
allowing us to bound player 1’s payoff in any equilibrium. Denote ξ(a′1) by ξ ′. This
result does not assert P(ξ ′ | ht )→ 1 as t →∞, that is, that the posterior probability
attached to the simple type ξ ′ converges to unity. Instead, it leaves open the possi-
bility that player 1 is normal but plays like that simple type, as in the equilibrium in
example 15.3.1.

The key idea behind the proof is the following. Suppose that under some historyht ,
previous play is consistent with the simple type (aτ1 = a′1 for all τ < t) and the current
expectation is that the action a′1 need not appear (qt < 1). This can only happen if
some probability is attached to the event that player 1 is not the simple type ξ ′ and will
not play the action a′1. Then, observing the action a′1 in period t results in a posterior
that must put increased weight on ξ ′ and therefore (all else equal) must increase qt in
the future.

Proof Let �′′ ≡ {ω : P(ht (ω)) > 0, at1(ω) = a′1 ∀t}, that is, �′′ is the set of outcomes
ω such that all histories ht (ω) have positive probability and a′1 is always played.
Note that �′′ ⊂ �′ and P(�′′) = P(�′).

Step 1. Our first step is to show that, for ω ∈ �′′,

P(ξ ′ | ht (ω)) = P(ξ ′ | ht−1(ω))

qt−1
.

This would be an immediate implication of Bayes’ rule if only player 1’s behavior
were observed in period t − 1. Establishing the result requires confirming that
observing player 2’s behavior as well does not confound the inference. Applying
Bayes’ rule, we have

P(ξ ′ | ht (ω)) = P(ht (ω) | ξ ′, ht−1(ω))P(ξ ′ | ht−1(ω))

P(ht (ω) | ht−1(ω))
. (15.3.2)

Reformulate the denominator by using the independence of any period t

randomization of players 1 and 2 to obtain (suppressing ω),

P(ht | ht−1) = P(at1a
t
2 | ht−1) = P(at1 | ht−1)P(at2 | ht−1)

= P(ht (1) | ht−1)P(at2 | ht−1),
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where ht (i) is the period t history of i’s actions. Using the three observations that
player 2’s choice at t depends on 1’s play only through ht−1, ω ∈ �′′ (so that
at1 = a′1), and P(ξ ′, ht−1) > 0,

P(at2 | ht−1) = P(at2 | ξ ′, ht−1) = P(ht (2) | ξ ′, ht−1).

Turning to the numerator in (15.3.2), using the second observation again,
P(at1 | ξ ′, ht−1) = 1, so

P(ht | ξ ′, ht−1) = P(ht (2) | ξ ′, ht−1).

Substituting these calculations into (15.3.2),

P(ξ ′ | ht ) = P(ht (2) | ξ ′, ht−1)P(ξ ′ | ht−1)

P(ht (1) | ht−1)P(ht (2) | ξ ′, ht−1)

= P(ξ ′ | ht−1)

P(ht (1) | ht−1)

= P(ξ ′ | ht−1)

P(at1 = a′1 | ht−1)

= P(ξ ′ | ht−1)

qt−1
. (15.3.3)

Because qt ≤ 1, P(ξ ′ | ht ) is nondecreasing.

Step 2. Next, because µ(ξ ′) ≥ µ† > 0, we can use (15.3.3) to calculate that
for all t ,

0 < µ† ≤ P(ξ ′ | ∅)
= q0P(ξ ′ | h1)

= q0q1P(ξ ′ | h2)

...

=
(
t−1∏
τ=0

qτ

)
P(ξ ′ | ht ),

and as P(ξ ′ | ht ) ≤ 1 for all t ,

t−1∏
τ=0

qτ ≥ µ†.

Taking limits,
∞∏
τ=0

qτ ≥ µ†.

That is, for all ω ∈ �′′,
∞∏
τ=0

qτ (ω) ≥ µ†,
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and so (using the observation at the beginning of the proof that P(�′′) = P(�′)),

P
{
ω ∈ �′′ :

∏∞
τ=0

qτ (ω) ≥ µ†
}
= P(�′′) = P(�′).

Because P(�′) ≥ P(ξ ′) ≥ µ† > 0 (where ω has again been suppressed),

P
{∏∞

τ=0
qτ ≥ µ†

∣∣∣�′} = 1.

But
∞∏
τ=0

qτ =
∏

{τ :qτ≤ζ }
qτ

∏
{τ :qτ>ζ }

qτ <
∏

{τ :qτ≤ζ }
qτ ≤ ζ nζ ,

and so

P
{
ζ nζ ≥ µ†

∣∣�′} = 1,

or

P
{
nζ ln ζ ≥ lnµ†

∣∣�′} = 1,

which gives the result

P
{
nζ ln ζ < lnµ†

∣∣�′} = P

{
nζ >

lnµ†

ln ζ

∣∣∣∣∣�′
}
= 0.

■

15.3.2 The Reputation Bound

In the stage (or one-shot) game, player 1 can guarantee the payoff

v∗1(a1) ≡ min
a2∈B(a1)

u1(a1, a2) (15.3.4)

by committing to action a1. We refer to v∗1(a1) as the one-shot bound from a1. Let
v1(ξ0, µ, δ) be the infimum over the set of the normal player 1’s payoff in any (pure
or mixed) Nash equilibrium, given the distribution µ over types and discount factor
δ. The basic reputation result establishes a lower bound on the equilibrium payoff of
player 1.

Proposition

15.3.1
Suppose A2 is finite and µ(ξ0) > 0. Suppose A′1 is a finite subset of A1 with
µ(ξ(a1)) > 0 for all a1 ∈ A′1. Then there exists k such that

v1(ξ0, µ, δ) ≥ δk max
a1∈A′1

v∗1(a1)+ (1− δk)min
a∈A u1(a).

Proof Let a′1 be a best type in A′1, that is,

a′1 ∈ arg max
a1∈A′1

min
a2∈B(a1)

u1(a1, a2).

By hypothesis, the simple type ξ ′ = ξ(a′1) is assigned positive probability by µ.
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Because A2 is finite, there exists ζ ∈ (0, 1) such that if α1(a
′
1) > ζ ,

B(α1) ⊂ B(a′1).

In other words, as long as player 2 attaches sufficiently high probability to
player 1’s action a′1, player 2 will choose a best response to a′1.

Fix a Nash equilibrium (σ1, σ2) and let P be the distribution on � induced by
(σ1, σ2) and µ. Then, for all ht such that qt (ht ) > ζ , B(E(σ t1 | ht )) ⊂ B(a′1).8
Letting ˆH t ≡ {ht : qt (ht ) > ζ }, we have just argued that σ t2(h

t ) ∈ B(a′1) for all
ht ∈ ˆH t .

Set k = lnµ(ξ ′)/ ln ζ . From lemma 15.3.1, conditional on�′ (i.e., conditional
on 1 playing a′1 in every period), qt ≤ ζ for no more than k periods with P
probability 1. Suppose now that the normal type plays according to the strategy
“always play a′1” (which may not be σ1). This induces a probability measure P′ on
� that generates the same distribution over public histories as does P conditional
on ξ ′, that is, P′(C) = P(C | ξ ′) for all C ⊂ (A1 × A2)

∞. Hence qt ≤ ζ for no
more than k periods with P′ probability 1. The inequality for v1(ξ0, µ, δ) now
follows from the observation that the normal type’s equilibrium payoff must be
no less than the payoff from this strategy, which is at least the payoff from receiving
the worst possible payoff for the first k periods, after which a payoff of at least
maxa1∈A′1 v

∗
1(a1) is received.

■

If the set of possible commitment types is sufficiently rich, the lower bound on
the normal player 1’s payoff is the Stackelberg payoff.

Corollary

15.3.1
Suppose µ assigns positive probability to some sequence of simple types
{ξ(ak1)}∞k=0 with {ak1}k satisfying

v∗1 = lim
k→∞ v

∗
1(a

k
1).

For all ε > 0, there exists δ′ ∈ (0, 1) such that for all δ ∈ (δ′, 1),

v1(ξ0, µ, δ) ≥ v∗1 − ε.

Proof Fix ε > 0 and choose ak1 such that v∗1(a
k
1) > v∗1 − ε/2. The result now follows

from proposition 15.3.1, taking A′1 = {ak1}.
■

Remark

15.3.3
Stackelberg bound If there is a Stackelberg action, and the associated Stackelberg
type has positive probability under µ, then the hypotheses of corollary 15.3.1 are
trivially satisfied. In that case, the normal player 1 effectively builds a reputation
for playing like the Stackelberg type, receiving a payoff (when patient) no less than
the payoff v∗1 . Importantly, the normal player builds this reputation despite the fact
that there are many other possible commitment types. However, this result tells
us very little about player 1’s equilibrium strategy. In particular, it does not imply
that it is optimal for the normal player 1 to choose the Stackelberg action in each

8. Note that σ t1 : H t ×�→ �(A1) and qt (ht ) = E(σ t1 | ht )(a′1) =
∑
σ t1(h

t , ξ)(a′1)P(ξ | ht ).
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period, which is in general not the case. Section 15.5 discusses the consequences
of this suboptimality.

◆

Remark

15.3.4
Complete information games Reputation effects from pure-action commitment
types in perfect monitoring games yield a lower bound on equilibrium payoffs
for player 1 that can be quite high. However, unlike mixed-action commitment
types, or more generally imperfect monitoring games, they do not introduce the
possibility of new payoffs. More precisely, for any pure action a′1 ∈ A1, there
exists δ ∈ (0, 1), such that for all δ ∈ (δ, 1) the complete information game has
an equilibrium with player 1 payoffs at least v∗1(a′1). This is immediate if there is
a stage-game Nash equilibrium with player 1 payoffs at least v∗1(a′1). If not, then
Nash reversion can, for patient player 1, be used to support 1’s choice of a′1 in
every period.

◆

Remark

15.3.5
Diffuse beliefs If A1 is a continuum, then the hypotheses of corollary 15.3.1
are satisfied if A1 has a countably dense subset {am1 }∞m=1 with the property that
µ(ξ(am1 )) > 0 for all m.

◆

Remark

15.3.6
Continuum short-lived player action set The assumption that A2 is finite in
proposition 15.3.1 allowed us to conclude that if the probability attached to the
action a′1 exceeds some value ζ , then player 2 will play a best response to that
action. The proposition is then proven by showing that under persistent play of
a′1, it takes at most k periods to push the probability of the action a′1 past ζ .

Allowing A2 to be a continuum forces only a slight weakening of this result.
The continuity of player 2’s payoff function ensures that as the probability attached
to the action a′1 approaches unity, the set of player 2’s best responses converges
to a subset of the set of best responses to that action. Although player 1 can never
be certain that player 2 will choose an exact best response, he can be certain that
player 2 will come arbitrarily close.

By the continuity in assumption 2.1.1, for all ε > 0, there is a value ζ such
that if α1(a

′
1) > ζ , then u1(a

′
1, a2) > v∗1(a′1)− ε for any a2 ∈ B(α1). The proof

of proposition 15.3.1 then gives:

Proposition

15.3.2
Suppose A2 is a continuum and µ(ξ0) > 0. Suppose A′1 is a finite subset of A1

with µ(ξ(a1)) > 0 for all a1 ∈ A′1. For all ε > 0, there exists k such that

v1(ξ0, µ, δ) ≥ δk(max
a′1∈A′1

v∗1(a′1)− ε)+ (1− δk)min
a∈A u1(a).

◆

Remark

15.3.7
Multiple short-lived players The arguments extend immediately to the case
of multiple short-lived players, on appropriately reinterpreting the notion of a
one-shot bound, which is now

v∗1(a1) = min
α−1∈B(a1)

u1(a1, α−1),
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whereB(a1) is the set of Nash equilibria in the stage game played by the short-run
players, given action a1 from the long-lived player. The only minor qualification
is that with many short-lived players, unlike one short-lived player with finite
A2, it is not true that B(α1) ⊂ B(a′1) for α1 sufficiently close to a′1. However,
as in remark 15.3.6, B is upper hemi-continuous, so a statement analogous to
proposition 15.3.2 holds.

◆

Remark

15.3.8
The role of discounting The discount factor plays a somewhat different role in
folk theorem and reputation arguments. In the case of the folk theorem, a higher
discount factor has the effect of making future payoffs relatively more important.
In the reputation argument, the discount factor plays a dual role. It makes future
payoffs relatively more important, but it also discounts into insignificance the
initial sequence of periods during which it may be costly for player 1 to mimic
the commitment type.

To clarify these different roles for the discount factor, recall section 3.2.3’s
observation that future payoffs could attain sufficient weight to deter current devi-
ations from equilibrium play in two ways. One is via a sufficiently large discount
factor. The other is via stage-game payoffs that provide sufficiently small rewards
for deviating from prescribed actions. We have seen that large discount factors also
suffice to support reputation arguments. There is no reason to expect stage-game
payoffs that provide relatively small incentives for deviating from an equilibrium
to do likewise.

For example, section 3.2.3 discussed a version of the product-choice game
parameterized by the cost of high effort. In such a game, the fear of future pun-
ishment can induce player 1 to consistently choose high effort without appealing
to large discount factors, as long as the cost of high effort is sufficiently small.
Will this also suffice to support a reputation result that imposes a lower bound
on player 1’s payoff? Here, another payoff difference is at issue, measuring not
the temptation to deviate from high effort when player 2 chooses h, but the cost
of choosing H when player 2 chooses �. These in general are not the same, and
we cannot be certain that the same stage-game payoffs that support folk theorem
results will also support reputations. We return to this distinction in chapter 18.

◆

15.3.3 An Example: Time Consistency

Section 6.2 examined a model of a long-lived government facing a sequence of
short-lived citizens. If the discount factor is high enough, the repeated game has
an equilibrium in which actions ((R − 1)/R, 0) are chosen in each period, yielding
an equilibrium without expropriatory taxes. In such an equilibrium, the government
receives its Stackelberg payoff of

v∗1 = sup
a1∈A1

min
a2∈B(a1)

u1(a1, a2) = R + γ.

However, there are many other subgame-perfect equilibria, including one in which the
actions (1, 1) are taken in each period, giving each player their minmax payoff. Do we
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have any reason to regard some of these equilibrium payoffs as being more interesting
or more likely than others?

If there is incomplete information about the government’s type, then the govern-
ment can build a reputation that ensures (with enough patience) a high payoff.9 Let
player 1’s type be drawn at the beginning of the game from a distribution that attaches
positive probability to the normal type and to each of a countable number of simple
commitment types. Each commitment type is characterized by a tax rate and the set of
such tax rates is dense in [0, 1].

From corollary 15.3.1, we conclude that for any ε, there is a δ < 1 such that
for all δ ∈ (δ, 1), the government’s payoff in any Nash equilibrium is within ε of v∗1 .
The government capitalizes on the uncertainty about its type to build a reputation for
nonconfiscatory tax rates.

15.4 Imperfect Monitoring Games

We now examine reputations with imperfect monitoring. We again study games with
one long-lived player (player 1) and one short-lived player (player 2), focusing on
player 1’s payoff. The stage game of the benchmark complete information game is
the game with private monitoring described in section 12.2, with finite or continuum
action spaces, Ai , and finite signal spaces, Zi . This includes public monitoring as a
special case (remark 12.2.1), and thus includes stage games with a nontrivial extensive
form. Though the seminal study of reputations with imperfect monitoring (Fudenberg
and Levine 1992) restricted attention to public monitoring games (see remark 15.4.2),
this is unnecessary.

The distribution over private signals z = (z1, z2) for each action profile a is
denoted by π(z | a), with πi being player i’s marginal distribution. As usual, the
ex post payoffs of the normal type of player 1 and player 2, after the realization (z, a),
are given by u∗i (zi , ai) (i = 1, 2). If an action space is a continuum, we assume the
appropriate analog of assumption 7.1.1, that is, π : Z × A→ [0, 1] is continuous, and
u∗i is continuous in all arguments and quasi-concave in ai . Ex ante stage game payoffs
are given by ui(a) ≡∑z u

∗
i (zi , ai)π(z | a).

The space of types � is as described in section 15.2, with ξ0 being the normal
type. When A1 is finite, we allow for simple commitment types that are committed to
a mixed action.

The set of private histories for player 1 (excluding his type) is

H1 ≡ ∪∞t=0(A1 × Z1)
t ,

and a behavior strategy for player 1 is, using the notation on commitment types from
section 15.2,

σ1 :H1 ×�→ �(A1),

9. Celentani and Pesendorfer (1996) establish such a reputation result in the course of providing a
more general treatment of reputations in dynamic games.
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such that, for all ξ(σ̂1) ∈ �2,

σ1(h
t
1, ξ(σ̂1)) = σ̂1(h

t
1) ∀ht1 ∈H1.

The set of private histories for the short-lived players is

H2 ≡ ∪∞t=0(A2 × Z2)
t ,

and a behavior strategy for the short-lived players is

σ2 :H2 → �(A2). (15.4.1)

We maintain throughout our convention of restricting attention to pure strategies when
considering infinite action sets.

As before, given a strategy profile σ , U1(σ, ξ) denotes the type ξ long-lived
player’s payoff in the repeated game.

Definition

15.4.1
A strategy profile (σ̃1, σ̃2) is a Nash equilibrium of the reputation game with
imperfect monitoring if for all ξ ∈ �1, σ̃1 maximizes U1(σ1, σ̃2, ξ) over player
1’s repeated game strategies, and if for all t and all ht2 ∈H2 that have positive
probability under (σ̃1, σ̃2) and µ,

E[u2(σ̃1(h
t
1, ξ), σ̃2(h

t
2)) | ht2] = max

a2∈A2
E[u2(σ̃1(h

t
1, ξ), a2) | ht2].

Remark

15.4.1
We have assumed in (15.4.1) that the short-lived player in period t observes all
previous short-lived players’actions and signals. Although this is natural in games
of perfect monitoring, the assumption requires discussion here.

When the game has truly private monitoring (that is, player 2 observes rele-
vant signals that are not observed by player 1), it seems unnatural to distinguish
between knowledge of past signals and past actions, and we accordingly require
subsequent generations of player 2 to have access to all the information held
by earlier generations of player 2. In many contexts, this assumption is unduly
strong—a customer at a restaurant, for example, is unlikely to have better infor-
mation about earlier customers’ experience than the restaurant. In other contexts,
the assumption is natural. Section 15.4.3 considers the case in which player 2 is
a continuum of small and anonymous but long-lived players. The monitoring is
truly private, but each player naturally knows her previous actions.

◆

Remark

15.4.2
Public monitoring The analysis requires only minor modifications when the
signals are public and short-lived players do not observe the actions of previous
short-lived players. We refer to the game with public signals and short-lived player
actions not observed by subsequent short-lived players (i.e., H2 ≡ ∪∞t=0Y

t ) as the
canonical public monitoring game, because it is often the most natural specifica-
tion. This is the game studied in chapter 7 and in Fudenberg and Levine (1992),
and is to be distinguished from the case when the signal is public and short-lived
player actions are observed by subsequent short-lived players (a special case of
the private monitoring game).
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A special case of the canonical public-monitoring game has public short-lived
player actions (and finite A2, so as to preserve our assumption of a finite signal
space). There is a space of signals Y1 and a public-monitoring distribution ρ1,
so that the complete space of public signals is Y = Y1 × A2 with probability
distribution given by

ρ((y1, a
′
2) | a) =

{
ρ1(y1 | a), if a′2 = a2,

0, otherwise.

◆

15.4.1 Stackelberg Payoffs

As in the case of perfect monitoring, the normal player 1 has an incentive to induce
particular beliefs in the short-lived players in order to elicit beneficial best replies.
However, because monitoring is imperfect, the best responses elicitable by a1 are not
simply those actions in B(a1).

We first consider the set of possible player 2 best responses when player 1 is
almost certain to play some mixed action α1. A (potentially mixed) action α2 is an
ε-confirmed best response to α1 if there exists α′1 such that

α2(a2) > 0⇒ a2 ∈ arg max
a′2

u2(α
′
1, a
′
2)

and ∣∣π2(· | α1, α2)− π2(· | α′1, α2)
∣∣ ≤ ε.

Note that it is possible that a mixed action α2 is an ε-confirmed best response to α1,
while at the same time no action in the support of α2 is an ε-confirmed best response.10

Denote the set of ε-confirmed best responses to α1 by Bε(α1). Note that if there are
different strategies α1 and α′1 with π2(· | α1, α2) = π2(· | α′1, α2), then B0(α1) may
contain strategies not in B(α1), the set of best replies to α1 (see example 15.4.2).

The private monitoring and the canonical public monitoring game differ in the
information that short-lived players have about preceding short-lived player choices,
leading to different constraints on optimal player 2 behavior (see note 11 on page 487).

For the private monitoring game, we define

B∗ε (α̂1) ≡ {α2 : supp(α2) ⊂ Bε(α̂1)}. (15.4.2)

For the canonical public monitoring game, we define B∗ε (α̂1) ≡ Bε(α̂1).
In this section, we prove that if player 2 assigns strictly positive probability to a

simple type ξ(α′1), then a patient normal player 1’s payoff in every Nash equilibrium
can be (up to an ε > 0 approximation) no lower than v1(α

′
1), where

10. For example, in the product-choice game (figure 15.1.1), if the public monitoring is given by Y =
{y, ȳ} with ρ(ȳ | Hh) = ρ(ȳ | L�) = 1 and 0 otherwise, then 1

2 ◦ h+ 1
2 ◦ � is a 0-confirmed

best response to H , while � is not. By adding an appropriate third action for player 2, we can
ensure h is also not a 0-confirmed best response to H .
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v1(α
′
1) ≡ min

α2∈B∗0 (α′1)
u1(α

′
1, α2). (15.4.3)

Taking the supremum over α′1 yields the payoff

v∗∗1 ≡ sup
α′1

min
α2∈B∗0 (α′1)

u1(α
′
1, α2). (15.4.4)

Example

15.4.1
Product-choice game with public monitoring We return to the product-choice
game, with the ex ante stage game payoffs in figure 15.1.1. Player 1’s action is
not public. As in section 7.6.2, there is a public signal with two possible values, y
and ȳ, and distribution

ρ(ȳ | a) =
{
p, if a1 = H,
q, if a1 = L,

where 0 < q < p < 1. Player 2’s actions are public. Let α̂1 denote 1’s mixed
action which randomizes equally between H and L. Then, for all ε ≥ 0,
Bε(α̂1) contains every pure or mixed action for player 2, and hence we have
minα2∈B0(α̂1) u1(α̂1, α2) = 1/2. However, for any mixture α1 under which H is
more likely than L, for sufficiently small ε, Bε(α1) = {h}. As a result, we have
v∗∗1 = 5/2. This payoff is the mixed-action Stackelberg payoff (see (15.2.2)),
and exceeds the upper bound on player 1’s payoff in the corresponding public
monitoring game of complete information, shown in section 7.6.2 to be

2− 1− p
p − q < 2.

●

Remark

15.4.3
New possibilities even for perfect monitoring We observed in remark 15.3.4 that
reputation effects from pure-action commitment types in perfect monitoring games
cannot introduce new payoff possibilities. Taking α̂1 = H in example 15.4.1
shows that pure commitment types in imperfect-monitoring games can introduce
new possibilities in terms of equilibrium payoffs. Similarly, mixed-action commit-
ment types in perfect monitoring games can introduce new possibilities. A game
with perfect monitoring is a special case of a game with imperfect monitoring,
where the set of signals Z is the set of pure-action profiles A, and π(z | a) = 1
if and only if z = a. Consequently, for perfect monitoring games, B∗0 = B0 = B
and v∗∗1 is the mixed-action Stackelberg payoff, (15.2.2). This section thus extends
the reputation result for perfect monitoring games of section 15.3 to mixed com-
mitment types. In the process, we obtain a stronger bound on payoffs, as the
mixed-action Stackelberg payoff can exceed the pure-action Stackelberg pay-
off. The pure and mixed Stackelberg payoffs for the product-choice game are
given by:
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v∗1 = max
a1

min
α2∈B(a1)

u1(a1, α2) = 2

and v∗∗1 = sup
α1

min
α2∈B(α1)

u1(α1, α2) = 2 1
2 .

The lower bound on player 1’s payoff can be strictly higher than what player 1
could achieve in the perfect monitoring game of complete information. In sec-
tion 2.7.2, examining games of complete information in which a long-lived
player 1 faces short-lived opponents, we introduced the upper bound v̄1 (cf. (2.7.2))
on player 1’s payoff. In the product-choice game,

v̄1 = max
α∈B

min
a1∈supp(α1)

u1(a1, α−1) = 2.

◆

The boundv1(α
′
1) differs from minα2∈B(α′1) u1(α

′
1, α2) in allowing player 2’s action

to be a minimizer from the set B∗0 (α′1) rather than B(α′1). In general, this difference
can yield a bound that is even lower than the pure-action Stackelberg payoff.

Example

15.4.2
The purchase game The stage game in this example has a nontrivial dynamic
structure, with the short-lived customer first deciding between “buy” (b) and “don’t
buy” (d), and then after b, the long-lived firm deciding on the level of effort, high
(H ) or low (L). The extensive form is given in figure 15.4.1, with the normal form
in figure 15.4.2. The action profile Ld is the unique pure Nash equilibrium of the
stage game, and (0, 0) is the unique stage-game Nash equilibrium payoff.

Now let the game be infinitely repeated. In each period, the terminal node
reached in that period’s extensive-form stage game is observed. Because no
information about player 1 is revealed if player 2 chooses d , this is a game of
imperfect monitoring. Noting that B(H) = {b}, we have maxa1∈A1 mina2∈B(a1)

u1(a1, a2) = 1, and the pure-action Stackelberg payoff is achieved by the action
H . The pure-action Stackelberg type ξ∗ plays action H .

Now consider the repeated game of incomplete information, with player 1’s
type drawn from the set� = {ξ0, ξ

∗}. Does this suffice to ensure player 1 a payoff

2

1

H L

d b

0

0

1

2

−1

1

Figure 15.4.1 The purchase game. The game has three
public signals, corresponding to the three terminal nodes.
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d b

H 0, 0 1, 1

L 0, 0 2,−1

Figure 15.4.2 The normal form for the purchase game.

near 1? Notice that |π2(· | Hd)− π2(· | Ld)| = 0, and hence b and d are both
0-confirmed best responses toH (as, indeed, is d to any α1 ∈ �(A1)). As a result,
v∗∗1 = 0.

This surprisingly low value for v∗∗1 is not simply a matter of having calculated a
loose lower bound. If δ > 1/2 and µ(ξ∗) < 1/2, there is a sequential equilibrium
with payoff (0, 0).

As a first attempt at constructing such an equilibrium, suppose that after any
history, all short-lived players choose d , and the normal type of player 1 chooses
L. Givenµ, choosing b causes each short-lived player to face a lottery that assigns
more than probability 1/2 to L, making d a best response. Because all short-lived
players are choosing d, the normal long-lived player is indifferent over all actions,
soL is a best reply. We thus have a Nash equilibrium with payoffs (0, 0). However,
this strategy profile fails a minimal sequential rationality requirement. Suppose a
short-lived player chooses b. Will the normal type actually choose L? By doing
so, he reveals himself as the normal type (and the profile then specifies permanent
Ld). If the normal player 1 instead chooses H , future short-lived players will
believe they face the commitment type ξ∗ and so will choose b as long as H
continues to be chosen. When δ > 1/2, this deviation is profitable for the normal
player 1, ensuring that the profile is not a sequential equilibrium.

This issue is addressed by the strategy profile illustrated in figure 15.4.3. The
equilibrium path features the constant play of Ld and payoffs (0, 0). No short-
lived player purchases because the first short-lived player to do so elicits low
effort. The normal type has no incentive to choose H when the first (out-of-
equilibrium) customer purchases, because once such a choice of b has been made,
the normal player 1 receives his “Stackelberg” payoff of 1 in the continuation
game, regardless of what choice he makes in the current period.

Ldw Hbw

d

0w

Ldw

Hbd ,

LbHb,

LbHbd ,,

Lb

Figure 15.4.3 The behavior of player 2 and the normal type of
player 1 in an equilibrium of the purchase game. The subscripts in
the labels of the states identify the actions taken in those states.
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Not only are reputation effects weak in this type of “outside option” game,
but the presence of “bad” types can impose severe upper bounds on equilibrium
payoffs (see sections 18.6.2–18.6.6).

●

The difficulty in the purchase game is that if player 2 chooses d , her signals reveal
no information about player 1’s action. Hence, if d is a best response to anything, then
it is in B0(α1) for every α1, allowing in particular d ∈ B0(H). A necessary condition,
then, for B(α1) = B0(α1) is that there be no such uninformative actions. That is, no
two actions for player 1 should generate the same distribution of signals, for any action
of player 2.

Assumption

15.4.1
For all a2 ∈ A2, the collection of probability distributions {π2(· | (a1, a2)) :
a1 ∈ A1} is linearly independent.

Equivalently, applying definition 9.2.1 to the distribution π2, this is the requirement
that every profile a ∈ A have individual full rank for player 1. The purchase game
fails this result for the action d. In section 15.5, this assumption plays a key role in
ensuring that player 2 can eventually identify player 1’s strategy in a repeated game of
incomplete information.

For the canonical public-monitoring game, a stronger version of assumption 15.4.1
is needed.

Assumption

15.4.2
For all α2 ∈ �(A2), the collection of probability distributions {π2(· | (a1, α2)) :
a1 ∈ A1} is linearly independent.

We immediately have the following.

Lemma

15.4.1
For the private-monitoring game, if assumption 15.4.1 holds, B(α1) = B∗0 (α1)

and v∗∗1 equals the mixed-action Stackelberg payoff.
For the canonical public-monitoring game, if assumption 15.4.2 holds,

B(α1) = B∗0 (α1) = B0(α1) and v∗∗1 equals the mixed-action Stackelberg payoff.

15.4.2 The Reputation Bound

Recall that v1(ξ0, µ, δ) is the infimum over the set of the normal player 1’s payoff in
any (pure or mixed) Nash equilibrium in the repeated private monitoring or canonical
public monitoring game, given the distribution µ over types and the discount factor δ.
Our goal is to prove the following result (which implies corollary 15.4.1, the reputation
lower bound):

Proposition

15.4.1
Let ξ̂ denote the simple commitment type that always plays α̂1 ∈ �(A1) (if A1 is
finite) or α̂1 ∈ A1 (A1 infinite). Suppose µ(ξ0), µ(ξ̂) > 0. In the private moni-
toring or canonical public monitoring game, for every ε > 0, there is a value K
such that for all δ,

v1(ξ0, µ, δ) ≥ (1− ε)δK inf
α2∈B∗ε (α̂1)

u1(α̂1, α2)+ (1− (1− ε)δK)min
a∈A u1(a).

(15.4.5)
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Corollary

15.4.1
Suppose µ assigns positive probability to some sequence of simple types
{ξ(αk1)}∞k=1 with each αk1 in �(A1) (if A1 is finite) or A1 (if A1 is a continuum)
satisfying

v∗∗1 = lim
k→∞ min

α2∈B∗0 (αk1)
u1(α

k
1, α2).

For all ε′ > 0, there exists δ < 1 such that for all δ ∈ (δ, 1),

v1(ξ0, µ, δ) ≥ v∗∗1 − ε′.

As for perfect monitoring games, the normal player 1 again effectively builds a
reputation for playing like a simple type, and this occurs despite the presence of many
other possible commitment types (a similar remark to remark 15.3.5 holds here). The
value K in proposition 15.4.1 depends on the prior distribution µ only through the
probability µ(ξ̂).

Not surprisingly, the key ingredient in the proof of proposition 15.4.1 is
an imperfect monitoring version of lemma 15.3.1. Following section 15.3, let
� ≡ �× (A1 × Z1 × A2 × Z2)

∞ denote the space of outcomes. A strategy profile σ
and the prior distribution over types, µ, induces a probability measure P ∈ �(�). Sup-
pose P̂ and P̃ are the probability measures induced on� by P, conditioning on the type
ξ̂ and the set of types �̃ ≡ �\{ξ̂}, respectively. Hence, P = µ̂P̂+ (1− µ̂)P̃, where
µ̂ = µ(ξ̂). Denote the event that player 1 is type ξ̂ , {ξ̂} × (A1 × Z1 × A2 × Z2)

∞,
by simply {ξ̂}, so that µ̂ = P({ξ̂}) and P̂(C) = P(C | {ξ̂}) for all C ⊂ �. Because P̃
and P̂ are absolutely continuous with respect to P, any statement that holds P-almost
surely also holds P̃- and P̂-almost surely.

Player 2’s posterior belief in period t that player 1 is the commitment type ξ̂ is the
G t

2 -measurable random variable P({ξ̂} | G t
2) : �→ [0, 1], where G t

2 is the σ -algebra
generated by H t

2 . We let µ̂t denote the period t posterior, so µ̂0 = µ̂.
It is helpful to collect some basic facts concerning Bayesian updating. Given a

measurable space (�,G ), a sequence of σ -algebras {G t }t is called a filtration if it is
increasing, that is, G t ⊂ G t+1 ⊂ G . A sequence of random variables {Xt }t is adapted
to a filtration {G t }t if Xt is G t -measurable for each t , and it is a martingale under a
probability measure P if, in addition, E[|Xt |] <∞ and

E[Xt | G t−1] = Xt−1, P-almost surely. (15.4.6)

We often emphasize the role of the measure P in this statement (while leaving other
details to be inferred from the context) by saying simply that µ̂t is a P-martingale.
The sequence is a submartingale (resp., supermartingale) if (15.4.6) is replaced with
E[Xt | G t−1] ≥ Xt−1 (resp., E[Xt | G t−1] ≤ Xt−1).

Much of the usefulness of these concepts stems from posterior beliefs being a
bounded martingale and so converging (the martingale convergence theorem). This
ensures that although we may not be sure what player 2 eventually believes about
player 1, we can be certain that player 2’s beliefs do converge to something.
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Lemma

15.4.2
Fix a strategy profile σ .

1. The posterior belief {µ̂t }t is a bounded martingale adapted to the filtration
{G t

2}∞t=0 under the measure P. It therefore converges P-almost surely (and hence
P̃- and P̂-almost surely) to a random variable µ∞ defined on �.

2. The odds ratio {µ̂t /(1− µ̂t )}t is a P̃-martingale.
3. The posterior belief {µ̂t }t is a P̃-supermartingale and a P̂-submartingale with

respect to the filtration {G t
2}∞t=0.

The first statement delivers the convergence of player 2’s beliefs. Notice that these
beliefs are a submartingale with respect to P̂. Therefore, conditional on player 1 playing
as does the commitment type, player 2’s posterior that 1 is the commitment type (in
expectation) rises (leading to the counterpart under imperfect monitoring of the second
statement in lemma 15.3.1).

Proof 1. Because µ̂t = E[χ{ξ̂} | G t
2 ] and G t

2 ⊂ G t+1
2 ,

E[µ̂t+1 | G t
2 ] = E

[
E[χ{ξ̂} | G t+1

2 ]∣∣G t
2

] = E[χ{ξ̂} | G t
2 ] = µ̂t.

The convergence of µ̂t P-a.s. then follows from the martingale convergence
theorem (Billingsley 1979, theorem 35.4). Because P̂ and P̃ are both absolutely
continuous with respect to P, we thus have convergence P̂-a.s. and P̃-a.s.

2. Suppose the (t + 1) period history consisting of ht2 followed by at2z
t
2 has

positive probability under P̃ and so under P. Then Bayes’ rule gives

µ̂t+1

1− µ̂t+1
= µ̂t P̂(at2z

t
2 | ht2)(P(at2zt2 | ht2))−1

(1− µ̂t )P̃(at2zt2 | ht2)(P(at2zt2 | ht2))−1
= µ̂t P̂(at2z

t
2 | ht2)

(1− µ̂t )P̃(at2zt2 | ht2)
.

We then have

Ẽ

[
µ̂t+1

1− µ̂t+1

∣∣∣∣ht2
]
= µ̂t

1− µ̂t Ẽ
[

P̂(at2z
t
2 | ht2)

P̃(at2z
t
2 | ht2)

∣∣∣∣∣ht2
]

= µ̂t

1− µ̂t
∑

a2∈A2,z2∈Z2

P̂(at2z
t
2 | ht2)

= µ̂t

1− µ̂t .

The ratio µ̂t /(1− µ̂t ) is thus a P̃-martingale.
3. Applying Jensen’s inequality to the convex function that maps µ̂t /(1− µ̂t ) into
−µ̂t , shows that µ̂t is a P̃-supermartingale and hence a P̂-submartingale.

■

Given the filtration {G t }t , a one-step ahead probability or prediction under P is
P(A | G t ) for some G t+1-measurable eventA. For the private monitoring game, {G t }t
will be the filtration implied by the histories H2 = ∪t (A2 × Z2)

t and the realized
period t action of player 2: G t is the σ -algebra describing the period t information
and action of player 2. For the canonical public monitoring game, {G t }t will be the
filtration implied by the histories H2 = ∪t Y t ; the realized player 2 period t action is
now excluded from G t because player 2 actions are not part of the player 2 filtration.
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The relevant G t+1-measurable events are the realizations of the signal observed by
player 2 in period t . The imperfect monitoring version of lemma 15.3.1 asserts that
under P̂, there is a small probability that player 2 makes very different one-step ahead
predictions about her signals under P and under P̂ too many times.

Lemma

15.4.3
Let (�,G ) be a Borel measurable space. For all ε, ψ > 0 and µ† ∈ (0, 1], there
exists a positive integer K such that for all µ̂ ∈ [µ†, 1], for every P, P̂, and P̃
probability measures on (�,G )with P = µ̂P̂+ (1− µ̂)P̃, and for every filtration
{G t }t≥1, G t ⊂ G ,

P̂(|{t ≥ 1 : dt (P, P̂) ≥ ψ}| ≥ K) ≤ ε, (15.4.7)

where

dt (P, P̂) ≡ sup
A∈G t+1

∣∣P(A | G t )− P̂(A | G t )
∣∣.

The distance dt can be used to capture a notion of merging (see Kalai and Lehrer
1994). Remarkably, the bound K (as in lemma 15.3.1) holds for all measures P̂ and P̃
and all mixing probabilities µ̂ ∈ [µ†, 1). This allows us to obtain corollary 15.4.1 for
all Nash equilibria. We defer the proof of lemma 15.4.3, an elegant merging argument
due to Sorin (1999), to the end of this section.

Proof of Proposition 15.4.1 We present the argument for the private monitoring game (the
argument for the canonical public monitoring game being an obvious modifica-
tion). Fix ε > 0. Let {G t }t be the filtration with G t the σ -algebra generated by
H t

2 , the period t information, and A2, the period t action of player 2. Denote by
zt2 a period t realization of player 2’s private signal; thus, {zt2} ∈ G t+1. Letting
at2(ω) be the period t action in outcome ω, for (ht2, a

t
2) = (ht2(ω), at2(ω)), we

write P(zt2 | ht2, at2) for P(zt2 | G t )(ω), that is, the realization of the conditional
probability evaluated at an outcome ω with player 2 history ht2 and action at2.
From the linearity of π2 in α1, we have

P(zt2 | ht2, at2) = π2(z
t
2

∣∣E[σ1(h
t
1, ξ) | ht2], at2),

and

P̂(zt2 | ht2, at2) = π2(z
t
2 | α̂1, a

t
2).

Hence, because any at2 ∈ supp σ2(h
t
2) maximizes E[u2(σ1(h

t
1, ξ), a2)

∣∣ht2] =
u2(E[σ1(h

t
1, ξ) | ht2], a2), ifdt (P, P̂) < ψ , thenat2 is aψ-confirmed best response

to α̂1.11

11. For the canonical public monitoring game, it is also true that each at2 ∈ supp σ2(h
t ) maximizes

u2(E[σ1(h
t
1, ξ) | ht ], a2), and that if |ρ(yt | E[σ1(h

t
1, ξ) | ht ], at2)− ρ(yt | α̂1, a

t
2)| < ψ , then

at2 is a ψ-confirmed best response to α̂1. However, we cannot apply lemma 15.4.3 to bound
the number of periods in which at2 is not a ψ-confirmed best response to α̂1, because the
lemma requires the conditioning in the sequence of predictions to be based on a filtra-
tion. The argument for the canonical public monitoring game proceeds by observing that if
|ρ(yt | E[σ1(h

t
1, ξ) | ht ], σ2(h

t ))− ρ(yt | α̂1, σ2(h
t ))| < ψ (that is, the difference in one-step

predictions given σ2(h
t ) rather than the realized action is less than ψ), then σ2(h

t ) is a
ψ-confirmed best response to α̂1, and then applying lemma 15.4.3.



488 Chapter 15 ■ Reputations with Short-Lived Players

Now applying lemma 15.4.3 (with ψ = ε), there is aK (independent of P and
P̂) such that with P̂-probability at least 1− ε, in all but K periods

dt (P, P̂) < ε.

Therefore, with P̂-probability 1− ε, in all but K exceptional periods, we have

σ t2(h
t ) ∈ B∗ε (α̂1).

A lower bound forv1(ξ0, µ, δ) can now be calculated from the deviation by the
normal type to the simple strategy of α̂1 in every period, ignoring history. This
deviation induces a probability measure on� that generates the same distribution
over player 2 histories as does P̂, and so player 1’s expected payoff from the
deviation is at least

(1− ε)
[
(1− δK)min

a∈A u1(a)+ δK inf
α2∈B∗ε (α̂1)

u1(α̂1, α2)

]
+ εmin

a∈A u1(a),

which equals the right side of (15.4.5).
■

Proof of Corollary 15.4.1 Fix ε′ > 0, and recall thatM = maxa |u1(a)|. Let ξk denote the
simple commitment type that always plays αk1. There is an αk1 satisfying

inf
α2∈B∗0 (αk1)

u1(α
k
1, α2) > v∗∗1 − ε′/6.

Because B∗ε (αk1) is upper hemicontinuous in ε, there exists ε̄ > 0 such that for
ε ∈ (0, ε̄)

inf
α2∈B∗ε (αk1)

u1(α
k
1, α2) > v∗∗1 − ε′/3.

Applying proposition 15.4.1 with ξ̂ = ξk , for all ε ∈ (0, ε̄), there existsK such
that

v1(ξ0, µ, δ) ≥ (1− ε)δK(v∗∗1 − ε′/3)− (1− (1− ε)δK)M. (15.4.8)

Choose ε ≤ min{ε′/(6M), ε̄} and δ to satisfy

δK > 1− ε′

6M(1− ε) .

Then, for all δ ∈ (δ, 1), 1− (1− ε)δK = ε + (1− ε)(1− δK) < ε′/(3M).
Moreover, because v∗∗1 < M , (1− ε)δKv∗∗1 > v∗∗1 − ε′/3. Substituting into
(15.4.8),

v1(ξ0, µ, δ) ≥ v∗∗1 − ε′.
■

Fudenberg and Levine (1992) also establish an upper bound on the set of player 1
Nash equilibrium payoffs.
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Remark

15.4.4
For finite A1, if {αk1}k is a countably dense subset of �(A1) and µ(ξ(αk1)) > 0
for all k, then we can improve the bound in corollary 15.4.1 because we have
effectively assumed full support over stage game mixed actions. Consequently,
no player 2 can play a weakly dominated action, and so we could redefine the set
of ε-confirmed best replies to exclude weakly dominated actions.

◆

The remainder of this section proves lemma 15.4.3. We begin with three
preliminary lemmas.

Lemma

15.4.4
Suppose Xt is a martingale under P adapted to {G t }t , with 0 ≤ Xt ≤ 1 for all t .
For all η > 0 and all K ≥ 1,

P(|{t ≥ 1 : V 1,t ≥ η}| ≥ K) ≤ 1

Kη2
, (15.4.9)

where V 1,t = E[|Xt+1 −Xt |∣∣G t
]
.

Proof For each m ≥ 1,

E
[∑m

t=1
(Xt+1 −Xt)2

]
= E

[∑m

t=1
(Xt+1)2 − 2Xt+1Xt + (Xt )2

]
= E

[∑m

t=1
(Xt+1)2 − 2E[Xt+1Xt | G t ] + (Xt )2

]
(using Xt measurable with respect to G t )

= E
[∑m

t=1
(Xt+1)2 − 2E[Xt+1 | G t ]Xt + (Xt )2

]
(using the martingale property, E[Xt+1 | G t ] = Xt )

= E
[∑m

t=1
(Xt+1)2 − (Xt )2

]
= E[(Xm+1)2 − (X1)2] ≤ 1. (15.4.10)

Because the summands in the following are nonnegative, we can apply the law of
iterated expectations and Lebesgue’s Monotone Convergence theorem, and use
(15.4.10) to conclude

E
[∑∞

t=1
E
[
(Xt+1 −Xt)2 | G t

]]
= lim
m→∞E

[∑m

t=1
(Xt+1 −Xt)2

]
≤ 1.

(15.4.11)

Let χC denote the indicator function, χC(ω) = 1 if ω ∈ C and 0 otherwise, and
let V 2,t = E[(Xt+1 −Xt)2∣∣G t

]
. Then, for all η > 0 (using (15.4.11) for the first

inequality),

1 ≥ E
[∑∞

t=1
V 2,t

]
≥ E

[∑∞
t=1

V 2,tχ{V 2,t≥η2}
]
≥ η2E

[∑∞
t=1

χ{V 2,t≥η2}
]
.



490 Chapter 15 ■ Reputations with Short-Lived Players

Because, for ω ∈ �,
∑∞
t=1 χ{V 2,t (ω)≥η2} is the number of terms in the sequence

{V 2,t (ω)}t that weakly exceed η2, we have, for all η > 0

E[|{t : V 2,t ≥ η2}|] ≤ η−2.

Applying Jensen’s inequality to V 2,t yields V 2,t = E[(Xt+1 −Xt)2|G t ] ≥
(E[|Xt+1 −Xt |∣∣G t ])2 = (V 1,t )2, so that, for all η > 0,

E[|{t : V 1,t ≥ η}|] ≤ η−2.

Finally, for all η > 0 and K ,

E[|{t : V 1,t ≥ η}|] ≥ E[|{t : V 1,t ≥ η}|χ{|{t :V 1,t≥η}|≥K}]
≥ KE[χ{|{t :V 1,t≥η}|≥K}] = KP(|{t : V 1,t ≥ η}| ≥ K)

implying (15.4.9).
■

Let �̂ ⊂ � be the event that the stochastic process follows the measure P̂ from the
statement of lemma 15.4.3, so that µ̂ = P(�̂). In our reputation context, �̂ is the event
{ξ̂} × (A1 × Z1 × A2 × Z2)

∞.

Lemma

15.4.5
Let φt = P(�̂ | G t ). Then,

E[|φt+1 − φt |∣∣G t ] ≥ φtdt (P, P̂). (15.4.12)

Proof For all t ≥ 1 and C ∈ G t+1,

E[|φt+1 − φt |∣∣G t ] ≥ E[|φt+1 − φt |χC
∣∣G t ]

≥ ∣∣E[φt+1χC | G t ] − E[φtχC | G t ]∣∣
= ∣∣E[φt+1χC | G t ] − φtE[χC | G t ]∣∣
= ∣∣E[φt+1χC | G t ] − φtP(C | G t )

∣∣.
We also have

E[φt+1χC | G t ] = E[E[χ
�̂
| G t+1]χC | G t ]

= E[E[χ
C∩�̂ | G t+1] | G t ]

= P(C ∩ �̂ | G t )

= P(�̂ | G t )P(C | G t , �̂)

= φt P̂(C | G t ).

SoE[|φt+1 − φt |∣∣G t ] ≥ ∣∣φt P̂(C | G t )− φtP(C | G t )
∣∣, and taking the supremum

over C ∈ G t+1 implies (15.4.12).
■



15.4 ■ Imperfect Monitoring 491

Because the posterior beliefs {φt }t are a martingale under P adapted to {G t }t ,
lemmas 15.4.4 and 15.4.5 imply that for all η > 0 and all K ,

P(|{t : φtdt (P, P̂) ≥ η}| ≥ K) ≤ 1

Kη2
. (15.4.13)

In other words, the unconditional probability that in many periods, both φt is large and
the one-step ahead predictions under P and P̂ are very different, is small. Intuitively,
if the one-step ahead predictions under P and P̂ are very different in some period, then
the signals in that period are informative and the posterior belief will reflect that. In
particular, when the one-step predictions are different, the uninformed agents must
assign significant probability to the outcome not being in �̂, and so with significant
probability, φt → 0. On the other hand, the only way φt �→ 0 is for the one-step ahead
predictions to be close.

Lemma

15.4.6
For all γ ∈ (0, 1],

P̂(∪t≥1{φt ≤ γ µ̂}) ≤ γP(∪t≥1{φt ≤ γ µ̂}).

Proof Let C0 = � and for all t ≥ 1, Ct = {φm > γ µ̂,∀m ≤ t}. Then,

γ µ̂P(Ct−1 ∩ {φt ≤ γ µ̂}) = E[γ µ̂χCt−1∩{φt≤γ µ̂}
]

≥ E[φtχCt−1∩{φt≤γ µ̂}
]

= E[P(�̂ | G t )χCt−1∩{φt≤γ µ̂}
]

= E[E[χ
�̂∩Ct−1∩{φt≤γ µ̂} | G t

]]
= P(�̂ ∩ Ct−1 ∩ {φt ≤ γ µ̂})
= µ̂P̂(Ct−1 ∩ {φt ≤ γ µ̂}),

so that

P̂(Ct−1 ∩ {φt ≤ γ µ̂}) ≤ γP(Ct−1 ∩ {φt ≤ γ µ̂}).

The collection of sets {Ct−1 ∩ {φt ≤ γ µ̂}} are pairwise disjoint and⋃
t≥1

{Ct−1 ∩ {φt ≤ γ µ̂}} =
⋃
t≥1

{φt ≤ γ µ̂}.

Consequently,

P̂(∪t≥1{φt ≤ γ µ̂}) = P̂(∪t≥1{Ct−1 ∩ {φt ≤ γ µ̂}})
=
∑

t≥1
P̂(Ct−1 ∩ {φt ≤ γ µ̂})

≤ γ
∑

t≥1
P(Ct−1 ∩ {φt ≤ γ µ̂})

= γP(∪t≥1{φt ≤ γ µ̂}).
■
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Proof of Lemma 15.4.3 Fix ε > 0 and ψ > 0. Then, for K ≥ 1 and γ > 0,

P̂(|{t ≥ 1 : dt (P, P̂) ≥ ψ}| ≥ K)
= P̂(|{t ≥ 1 : φtdt (P, P̂) ≥ φtψ}| ≥ K)
= P̂({|{t ≥ 1 : φtdt (P, P̂) ≥ φtψ}| ≥ K} ∩ {φt ≥ γ µ̂,∀t})
+ P̂({|{t ≥ 1 : φtdt (P, P̂) ≥ φtψ}| ≥ K} ∩ {φt < γ µ̂, some t})

≤ P̂(|{t ≥ 1 : φtdt (P, P̂) ≥ γ µ̂ψ}| ≥ K)
+ P̂({|{t ≥ 1 : φtdt (P, P̂) ≥ φtψ}| ≥ K} ∩ {φt < γ µ̂, some t})

≤ P̂(|{t ≥ 1 : φtdt (P, P̂) ≥ γ µ̂ψ}| ≥ K)
+ P̂({φt < γ µ̂, some t}).

Because P = µ̂P̂+ (1− µ̂)P̃ ≥ µ̂P̂, P̂ ≤ P/µ̂. Hence, (15.4.13) and lemma 15.4.6
imply

P̂(|{t ≥ 1 : dt (P, P̂) ≥ ψ}| ≥ K) ≤ 1

Kµ̂(γ µ̂ψ)2
+ γ

≤ 1

K(µ̂)3(γψ)2
+ γ.

Choosing γ < ε/2 and K > 2/[ε(µ̂)3(γψ)2] then gives (15.4.7).
■

15.4.3 Small Players with Idiosyncratic Signals

We have remarked in sections 2.7 and 7.8 that the short-lived player is often natu-
rally interpreted as a continuum of small and anonymous long-lived players. We now
illustrate how such an interpretation is consistent with the discussion in remark 15.4.1.
Consider a large player 1 facing a continuum of small and anonymous long-lived
opponents in the role of player 2. The actions of individual small players are private
(to ensure anonymity, see remark 2.7.1). The large player observes a private signal
z1 ∈ Z1 of the aggregate behavior of the small players (this signal may simply be the
distribution over small player actions).12 The set of period t histories for player 1 is,
as usual, H t

1 = (A1 × Z1)
t . Player 1’s ex post payoff is u∗1(z1, a1).

Each small player receives a private signal from the finite set Z2. There are now
two possibilities. If the private signal is common across all small players, then when we
restrict the small players to identical pure equilibrium strategies, the model is formally
equivalent to that of section 15.4.

The second possibility is that different small players observe different realizations
of the private signal, that is, the signals are idiosyncratic. In each period t with signal
distribution π2(· | αt1), precisely π2(z2 | αt1) of the player 2’s who are characterized
by the private history hτ2 ∈H2 receive signal z2, for each signal z2 ∈ Z2 and history
hτ2 ∈H2. For example, if there are signals {z, z̄} with π2(z̄ | α0

1) = 1/2, then in the

12. Because z1 is private, no small player learns anything about the private signals of other small
players.
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first period half the population of small players observe z and half observe z̄. Then if
π2(z̄ | α1

1) = 1/3 in the next period, a third of those small players who observed z in
the first period see z̄ in the second, as do a third of those who observed z̄ in the first. We
continue in this fashion for subsequent histories. In each period t , the probability that
each individual player 2 observes signal z2 is given by π2(z2 | αt1). Hence, although
there is no aggregate uncertainty, each individual player 2 faces a random signal whose
probabilities match the aggregate proportions in which each signal appears (for further
discussion, see remark 18.1.3).

Each small player has ex post payoff u∗2(z2, a2). As long as the behavior of the
population of small players is measurable, in each period this behavior induces a vector
of population proportions choosing the various actions in A2 that we can denote by α2

and that is formally equivalent to a mixed action drawn from �(A2).
Suppose now that the normal long-lived player chooses the action α̂1 in every

period. Then lemma 15.4.3 ensures that for any ε > 0, there is aK such that in all but
K periods, at least 1− ε of the short-lived players will be choosing pure actions from
B∗ε (α̂1), and hence player 1 faces aggregate player 2 behavior that places probability at
least 1− ε on a (possibly mixed) action fromB∗ε (α̂1). The following is then immediate.

Proposition

15.4.2
Suppose there is a continuum of small and anonymous players in the role of
player 2, each receiving idiosyncratic signals. Let ξ̂ denote the simple commit-
ment type that always plays α̂1 ∈ �(A1) (if A1 is finite) or α̂1 ∈ A1 (A1 infinite).
Suppose ξ0, ξ̂ ∈ �. For every ε > 0, there is a value K such that for all δ,

v1(ξ0, µ, δ) ≥ (1− ε)δK inf
α2∈B∗ε (α̂1)

u1(α̂1, α2)+ (1− (1− ε)δK)min
a∈A u1(a).

15.5 Temporary Reputations

This section, drawing on Cripps, Mailath, and Samuelson (2004a,b), shows that the
incomplete information that is at the core of the adverse selection approach to rep-
utations is in the presence of imperfect monitoring a short-run phenomenon. Under
fairly general conditions, player 2 must eventually learn player 1’s type, with play
converging to an equilibrium of the complete information game defined by player 1’s
type.13

Our argument first shows that either player 2 eventually learns player 1’s type, or
player 2 must come to expect the different types of player 1 to play identically. We have
encountered similar reasoning in lemma 15.4.3. The first outcome immediately yields
our desired conclusion. In the second case, as player 2 comes to expect commitment-
type behavior from player 1, player 2 will play a best response.

Under perfect monitoring, there are often pooling equilibria in which the normal
and commitment type of player 1 behave identically on the equilibrium path (as in
example 15.3.1). Deviations on the part of the normal player 1 are deterred by the

13. Benabou and Laroque (1992) study an example in which the uninformed players respond con-
tinuously to their beliefs (see section 18.1.4). They show that the informed player eventually
reveals his type in any Markov perfect equilibrium (remark 5.6.1).
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prospect of the resulting punishment. Under imperfect monitoring, such pooling equi-
libria do not exist. The normal and commitment types may play identically for a long
period of time, but the normal type always eventually has an incentive to cheat at least
a little on the commitment strategy, contradicting player 2’s belief that player 1 will
exhibit commitment behavior. Player 2 must then eventually learn player 1’s type.

We follow the lead of section 15.4 in presenting the argument for games of private
monitoring, though the analysis covers imperfect public monitoring as a special case.14

15.5.1 Asymptotic Beliefs

Our setting is the incomplete information private monitoring game of section 15.4 with
finite action sets (essentially identical results hold for the canonical public monitor-
ing game, see remark 15.5.1). We assume full-support marginal private monitoring
distributions—each signal is observed with positive probability under every action
profile:

Assumption

15.5.1
For all i = 1, 2, a ∈ A, zi ∈ Zi , πi(zi | a) > 0.

Because this assumption does not requireπ(z | a) > 0 for all z anda, public monitoring
is a special case. This assumption implies that Bayes’ rule determines the beliefs of
player 2 about the type of player 1 after all histories.

We assume assumption 15.4.1 and a similar condition for player 1.

Assumption

15.5.2
For all a1 ∈ A1, the collection of probability distributions {π1(·, (a1, a2)) : a2 ∈
A2} is linearly independent.

These two assumptions ensure that with sufficient observations, player i can correctly
identify from the frequencies of the signals any fixed stage-game action of player j .
Assumption 15.4.1 implies (from lemma 15.4.1 and corollary 15.4.1) that if the Stack-
elberg type has prior positive probability, the normal player 1 can force player 2 to best
respond to the Stackelberg action. In the current context, assumption 15.4.1 implies
that nonetheless player 2 eventually either learns player 1’s type or learns that player 1
is behaving like the commitment type, and assumption 15.5.2 implies that player 1
eventually learns player 2 is playing a best response to this commitment type, two key
steps in the proof.

We focus on the case of one simple commitment type for player 1, so� = {ξ0, ξ̂},
where ξ̂ = ξ(α̂1) for some α̂1 ∈ �(A1). The analysis is extended to many commitment
types in Cripps, Mailath, and Samuelson (2004a, section 6.1). It is convenient to
denote a strategy for player 1 as a pair of functions σ̃1 and σ̂1 (so σ̂1(h

t
1) = α̂1 for

all ht1 ∈H1), the former for the normal type and the latter for the commitment type.
It will sometimes be convenient to write a strategy σi as a sequence (σ 0

i , σ
1
i , . . .) of

14. If monitoring is perfect and the commitment type plays a mixed strategy, the game effectively
has imperfect monitoring (as Fudenberg and Levine 1992 observe). For example, in the per-
fect monitoring version of the product-choice game, if the commitment type randomizes with
probability 3/4 on H , then the realized action choice is a noisy signal of the commitment type.
Proposition 15.5.1 immediately applies to the perfect monitoring case, as long as the commitment
type plays a mixed strategy with full support.
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functions σ ti :H t
i → �(Ai). We let {G t

i }∞t=0 denote the filtration on � generated by
player i’s histories, and G∞ the σ -algebra generated by ∪∞t=0G

t
i .

Recall that P ∈ �(�) is the unconditional probability measure induced by the
priorµ, and the strategy profile (σ̂1, σ̃1, σ2), whereas P̂ is the measure induced by con-
ditioning on ξ̂ . Because {ξ0} = � \ {ξ̂}, P̃ (from lemma 15.4.3) is the measure induced
by conditioning on ξ0. That is, P̂ is induced by the strategy profile σ̂ = (σ̂1, σ2) and P̃
by σ̃ = (σ̃1, σ2), describing how play evolves when player 1 is the commitment and
normal type, respectively. We denote expectations taken with respect to the measure
P by E[·]. We also use Ẽ[·] and Ê[·] to denote expectations taken with respect to P̃
and P̂. The expression Ẽ[σ ti | G s

i ] is thus the standard conditional expectation of the
player i’s period t strategy, viewed as a G s

i -measurable random variable on�. We also
write Ẽ[· | hti] for the expectation conditional on having observed the history hti .

The action of the commitment type satisfies the following assumption.

Assumption

15.5.3
Player 2 has a unique stage-game best response to α̂1 (denoted by â2), and α̂ ≡
(α̂1, â2) is not a stage-game Nash equilibrium.

Let σ̂2 denote the strategy of playing the unique best response â2 to α̂1 in each period
independently of history. Because α̂ is not a stage-game Nash equilibrium, (σ̂1, σ̂2) is
not a Nash equilibrium of the complete information infinite horizon game.

Example

15.5.1
This assumption requires a unique best response to α̂1. For example, every action
for player 2 is a best response to player 1’s mixture 1

2 ◦H + 1
2 ◦ L in the product-

choice game. Section 7.6.2 exploited this indifference to construct an equilibrium
in which (the normal) player 1 plays 1

2 ◦H + 1
2 ◦ L after every history. This

will still be an equilibrium in the game of incomplete information in which the
commitment type plays 1

2 ◦H + 1
2 ◦ L, with the identical play of the normal

and commitment types ensuring that player 2 never learns player 1’s type. In
contrast, player 2 has a unique best response to any other mixture on the part of
player 1. Thus, if the commitment type is committed to any mixed action other
than 1

2 ◦H + 1
2 ◦ L, player 2 will eventually learn player 1’s type.

●

Proposition

15.5.1
Suppose the monitoring distribution π satisfies assumptions 15.4.1, 15.5.1, and
15.5.2; action spaces are finite; and the commitment action α̂1 satisfies assump-
tion 15.5.3. In any Nash equilibrium of the game with incomplete information,

µ̂t ≡ P({ξ̂} | G t
2)→ 0, P̃-a.s.

The intuition is straightforward: Suppose there is a Nash equilibrium of the incom-
plete information game in which both the normal and the commitment type receive
positive probability in the limit (on a positive probability set of histories). On this set
of histories, player 2 cannot distinguish between signals generated by the two types
(otherwise player 2 could ascertain which type she is facing), and hence must believe
that the normal and commitment types are playing the same strategies on average. But
then player 2 must play a best response to this strategy and thus to the commitment
type. Because the commitment type’s behavior is not a best response for the normal
type (to this player 2 behavior), player 1 must eventually find it optimal to not play the
commitment-type strategy, contradicting player 2’s beliefs.



496 Chapter 15 ■ Reputations with Short-Lived Players

Remark

15.5.1
Canonical public monitoring Reputations are also temporary in the canonical
public monitoring game. The proof is essentially identical, once Assumption
15.4.1 is replaced by Assumption 15.4.2.

◆

We first note some implications of this result, deferring its proof to section 15.6.

15.5.2 Uniformly Disappearing Reputations

Proposition 15.5.1 leaves open the possibility that for any period T , there may be
equilibria in which uncertainty about player 1’s type survives beyond T , even though
such uncertainty asymptotically disappears in any equilibrium. We show here that this
possibility cannot arise. The existence of a sequence of Nash equilibria with uncertainty
about player 1’s type persisting beyond periodT →∞would imply the (contradictory)
existence of a limiting Nash equilibrium in which uncertainty about player 1’s type
persists.

Proposition

15.5.2
Suppose the monitoring distribution π satisfies assumptions 15.4.1, 15.5.1,
and 15.5.2; action spaces are finite; and the commitment action α̂1 satisfies
assumption 15.5.3. For all ε > 0, there existsT such that for any Nash equilibrium
of the game with incomplete information,

P̃(µ̂t < ε,∀t > T ) > 1− ε.

Proof Suppose not. Then there exists ε > 0 such that for allT , there is a Nash equilibrium
σ(T ) such that

P̃(T )(µ̂t(T ) < ε, ∀t > T ) ≤ 1− ε,

where P̃(T ) is the measure induced by the normal type under σ(T ), and µ̂t(T ) is the
posterior in period t under σ(T ).

Because the space of strategy profiles is sequentially compact in the product
topology, there is a sequence {T(k)} such that the subsequence {σ(Tk)} converges
to a limit σ(∞), with corresponding measure P̃(∞) on � induced by the normal
type. We denote σ(Tk) by σ(k), and so

P̃(k)
(
µ̂t(k) < ε, ∀t > T(k)

) ≤ 1− ε,
that is,

P̃(k)
(
µ̂t(k) ≥ ε for some t > T(k)

) ≥ ε.
Because eachσ(k) is a Nash equilibrium, µ̂t(k)→ 0 P̃(k)-a.s. (proposition 15.5.1),

and so there exists K(k) such that

P̃(k)
(
µ̂t(k) < ε, ∀t ≥ K(k)

) ≥ 1− ε
2 .

Consequently, for all k,

P̃(k)
(
µ̂t(k) ≥ ε, for some t, T(k) < t < K(k)

) ≥ ε
2 .
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Let τ(k) denote the stopping time

τ(k) = min{t > T(k) : µ̂t(k) ≥ ε},

and Xt(k) the associated stopped process,

Xt(k) =
{
µ̂t(k), if t < τ(k),

ε, if t ≥ τ(k).

Note that Xt(k) is a supermartingale under P̃(k) and that for t < T(k), Xt(k) = µ̂t(k).
Observe that for all k and t ≥ K(k),

Ẽ(k)X
t
(k) ≥ εP̃(k)(τ(k) ≤ t) ≥ ε2

2 ,

where Ẽ(k) denotes expectation with respect to P̃(k).
Because σ(∞) is a Nash equilibrium, µ̂t(∞)→ 0 P̃(∞)-a.s. (appealing to

proposition 15.5.1 again), and so there exists a date s such that

P̃(∞)
(
µ̂s(∞) <

ε2

12

)
> 1− ε2

12 .

Then,

Ẽ(∞)µ̂s(∞) ≤ ε2

12

(
1− ε2

12

)+ ε2

12 <
ε2

6 ,

where Ẽ(∞) denotes expectation with respect to P̃(∞). Because σ(k)→ σ(∞) in
the product topology and there are only a finite number of player 1 and 2 s-length
or shorter histories, there is a k′ with T(k′) > s such that for all k ≥ k′,

Ẽ(k)µ̂
s
(k) <

ε2

3
.

But because T(k′) > s, Xs(k) = µ̂s(k) for k ≥ k′ and so for any t ≥ K(k),

ε2

3
> Ẽ(k)µ̂

s
(k) = Ẽ(k)Xs(k)

≥ Ẽ(k)Xt(k) ≥
ε2

2
, (15.5.1)

which is a contradiction.
■

15.5.3 Asymptotic Equilibrium Play

Given proposition 15.5.1, we should expect continuation play to converge to an
equilibrium of the complete information game. The results here are strongest if the
monitoring technology is such that player 1 knows player 2’s belief. We accord-
ingly work temporarily with the special class of canonical public monitoring games
described in remark 15.4.2: Player 2’s action is public, and there is a public signal y1
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drawn from a finite set Y1. For notational simplicity we drop the subscript 1, so the
public signal is a pair ya2 ∈ Y × A2. Assumption 15.5.1 now requires the distribu-
tion ρ satisfy ρ(y | a) > 0 for all y ∈ Y and a ∈ A (where ρ(· | a) ∈ �(Y) is the
distribution denoted by ρ1 in remark 15.4.2). Because player 2’s actions are public,
assumption 15.5.2 no longer plays a role, whereas assumption 15.4.1 now becomes that
for all a2 ∈ A2, the collection of probability distributions {ρ(· | (a1, a2)) : a1 ∈ A1} is
linearly independent.

We use the term continuation game for the game with initial period in period t ,
ignoring the period t histories. We use the notation t ′ = 0, 1, 2, . . . for a period of
play in a continuation game (which may be the original game) and t for the time
elapsed prior to the start of the continuation game. A pure strategy for player 1, s1, is a
map s1 :H1 → A1, so s1 ∈ AH1

1 ≡ S1, and similarly s2 ∈ AH
2 ≡ S2. The spaces S1

and S2 are countable products of finite sets. We equip S1 and S2 with the σ -algebras
generated by the cylinder sets, denoted by S1 and S2. Note that Si is the set of
player i pure strategies in the original complete information game, as well as in any
continuation game. Player 1’s and the period t ′ player 2’s payoffs in the (infinitely
repeated) continuation game, as a function of the pure strategy profile s, are given by

U1(s1, s2) ≡E
[
(1− δ)

∞∑
t ′=0

δt
′
u1(a

t ′
1 , a

t ′
2 )

]

and ut
′

2 (s1, s2) ≡E[u2(a
t ′
1 , a

t ′
2 )].

These expectations are taken over the action pairs (at
′

1 , a
t ′
2 ).

For � = 1, 2, let D� denote the space of probability measures λ� on (S�,S�). We
say a sequence of measures λ(n)1 ∈ D1 converges to λ1 ∈ D1 if, for each τ , we have

λ
(n)
1

∣∣
A
(A1×A2×Y )τ
1

→ λ1|
A
(A1×A2×Y )τ
1

(15.5.2)

and a sequence of measures λ(n)2 ∈ D2 converges to λ2 ∈ D2 if for each τ , we have

λ
(n)
2

∣∣
A
(A2×Y )τ
2

→ λ2|
A
(A2×Y )τ
2

. (15.5.3)

Moreover, each D� is sequentially compact in the topology of this convergence. Payoffs
for players 1 and 2 are extended to D = D1 ×D2 in the obvious way.

Fix an equilibrium of the incomplete information game. If the normal type of
player 1 observes a private history ht1 ∈H t

1 , his strategy σ̃1 specifies a behavior
strategy in the continuation game. This behavior strategy is realization equivalent to

a mixed strategy λ̃
ht1
1 ∈ D1 for the continuation game. We let λ̃h

t

1 denote the expected

value of λ̃
ht1
1 , conditional on the public history ht . From the point of view of player 2,

who observes only the public history, λ̃h
t

1 is the strategy of the normal player 1 following

history ht . We let λh
t

2 ∈ D2 denote player 2’s mixed strategy in the continuation game.

The limit of every convergent subsequence of (λ̃h
t

1 , λ
ht

2 ) is a Nash equilibrium
(with the sequential compactness of D ensuring that such subsequences exist).
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Proposition

15.5.3
Suppose the monitoring distribution π satisfies assumptions 15.4.1 and 15.5.1,
action spaces are finite, and the commitment action α̂1 satisfies assumption 15.5.3.
For any Nash equilibrium of the incomplete information game and for P̃-almost
all sequences of histories {ht }t , every cluster point of the sequence of continuation
profiles

{(
λ̃h

t

1 , λ
ht

2

)}
t

is a Nash equilibrium of the complete information game with
normal player 1.

Proof At the given equilibrium, the normal type is playing in an optimal way from time
t onward given his (private) information. Thus, for each history ht1, associated
public history ht , and strategy s′1 ∈ S1,

E

(
λ̃
ht1
1 ,λh

t

2

)
[U1(s1, s2)] ≥ Eλh

t

2 [U1(s
′
1, s2)].

The superscripts on the expectation operator are the measures on (s1, s2) involved
in calculating the expectation. Moreover, for the associated public history ht and
any strategy s′1 ∈ S1,

E

(
λ̃h
t

1 ,λ
ht

2

)
[U1(s1, s2)] ≥ Eλh

t

2 [U1(s
′
1, s2)]. (15.5.4)

Player 2 is also playing optimally from time t onward given the public information,
which implies that for all s′2 ∈ S2, all ht

′
and all t ′ > 0,

E

(
µ̂t λ̂h

t

1 +(1−µ̂t )λ̃h
t

1 ,λ
ht

2

)[
ut
′

2 (s1, s2)
] ≥ Eµ̂t λ̂ht1 +

(
1−µ̂t

)
λ̃h
t

1
[
ut
′

2 (s1, s
′
2)
]
, (15.5.5)

where λ̂h
t

1 is the play of the commitment type. Because player 2 is a short-run
player, this inequality is undiscounted and holds for all t ′.

From proposition 15.5.1, µ̂t → 0 P̃ -a.s. Suppose {ht }t is a sequence of public
histories with µ̂t → 0, and suppose

{(
λ̃h

t

1 , λ
ht

2

)}∞
t=1 →

(
λ̃∗1, λ∗2

)
on this sequence.

We need to show that (λ̃∗1, λ∗2) satisfies (15.5.4) and (15.5.5) (the latter for all
t ′ > 0). It suffices for the result that the expectations E(λ1,λ2)[U1(s1, s2)] and
E(λ1,λ2)[u2(s1, s2)] are continuous in (λ1, λ2). Continuity is immediate from the
continuity of u2 for player 2, for each time t ′. For player 1, continuity is an impli-
cation of discounting. For any ε > 0, one can find a γ > 0 and τ > 0 such that
if
∣∣λ(n)1 |A(A1×A2×Y )τ

1
− λ∗1|A(A1×A2×Y )τ

1

∣∣ < γ and
∣∣λ(n)2 |A(A2×Y )τ

2
− λ∗2|A(A2×Y )τ

2

∣∣ < γ ,

then
∣∣E(λ(n)1 ,λ

(n)
2 )[U1(s1, s2)] − E(λ∗1,λ∗2)[U1(s1, s2)]

∣∣ < ε. It is then clear that
E(λ1,λ2)[U1(s1, s2)] is continuous, given the convergence notion given by (15.5.2)
and (15.5.3).

■

Example

15.5.2
Recall that in the product-choice game, the unique player 2 best response to theH is
to playh, andHh is not a stage-game Nash equilibrium. Proposition 15.4.1 ensures
that the normal player 1’s expected value in the repeated game of incomplete
information with an H -commitment type is arbitrarily close to 2 when player 1
is very patient. In particular, if the normal player 1 plays H in every period, then
player 2 will at least eventually play her best response of h. If the normal player 1
persisted in mimicking the commitment type by playing H in each period, this
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behavior would persist indefinitely. It is the feasibility of such a strategy that lies
at the heart of the reputation bounds on expected payoffs. However, this strategy
is not optimal. Instead, player 1 does even better by attaching some probability
to L, occasionally reaping the rewards of his reputation by earning a stage-game
payoff even larger than 2. The result of such equilibrium behavior, however, is
that player 2 must eventually learn player 1’s type. The continuation payoff is then
bounded below 2 (see example 15.4.1).

●

Remark

15.5.2
A partial converse Cripps, Mailath, and Samuelson (2004a, theorem 3) provide
a partial converse to proposition 15.5.3, identifying a class of equilibria of the
complete information game to which (under a continuity hypothesis) equilibrium
play of the incomplete information game can converge.

◆

Remark

15.5.3
Private beliefs Cripps, Mailath, and Samuelson (2004b) examine asymptotic
equilibrium play when player 1 does not know player 2’s beliefs (as arises under the
private-monitoring case of Section 15.5.1). When 2’s beliefs are not public, Cripps,
Mailath, and Samuelson (2004b, theorem 5) show that play must eventually be a
correlated equilibrium of the complete information game, with the players’private
histories providing the correlating device. Correlated equilibria in repeated games
remain relatively unexplored. For example, it is not known whether a limiting cor-
related equilibrium of the incomplete information game is a public randomization
over Nash equilibria of the complete information game. Nor is it known whether
proposition 8.3.1—imperfect monitoring breeds inefficiency in binding moral haz-
ard games like the product-choice game—extends to correlated equilibria.

◆

15.6 Temporary Reputations: The Proof of Proposition 15.5.1

15.6.1 Player 2’s Posterior Beliefs

The first step is to show that either player 2’s expectation (given her history) of the
strategy played by the normal type is in the limit identical to the strategy played by the
commitment type, or player 2’s posterior probability that player 1 is the commitment
type converges to 0 (given that player 1 is indeed normal). This is a merging argument.
If the distributions generating player 2’s signals are different for the normal and com-
mitment types, then these signals provide information that player 2 will use in updating
her posterior beliefs about the type she faces. This (converging, by lemma 15.4.2) belief
can converge to an interior probability only if the distributions generating the signals
are asymptotically uninformative, which requires (by assumption 15.4.1) that they be
identical.

Lemma

15.6.1
Suppose the monitoring distribution π satisfies assumptions 15.4.1 and 15.5.1,
and the action spaces are finite. Then in any Nash equilibrium,

lim
t→∞ µ̂

t (1− µ̂t )∥∥α̂1 − Ẽ[ σ̃ t1 | G t
2 ]
∥∥ = 0, P-a.s. (15.6.1)
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Proof Step 1. Equation (15.4.13) implies,

P(µ̂t dt (P, P̂) ≥ η infinitely often) = 0, ∀η > 0 (15.6.2)

because µ̂ = P(�̂ | G t
2) = φt , where dt is defined in lemma 15.4.3. Equation

(15.6.2) is equivalent to

µ̂t dt (P, P̂)→ 0, P-a.s.

Because {zt2} ∈ G t+1
2 , this implies, for all z2 ∈ Z2,

µ̂t
∣∣π2(z2 | α̂1, a

t
2)− π2(z2 | E[σ1(h

t
1, ξ) | G t

2 ], at2)
∣∣→ 0, P-a.s.,

(15.6.3)

where at2 is any G t
2 -measurable mapping from � into A2 such that at2(ω) has

positive probability under σ2(h
t
2(ω)). Then because E[σ1(h

t
1, ξ) | G t

2 ] = µ̂t α̂1 +
(1− µ̂t )Ẽ[σ̃1(h

t
1) | G t

2 ], we have

π2(z2 | E[σ1(h
t
1, ξ) | G t

2 ], at2)
= µ̂tπ2(z2 | α̂1, a

t
2)+ (1− µ̂t )π2(z2 | Ẽ[σ̃1(h

t
1) | G t

2 ], at2).

Substituting into (15.6.3) and rearranging,

µ̂t (1− µ̂t ) ∣∣π2(z2 | α̂1, a
t
2)− π2(z2 | Ẽ[σ̃1(h

t
1) | G t

2 ], at2)
∣∣→ 0, P-a.s.,

that is, for all z2 ∈ Z2,

µ̂t (1− µ̂t )
∣∣∣∣∣∣
∑
a1∈A1

π2(z2 | a1, a
t
2)(α̂1(a1)− Ẽ[σ̃ a1

1 (h
t
1) | G t

2 ])
∣∣∣∣∣∣→ 0, P-a.s.

(15.6.4)

Therefore, if both types are given positive probability in the limit then the fre-
quency that any signal is observed is identical under the two types. (See Cripps,
Mailath, and Samuelson (2004a, p. 419) for a direct, but longer, proof that only
uses Bayes’ rule.)

Step 2. We now show that (15.6.4) implies (15.6.1). Let �at2 be a |Z2| × |A1|
matrix whose zth

2 row, for each signal z2 ∈ Z2, contains the terms π2(z2 | a1, a
t
2)

for a1 ∈ A1. Then as (15.6.4) holds for all z2 (and Z2 is finite), (15.6.4) can be
restated as

µ̂t (1− µ̂t )∥∥�at2(α̂1 − Ẽ[σ̃ t1 | G t
2 ])
∥∥→ 0, P-a.s. (15.6.5)

By assumption 15.4.1, the matrices �at2 have |A1| linearly independent columns

for all at2, so x = 0 is the unique solution to �at2x = 0 in R|A1|. In addition,
there exists a strictly positive constant b = inf a2∈A2,x �=0 ‖�a2x‖/‖x‖. Hence
‖�a2x‖ ≥ b‖x‖ for all x ∈ R|A1| and all a2 ∈ A2. From (15.6.5), we then get



502 Chapter 15 ■ Reputations with Short-Lived Players

µ̂t (1− µ̂t )∥∥�at2(α̂1 − Ẽ[σ̃ t1 | G t
2 ])
∥∥

≥ µ̂t (1− µ̂t )b∥∥α̂1 − Ẽ[σ̃ t1 | G t
2 ]
∥∥→ 0, P-a.s.,

which implies (15.6.1).
■

Condition (15.6.1) says that either player 2’s best prediction of the normal type’s
behavior converges to the commitment type’s behavior (that is, ‖α̂1 − Ẽ[σ̃ t1 | G t

2 ]‖
→ 0 or the type is revealed (that is, µ̂∞(1− µ̂∞) = 0, P-a.s.). However, µ̂∞ < 1
P̃-a.s., and hence (15.6.1) implies a simple corollary:15

Corollary

15.6.1
At any equilibrium of a game with monitoring distribution π satisfying assump-
tions 15.4.1 and 15.5.1, and finite action spaces,

lim
t→∞ µ̂

t
∥∥α̂1 − Ẽ[ σ̃ t1 | G t

2 ]
∥∥ = 0, P̃-a.s.

15.6.2 Player 2’s Beliefs about Her Future Behavior

We now examine the consequences of the existence of a P̃-positive measure subset of
� on which player 1’s type is not learned, that is, on which limt→∞ µ̂t (ω) > 0. The
normal and the commitment types eventually play the same strategy on these states
(lemma 15.6.1). Consequently, on a positive probability subset of these states, player
2 eventually attaches high probability to the event that in all future periods he will
play a best response to the commitment type. Before stating this formally, we prove an
intermediate result, which may seem intuitive but requires some care. The argument
is based on Hart (1985, lemma 4.24).

Lemma

15.6.2
Suppose {Xt }t is a bounded sequence of random variables on (�,G ,P) with
Xt → 0 P-a.s. Then for any filtration {G t }t , E[Xt | G t ] → 0 P-a.s.

Proof Let Xt = supt ′≥t |Xt ′ |. Then the sequence {Xt }t is a nonincreasing sequence of
random variables converging to 0 P-a.s. By definition, we have E[Xt+1 | G t ] ≤
E[Xt | G t ] P-a.s., and hence {E[Xt | G t ]}t is a bounded supermartingale adapted
to the filtration {G t }t . From the martingale convergence theorem (Billingsley
1979, theorem 35.4), there exists a limit X∞ with E[Xt | G t ] → X∞ P-a.s. But
becauseE[E[Xt | G t ]] = E[Xt ] → 0, we haveE[X∞] = 0. Because X∞ ≥ 0 P-
a.s., we must have X∞ = 0 P-a.s. Then noting that−E[Xt | G t ] ≤ E[Xt | G t ] ≤
E[Xt | G t ], we conclude that E[Xt | G t ] → 0 P-almost surely.

■

We are now in a position to state and prove the result of this section. The event
that player 2 plays a best response to the commitment strategy in all periods s ≥ t is

Gt = {ω : σ s2 (hs2(ω)) = â2,∀s ≥ t}.

15. Because the odds ratio µ̂t /(1− µ̂t ) is a P̃-martingale (lemma 15.4.2), µ̂0/(1− µ̂0) =
Ẽ[µ̂t /(1− µ̂t )] for all t . The left side of this equality is finite, so lim µ̂t < 1 P̃-a.s.
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Lemma

15.6.3
Suppose the monitoring distributionπ satisfies assumptions 15.4.1 and 15.5.1, the
action spaces are finite, and there is a Nash equilibrium in which player 2 does not
necessarily learn player 1’s type, that is, P̃(A) > 0, where A ≡ {µ̂t � 0}. There
exists η > 0 and F ⊂ A, with P̃(F ) > 0, such that for any θ > 0, there exists T
for which on F ,

µ̂t > η, ∀t ≥ T ,
and

P̃(Gt | G t
2) > 1− θ, ∀t ≥ T . (15.6.6)

Proof Step 1. Because P̃(A) > 0 and µ̂t converges a.s., there exists ψ > 0 and η > 0

such that P̃(D) > 2ψ , where D ≡ {ω : limt→∞ µ̂t (ω) > 2η}. The random vari-
ables ‖α̂1 − Ẽ[σ̃ t1|G t

2 ]‖ tend P̃-a.s. to 0 onD (by corollary 15.6.1). Consequently,
the random variables Xt ≡ sups≥t ‖α̂1 − Ẽ[σ̃ s1 |G s

2 ]‖ also converge P̃-a.s. to 0 on
D. This in turn implies, applying lemma 15.6.2, that on D the expected value of
Xt , conditional on player 2’s information, converges to 0, that is, Ẽ[χDXt | G t

2 ]
converges a.s. to 0, where χD is the indicator for the event D. Now define
At ≡ {ω : Ẽ[χD | G t

2 ](ω) > 1/2}. The G t
2 -measurable event At approximates D

(because player 2 knows her own beliefs, the random variables dt ≡ |χD − χAt |
converge P̃-a.s. to 0). Hence

χDẼ[Xt | G t
2 ] ≤ χAt Ẽ[Xt | G t

2 ] + dt
= Ẽ[χAtXt | G t

2 ] + dt
≤ Ẽ[χDXt | G t

2 ] + Ẽ[dt | G t
2 ] + dt ,

where the first and third lines use Xt ≤ 1 and the second uses the measurability
of At with respect to G t

2 . All the terms on the last line converge P̃-a.s. to 0, and so
Ẽ[Xt |G t

2 ] → 0 P̃-a.s. on the set D. Egorov’s theorem (Chung 1974, p. 74) then
implies that there exists F ⊂ D such that P̃(F ) > 0 on which the convergence of
µ̂t and Ẽ[Xt |G t

2 ] is uniform.

Step 2. From the upper hemicontinuity of the best response correspondence, there
exists φ > 0 such that for any history hs1 and any action α1 ∈ �(A1) satisfying
‖α1 − α̂1‖ ≤ φ, a best response to α1 is also a best response to α̂1 and so neces-
sarily equals â2. The uniform convergence of Ẽ[Xt |G t

2 ] on F implies that for any
θ > 0, there exists a time T such that on F for all t ≥ T and µ̂t > η and

Ẽ

[
sup
s≥t
‖α̂1 − Ẽ[σ̃ s1 |G s

2 ]‖
∣∣∣∣G t

2

]
< θφ.

As Ẽ[Xt |G t
2 ] < θφ for all t ≥ T on F and Xt ≥ 0, P̃({Xt > φ}|G t

2) < θ for all
t ≥ T on F , implying (15.6.6).

■

15.6.3 Player 1’s Beliefs about Player 2’s Future Behavior

Our next step is to show that with positive probability, player 1 eventually expects
player 2 to play a best response to the commitment type for the remainder of the game.
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The potential difficulty in proving this result is that player 1 does not know player 2’s
private history and hence 2’s beliefs.

We first show that it cannot be too disadvantageous for too long, in terms of
predicting 2’s behavior, for player 1 to not know player 2’s history. Though player 2’s
private history ht2 is typically of use to player 1 in predicting 2’s period s behavior
for s > t , this usefulness vanishes as s →∞. If period s behavior is eventually (as s
becomes large) independent of ht2, then clearly ht2 is eventually of no use in predicting
that behavior. Suppose then that ht2 is essential to predicting player 2’s behavior in all
periods s > t . Then, player 1 continues to receive information about this history from
subsequent observations, reducing the value of having ht2 explicitly revealed. As time
passes player 1 will learn whether ht2 actually occurred from his own observations,
again reducing the value of independently knowing ht2.

Denote by β(A ,B) the smallest σ -algebra containing the σ -algebras A and B.

Thus, β(G s
1 ,G

t
2) is the σ -algebra describing what player 1’s information at time s

would be if he were to learn the private history of player 2 at time t .

Lemma

15.6.4
Suppose the monitoring distribution π satisfies assumptions 15.5.1 and 15.5.2,
and the action spaces are finite. For any t > 0 and τ ≥ 0,

lim
s→∞

∥∥Ẽ[σ s+τ2 |β(G s
1 ,G

t
2)] − Ẽ[σ s+τ2 |G s

1 ]
∥∥ = 0, P̃-a.s.

Proof Step 1. We first prove the result for τ = 0. Suppose K ⊂H t
2 is a set of t-period

player 2 histories. We also denote by K the corresponding event (i.e., subset of
�). By Bayes’ rule and the finiteness of the action and signal spaces, we can write
the conditional probability of the event K given the observation by player 1 of
hs+1

1 = (hs1, as1zs1) as

P̃[K|hs+1
1 ] = P̃[K|hs1, as1zs1]

= P̃[K|hs1]P̃[as1zs1|K,hs1]
P̃[as1zs1|hs1]

= P̃[K|hs1]
∑
a2
π1(z

s
1 | as1a2)Ẽ[σa2

2 (h
s
2)|K,hs1]∑

a2
π1(z

s
1 | as1a2)Ẽ[σa2

2 (h
s
2)|hs1]

,

where σa2
2 (h

s
2) is the probability assigned to the action a2 by σ2 after the history

hs2 and the last equality uses P̃[as1|K,hs1] = P̃[as1|hs1].
Subtract P̃[K|hs1] from both sides to obtain

P̃[K|hs+1
1 ] − P̃[K|hs1]

= P̃[K|hs1]
∑
a2
π1(z

s
1 | as1a2)(Ẽ[σa2

2 (h
s
2)|K,hs1] − Ẽ[σa2

2 (h
s
2)|hs1])∑

a2
π1(z

s
1 | as1a2)Ẽ[σa2

2 (h
s
2)|hs1]

.

The term
∑
a2
π1(z

s
1 | as1a2)Ẽ[σa2

2 (h
s
2)|hs1] is player 1’s conditional probability

of observing the period s signal zs1 given he takes action as1 and hence is strictly
positive and less than 1. Thus,
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∣∣P̃[K|hs+1
1 ] − P̃[K|hs1]

∣∣
≥ P̃[K|hs1]

∣∣∣∣∣∑
a2

π1(z
s
1 | as1a2)(Ẽ[σa2

2 (h
s
2)|K,hs1] − Ẽ[σa2

2 (h
s
2)|hs1])

∣∣∣∣∣ .
Because the sequence of random variables {P̃[K|G s

1 ]}s is a P̃-martingale adapted
to {G s

1 }s , it converges P̃-a.s. to a nonnegative limit P̃[K|G∞1 ] as s →∞. Conse-
quently, the left side of this inequality converges P̃-a.s. to 0. The signals generated
by player 2’s actions satisfy assumption 15.5.2, so an argument identical to that of
step 2 of the proof of lemma 15.6.1 establishes that P̃-almost everywhere on K ,

lim
s→∞ P̃[K|G s

1 ]
∥∥Ẽ[σ s2 | β(G s

1 ,K)] − Ẽ[σ s2 | G s
1 ]
∥∥ = 0,

where β(A , B) is the smallest σ -algebra containing both the σ -algebra A and the
event B. Moreover, P̃[K|G∞1 ](ω) > 0 for P̃-almost all ω ∈ K . Thus, P̃-almost
everywhere on K ,

lim
s→∞

∥∥Ẽ[σ s2 |β(G s
1 ,K)] − Ẽ[σ s2 |G s

1 ]
∥∥ = 0.

Because this holds for all K ∈ G t
2 ,

lim
s→∞

∥∥Ẽ[σ s2 |β(G s
1 ,G

t
2)] − Ẽ[σ s2 |G s

1 ]
∥∥ = 0, P̃-a.s.,

giving the result for τ = 0.

Step 2. The proof for τ ≥ 1 follows by induction. We have

Pr[K | hs+τ+1
1 ] = Pr[K | hs1, as1zs1, . . . , as+τ1 zs+τ1 ]

= Pr[K | hs1]Pr[as1zs1, . . . , as+τ1 zs+τ1 | K,hs1]
Pr[as1zs1, . . . , as+τ1 zs+τ1 | hs1]

= Pr[K | hs1]
∏s+τ
�=s

∑
a2
π1(z

�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | K,hs1]∏s+τ

�=s
∑
a2
π1(z

�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | hs1]

,

where h�+1
1 = (h�1, a�1z�1). Therefore,∣∣Pr[K | hs+τ+1

1 ] − Pr[K | hs1]
∣∣

≥ Pr[K | hs1]
∣∣∣∣∣
s+τ∏
�=s

∑
a2

π1(z
�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | K,hs1]

−
s+τ∏
�=s

∑
a2

π1(z
�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | hs1]

∣∣∣∣∣ .
The left side of this inequality converges to 0 P̃-a.s., and hence so does the right
side. Moreover, applying the triangle inequality and rearranging, we find that the
right side is larger than
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Pr[K | hs1]
∣∣∣∣∣
s+τ−1∏
�=s

∑
a2

π1(z
�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | hs1]

∣∣∣∣∣
×
∣∣∣∣∣∑
a2

π1(z
s+τ
1 | as+τ1 a2)Ẽ[σa2

2 (h
s+τ
2 ) | K,hs1]

−
∑
a2

π1(z
s+τ
1 | as+τ1 a2)Ẽ[σa2

2 (h
s+τ
2 ) | hs1]

∣∣∣∣∣
− Pr[K | hs1]

∣∣∣∣∣
s+τ−1∏
�=s

∑
a2

π1(z
�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | K,hs1]

−
s+τ−1∏
�=s

∑
a2

π1(z
�
1 | a�1a2)Ẽ[σa2

2 (h
�
2) | hs1]

∣∣∣∣∣
×
∣∣∣∣∣∑
a2

π1(z
s+τ
1 | as+τ1 a2)Ẽ[σa2

2 (h
s+τ
2 ) | K,hs1]

∣∣∣∣∣ .

From the induction hypothesis that ‖Ẽ[σ�2 |β(G s
1 ,G

t
2)] − Ẽ[σ�2 | G s

1 ]‖ converges
to 0 P̃-a.s. for every � ∈ {s, . . . , s + τ − 1}, the negative term also converges to
0 P̃-a.s. But then the first term also converges to 0, and, as before, the result holds
for � = s + τ .

■

Now we apply lemma 15.6.4 to a particular piece of information player 2 could
have at time t . By lemma 15.6.3, with positive probability, we reach a time t at which
player 2 assigns high probability to the event that all her future behavior is a best reply
to the commitment type. Intuitively, lemma 15.6.4 implies that player 1 will eventually
have expectations about player 2 that match those he would have if he knew player 2
expected (in time t) to always play a best response to the commitment type.

This step is motivated by the observation that if player 1 eventually expects player 2
to always play a best response to the commitment type, then the normal type of player 1
will choose to deviate from the behavior of the commitment type (which is not a best
response to player 2’s best response to the commitment type). At this point, we appear to
have a contradiction between player 2’s belief on the event F (from lemma 15.6.3) that
the normal and commitment types are playing identically and player 1’s behavior on
the event F † (the event where player 1 expects player 2 to always play a best response
to the commitment type, identified in the next lemma). This contradiction would be
immediate if F † was both a subset of F and measurable for player 2. Unfortunately we
have no reason to expect either. However, the next lemma shows thatF † is in fact close
to a G s

2 -measurable set on which player 2’s beliefs that player 1 is the commitment
type do not converge to 0. In this case we will (eventually) have a contradiction. On
all such histories, the normal and commitment types are playing identically. However,
nearly everywhere on a relatively large subset of these states, the normal player 1 is
deviating from the commitment strategy in an identifiable way.
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The proof of the next lemma is somewhat technical, and some readers may
accordingly prefer to skip to the completion of the proof of proposition 15.5.1 in
section 15.6.4.

Lemma

15.6.5
Suppose the monitoring distribution π satisfies assumptions 15.4.1, 15.5.1,
and 15.5.2, and action spaces are finite. Suppose there is a Nash equilibrium in
which player 2 does not necessarily learn player 1’s type, that is, P̃({µ̂t � 0}) > 0.
Let η > 0 be the constant and F the positive probability event identified in
lemma 15.6.3. For any ν > 0 and number of periods τ > 0, there exists an event
F † and a time T (ν, τ ) such that for all s > T (ν, τ ) there exists C†s ∈ G s

2 with:

µ̂s > η on C†s , (15.6.7)

F † ∪ F ⊂ C†s , (15.6.8)

P̃ (F †) > P̃ (C†s)− νP̃ (F ), (15.6.9)

and for any s′ ∈ {s, s + 1, . . . , s + τ }, on F †,

Ẽ[σ s′,â2
2 | G s

1 ] > 1− ν, P̃-a.s., (15.6.10)

where σ s
′,â2

2 is the probability player 2 assigns to the action â2 in period s′.

Proof Fix ν ∈ (0, 1) and a number of periods τ > 0. Fix θ < ( 1
4νP̃(F ))2, and let T

denote the critical period identified in lemma 15.6.3 for this value of θ .
Player 1’s minimum estimated probability on â2 over periods s, . . . , s + τ

can be written as f s ≡ mins≤s′≤s+τ Ẽ[σ s
′,â2

2 | G s
1 ]. Notice that f s > 1− ν is a

sufficient condition for inequality (15.6.10).

Step 1. We first find a lower bound for f s . For any t ≤ s, the triangle inequality
implies

1 ≥ f s ≥ min
s≤s′≤s+τ

Ẽ[σ s′,â2
2 | β(G s

1 ,G
t
2)] − kt,s ,

where kt,s ≡ maxs≤s′≤s+τ |Ẽ[σ s
′,â2

2 | β(G s
1 ,G

t
2)] − Ẽ[σ s

′,â2
2 | G s

1 ]| for t ≤ s. By
lemma 15.6.4, lims→∞ kt,s = 0 P̃-a.s.

As σ s
′,â2

2 ≤ 1 and is equal to 1 on Gt , the above implies

f s ≥ P̃(Gt | β(G s
1 ,G

t
2))− kt,s .

Moreover, the sequence of random variables {P̃(Gt |β(G s
1 ,G

t
2))}s is a martin-

gale with respect to the filtration {G s
1 }s , and so converges a.s. to a limit,

gt ≡ P̃(Gt |β(G∞1 ,G t
2)). Hence

1 ≥ f s ≥ gt − kt,s − �t,s , (15.6.11)

where �t,s ≡ |gt − P̃(Gt |β(G s
1 ,G

t
2))| and lims→∞ �t,s = 0 P̃-a.s.
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Step 2. We now determine the setsC†s and a set that we will use to later determine
F †. For any t ≥ T , define

Kt ≡ {ω : P̃(Gt | G t
2) > 1− θ , µ̂t > η} ∈ G t

2 .

Let F t,s denote the event ∩sτ=tKτ and set F t ≡ ∩∞τ=tKτ . Note that lim inf Kt ≡
∪∞t=T ∩∞τ=t Kτ = ∪∞t=T F t . By lemma 15.6.3, F ⊂ Kt for all t ≥ T , soF ⊂ F t,s ,
F ⊂ F t , and F ⊂ lim inf Kt .

DefineNt ≡ {ω : gt ≥ 1−√θ}. SetC†s ≡ FT,s ∈ G s
2 and define an interme-

diate set F ∗ by F ∗ ≡ FT ∩NT . Because C†s ⊂ Ks , (15.6.7) holds. In addition,
F ∗ ∪ F ⊂ C†s , and hence (15.6.8) holds with F ∗ in the role of F †. By definition,

P̃(C†s)− P̃(F ∗)= P̃(C†s ∩ (F T ∩NT )c)= P̃((C†s ∩ (F T )c)∪ (C†s ∩ (NT )c)),

where we use Sc to denote the complement of a set S. By our choice of C†s , the
eventC†s ∩ (NT )c is a subset of the eventKT ∩ (NT )c. Thus, we have the bound

P̃(C†s)− P̃(F ∗) ≤ P̃(C†s ∩ (F T )c)+ P̃(KT ∩ (NT )c). (15.6.12)

We now find upper bounds for the two terms on the right side of (15.6.12). First
notice that P̃(C†s ∩ (F T )c) = P̃(F T,s)− P̃(F T ). Because lims→∞ P̃(F T,s) =
P̃(F T ), there exists T ′ ≥ T such that

P̃(C†s ∩ (F T )c) < √θ for all s ≥ T ′. (15.6.13)

Also, as P̃(Gt |Kt) > 1− θ and Kt ∈ G t
2 , the properties of iterated expectations

imply that 1− θ < P̃(Gt |Kt) = Ẽ[gt |Kt ]. Because gt ≤ 1, we have

1− θ < Ẽ[gt | Kt ] ≤ (1−√θ)P̃((Nt )c | Kt)+ P̃(Nt | Kt)

= 1−√θ P̃((Nt )c | Kt).

The extremes of the inequality imply that P̃((Nt )c | Kt) <
√
θ . Thus, taking

t = T we get

P̃(KT ∩ (NT )c) <
√
θ. (15.6.14)

Using (15.6.13) and (15.6.14) in (15.6.12), P̃(C†s)− P̃(F ∗) < 2
√
θ for all

s ≥ T ′. Given F ⊂ C†s , the bound on θ , and ν < 1, it follows that

P̃(F ∗) > P̃(F )− 2
√
θ > 1

2 P̃(F ) > 0.

Step 3. Finally, we combine the first two steps to obtain F †. As P̃(F ∗) > 0 and
kT,s + �T,s converges a.s. to 0, by Egorov’s theorem, there exists F † ⊂ F ∗ such
that P̃(F ∗ \ F †) <

√
θ and a time T ′′ > T such that kT,s + �T,s < √θ on F †

for all s ≥ T ′′. Because F † ∪ F ⊂ F ∗ ∪ F ⊂ C†s , (15.6.8) holds. Let T (ν, τ ) ≡
max{T ′′, T ′}. Also, gT ≥ 1−√θ on F †, because F † ⊂ NT . Hence on F †, by
(15.6.11), f s > 1− 2

√
θ for all s > T (ν, τ ). This and the bound on θ imply

(15.6.10). Moreover, as P̃(F ∗ \ F †) <
√
θ and P̃(C†s)− P̃(F ∗) < 2

√
θ , (15.6.9)

holds for all s > T (ν, τ ).
■
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15.6.4 Proof of Proposition 15.5.1

We have shown that when player 2 does not necessarily learn player 1’s type, there
exists a set F † on which (15.6.10) holds and F † ⊂ C†s ∈ G s

2 . In broad brushstrokes,
the remaining argument proving proposition 15.5.1 is as follows. First, we conclude
that on F †, the normal type will not be playing the commitment strategy. To be precise,
onF † there will exist a stage-game action played by α̂1 but not by the normal type. This
will bias player 2’s expectation of the normal type’s actions away from the commitment
strategy on C†s , because there is little probability weight on C†s \ F †. We then get a
contradiction because the fact that µ̂s > η on C†s implies player 2 must believe the
commitment type’s strategy and the normal type’s average strategy are the same onC†s .

Suppose, en route to the contradiction, that there is a Nash equilibrium in which
player 2 does not necessarily learn player 1’s type. Then P̃(µ̂t � 0) > 0. Let α̂1 ≡
mina1∈A1{α̂1(a1) : α̂1(a1) > 0}, that is, α̂1 is the smallest nonzero probability attached
to an action under the commitment strategy α̂1.

Because (α̂1, â2) is not a Nash equilibrium, there exists γ > 0, a′1 ∈ A1 with
α̂1(a

′
1) > 0 and ν̄ > 0 such that

γ < min
‖α2−â2‖≤ν̄

(
max
a1∈A1

u1(a1, α2)− u1(a
′
1, α2)

)
.

Finally, for a given discount factor δ1 < 1 there exists a τ sufficiently large such that
the loss of γ for one period is larger than any feasible potential gain deferred by τ
periods: (1− δ1)γ > δτ1 (M −m).

Fix the eventF from lemma 15.6.3. For ν < min{ν̄, α̂1/2} and τ fixed as above, let
F † and, for s > T (ν, τ ), C†s be the events described in lemma 15.6.5. Now consider
the normal type of player 1 in period s > T (ν, τ ) at some state in F †. By (15.6.10),
he expects player 2 to play within ν < ν̄ of â2 for the next τ periods. Playing the
action a′1 is conditionally dominated in period s, because the most he can get from
playing a′1 in period s is worse than playing a best response to â2 for τ periods and
then being minmaxed. Thus, on F † the normal type plays action a′1 with probability

zero: σ
s,a′1
1 = 0.

Now we calculate a lower bound on the difference between player 2’s beliefs about

the normal type’s probability of playing action a′1 in period s, Ẽ[σ s,a′11 | G s
2 ], and the

probability the commitment type plays action a′1 on the set of states C†s :

Ẽ
[∣∣α̂1(a

′
1)− Ẽ[σ s,a

′
1

1 | G s
2 ]
∣∣χC†s

] ≥ Ẽ[(α̂1(a
′
1)− Ẽ[σ s,a

′
1

1 | G s
2 ]
)
χC†s

]
≥ α̂1P̃(C†s)− Ẽ[σ s,a′11 χC†s

]
≥ α̂1P̃(C†s)− (P̃(C†s)− P̃(F †)

)
≥ α̂1P̃(C†s)− νP̃(F )

≥ 1
2α̂1P̃(F ). (15.6.15)

The first inequality follows from removing the absolute values. The second inequality
applies α̂1(a

′
1) ≥ α̂1, uses the G s

2 -measurability of C†s and applies the properties of

conditional expectations. The third applies the fact that σ
s,a′1
1 = 0 onF † and σ

s,a′1
1 ≤ 1.
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The fourth inequality applies (15.6.9) in lemma 15.6.5. The fifth inequality follows
from ν < α̂1/2 and F ⊂ C†s (by (15.6.8)).

From corollary 15.6.1, µ̂s‖α̂1 − Ẽ(σ̃ s1 | G s
2 )‖ → 0 P̃-a.s. It follows that

µ̂s
∣∣α̂1(a

′
1)− Ẽ(σ̃ s,a

′
1

1 | G s
2 )
∣∣χC†s → 0, P̃-a.s.

But by lemma 15.6.5, µ̂s > η on the set C†s , and so

∣∣α̂1(a
′
1)− Ẽ(σ̃ s,a

′
1

1 | G s
2 )
∣∣χC†s → 0, P̃-a.s.

This concludes the proof of proposition 15.5.1, because we now have a contradiction
with P̃(F ) > 0 (from lemma 15.6.3) and (15.6.15), which holds for all s > T (ν, τ ).



16 Reputations with Long-Lived Players

In this chapter, we show that the introduction of nontrivial intertemporal incentives
for the uninformed player qualifies and complicates the analysis of chapter 15. For
example, when we consider only simple Stackelberg types, the Stackelberg payoff may
not bound equilibrium payoffs. The situation is further complicated by the possibility
of nonsimple commitment types (i.e., types that follow nonstationary strategies).

16.1 The Basic Issue

Consider applying the logic from chapter 15 to obtain a Stackelberg reputation bound
when both players are long-lived and player 1’s characteristics are unknown under
perfect monitoring. The first step is to demonstrate that if the normal player 1 persis-
tently plays the Stackelberg action and there exists a type committed to that action,
then player 2 must eventually attach high probability to the event that the Stackelberg
action is played in the future. This argument is simply lemma 15.3.1, which depends
only on the properties of Bayesian belief revision, independently of whether the person
holding the beliefs is a long-lived or short-lived player.

When player 2 is short-lived, the next step is to note that if she expects the Stack-
elberg action, then she will play a best response to this action. If player 2 is instead
a long-lived player, she may have an incentive to play something other than a best
response to the Stackelberg type.

The key step when working with two long-lived players is thus to establish con-
ditions under which as player 2 becomes increasing convinced that the Stackelberg
action will appear, player 2 must eventually play a best response to that action. One
might begin such an argument by observing that as long as player 2 discounts, any
losses from not playing a current best response must be recouped within a finite length
of time. But if player 2 is “very” convinced that the Stackelberg action will be played
not only now but for sufficiently many periods to come, there will be no opportunity
to accumulate subsequent gains, and hence she might just as well play a stage-game
best response.

Once we have player 2 best responding to the Stackelberg action, the remainder of
the argument proceeds as in the case of a short-lived player 2. The normal player 1 must
eventually receive very nearly the Stackelberg payoff in each period of the repeated
game. By making player 1 sufficiently patient (relative to player 2, so we are in
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L C R

T 10, 10 0, 0 −z, 9

B 0, 0 1, 1 1, 0

Normal type

L C R

T 10, 10 10, 0 10, 9

B 0, 0 0, 1 0, 0

Stackelberg type

L C R

T 0, 10 0, 0 5, 9

B 1, 0 2, 1 0, 0

Punishment type

Figure 16.1.1 Payoffs for three types of player 1, where z ∈ (0, 8), with player 2’s payoffs
also shown in each case. The Stackelberg type has a dominant repeated game strategy of
always playing T and hence is equivalent to a commitment type.

an environment of differing discount factors), we can ensure that this consideration
dominates player 1’s payoffs, putting a lower bound on the latter. Hence, the obvious
handling of discount factors is to fix player 2’s discount factor δ2, and to consider the
limit as player 1 becomes patient, that is, δ1 approaching 1. (Section 16.6 examines
the case of equal discounting and discusses the extent to which some asymmetry is
important in establishing reputation results.)

This intuition misses the following possibility. Player 2 may be choosing some-
thing other than a best response to the Stackelberg action out of fear that a current
best response may trigger a disastrous future punishment. This punishment would not
appear if player 2 faced the Stackelberg type, but player 2 can be made confident only
that she faces the Stackelberg action, not the Stackelberg type. The fact that the punish-
ment lies off the equilibrium path makes it difficult to assuage player 2’s fear of such
punishments. Short-lived players in the same situation are similarly uncertain about
the future ramifications of best responding, but being short-lived, this uncertainty does
not affect their behavior.

Example

16.1.1
Failure of reputation effects The game is shown in figure 16.1.1. The normal type
of player 1 is joined by two other types, a Stackelberg type and a “punishment”
type. We represent the punishment type here as a payoff type to make it clear that
there is nothing perverse about this type’s behavior. Having done this, we also
show the Stackelberg type as a payoff type. The prior distribution puts probability
0.8 on the normal type and probability 0.1 on each of the others.

The repeated game has perfect monitoring. We are interested in the strategy
profile described as follows:

Normal player 1: Play T after any history except one in which player 1 has played
B in the past, in which case play B.

Stackelberg player 1: Play T after every history.
Punishment type of player 1: Play T initially and after any equilibrium history,

otherwise play B.
Player 2, in equilibrium: Alternate between one period of L and one of R. After

any history in which player 1 has ever played B, attach probability one to the
punishment type and play C.
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Player 2, out of equilibrium: After any history featuring a first deviation by
player 2, play L. If 1 plays T next period, attach probability zero to the pun-
ishment type, make no more belief revisions, and play L forever. If 1 plays B
next period, attach probability one to the punishment type, make no more belief
revisions, and play C forever. Otherwise, make no belief revisions.

The equilibrium path alternates between TL and TR.
To show that this is an equilibrium, we first argue that player 1’s behavior is

optimal. Incentives for the Stackelberg type are trivial, because it is a dominant
strategy in the repeated game to play T in every period. Along the equilibrium
path, the normal and punishment types of player 1 earn payoffs that approach
(as δ1 → 1) (10− z)/2 and 5/2 respectively, and deviations lead to continuation
payoffs of 1 and 2, respectively. Deviations from the equilibrium path are thus not
optimal for player 1, if sufficiently patient.

Should play ever leave the equilibrium path as a result of player 1’s having
chosenB, subsequent play constitutes a stage-game Nash equilibrium for player 2
and the normal and punishment types of player 1. Should play leave the equilibrium
path because player 2 has deviated, then the punishment player 1 has the choice of
playing T in the next period, which earns a subsequent payoff of 1 (from playingB
against a player 2 who stubbornly persists in payingL, on the strength of the belief
that player 1 is certainly normal or Stackelberg). Alternatively, the punishment
player 1 can play B, leading to the subsequent play of BC and a payoff of 2. The
punishment type is thus playing optimally off the equilibrium path. The normal
player 1 earns a payoff of 10 after a deviation by player 2 and thus is playing
optimally off the equilibrium path.

Along the equilibrium path, player 2 learns nothing about player 1. If player 2
deviates from the equilibrium, she has a chance to screen the types of player 1, earn-
ing a continuation payoff of 10 against the normal or Stackelberg type and a con-
tinuation payoff of at most 1 against the punishment type. The resulting expected
payoff is at most 9.1, falling short of the equilibrium payoff of almost 9.5 (for a
patient player 2). This completes the argument that these strategies are an equilib-
rium under the conditions on discount factors that appear in the reputation result,
namely, that we fix δ2 (allowed to be sufficiently large) and then let δ1 approach 1.

By increasing the absolute value of z in figure 16.1.1, though perhaps requir-
ing more patience for player 1, we obtain an equilibrium in which the normal
player 1’s payoff is arbitrarily close to his pure minmax payoff of 1. It is thus
apparent that reputation considerations can be quite ineffective.

In equilibrium, player 2 is convinced that she will face the Stackelberg action
in every period. However, she does not play a best response out of fear that
doing so has adverse future consequences, a fear made real by the punishment
type. Celentani, Fudenberg, Levine, and Pesendorfer (1996, section 5) describe
an example with similar features but involving only a normal and Stackelberg type
of player 1, using the future play of the normal player 1 to punish player 2 for
choosing a best response to the Stackelberg action when she is not supposed to.
Section 16.6.1, building on Cripps and Thomas (1997), also presents a game with
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common interests and with only normal and Stackelberg types for player 1, in
which equilibria exist with the normal player-1’s payoffs arbitrarily close to 1’s
minmax level.1

●

This chapter describes several positive reputation results for two long-lived play-
ers. As one would expect from example 16.1.1, these results are built around sufficient
conditions for the uninformed player to best respond to the Stackelberg action.

In section 16.2, there is a simple commitment type who minmaxes player 2.
Because no punishment can ever push player 2 below her minmax payoff, when she
believes she almost certainly faces the commitment action, she plays a best response.

This allows us to establish a strong lower bound on player 1’s payoff if there is
an action that both minmaxes player 2 and provides a high payoff to player 1 (when
2 plays a best response). In games of conflicting interests, in which player 1’s pure
Stackelberg action minmaxes player 2, this brings player 1 arbitrarily close to his
Stackelberg payoff.

Section 16.3 pursues this logic to show that for any commitment action, player 2
must at least eventually play a response that gives her at least her minmax payoff
(though this need not be a stage-game best response for player 2). Hence, a lower
bound on player 1’s payoff is given by maximizing over simple commitment types the
minimum payoff 1 receives when 2’s behavior is limited to responses that provide at
least her minmax payoff.

Section 16.4 pursues a different tack. The difficulty described in example 16.1.1
is that player 1 can bring player 2 to expect the behavior of the commitment type
on the equilibrium path but cannot control 2’s beliefs about behavior following
nonequilibrium histories. In a game with full-support public monitoring, there are
no nonequilibrium (public) histories. Here, with a sufficiently rich set of commitment
types, player 1 can be assured of at least his Stackelberg payoff. Indeed, player 1 can
often be assured of an even higher payoff in the presence of commitment types who
play nonstationary strategies.

Section 16.5 explores another possibility for capitalizing on more complicated
commitment types. Again, the difficulty in example 16.1.1 is player 2’s fear that play-
ing a best response to the commitment type may trigger a punishment. Section 16.5
examines a particular class of commitment types who punish player 2 for not playing a
best response. Once again, the result is a high lower bound on player 2’s payoff, given
the appropriate commitment type.

As for short-lived player 2s, these results constitute a marked contrast between
reputation effects under perfect and imperfect monitoring. Most notably, the sufficient
conditions on commitment types required for an effective player 1 bound are milder
under full-support imperfect monitoring.

1. The example in section 16.6.1 requires equal discount factors, whereas the current example
and Celentani, Fudenberg, Levine, and Pesendorfer (1996, section 5) are consistent with fixing
player 2’s discount factor and allowing δ1 → 1. The example in 16.6.1 allows player 1’s equi-
librium payoff to be pushed arbitrarily close to his minmax payoff without adjusting stage-game
payoffs (though requiring more patience and a smaller probability of the commitment type).
Celentani, Fudenberg, Levine, and Pesendorfer (1996) achieve payoffs arbitrarily close to
minmax payoffs for fixed discount factors and prior distribution.
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The lesson in these results is that the case of two long-lived players, even with
one arbitrarily more patient than the other, is qualitatively different than that of one
long-lived and one short-lived player. Player 1 has the option of leading a long-lived
player 2 to expect commitment behavior, but this no longer suffices to ensure a best
response from player 2, no matter how firm the belief. Bounds on player 1’s payoffs then
depend on some special structure of the game (such as conflicting interests), imperfect
monitoring, or special commitment types. Section 16.6 shows that reputation results
are even more elusive when the two long-lived players are comparably patient. Finally,
under imperfect monitoring, uncertainty about player 1’s type must again be temporary
(section 16.7).

16.2 Perfect Monitoring andMinmax-Action Reputations

We consider a perfect monitoring repeated game with two long-lived players, 1 and
2, with finite action sets. We depart from our practice in the remainder of this book
and allow the two long-lived players to have different discount factors, with player i’s
discount factor given by δi .

Player 1’s type is determined by a probability distribution µwith a finite or count-
able support�. The characteristics of player 2 are known. The support ofµ contains the
normal type of player 1, ξ0, and a collection of commitment types (see section 15.2).

The set of public histories is H = ∪∞t=0(A1 × A2)
t . A behavior strategy for

player 1 is σ1 : H ×�→ �(A1), and for player 2 is σ2 :H → �(A2). A Nash
equilibrium strategy profile σ = (σ1, σ2) and the prior distribution µ induce a
measure P over the set of outcomes � ≡ �× (A1 × A2)

∞.

16.2.1 Minmax-Action Types and Conflicting Interests

Our first positive result follows Schmidt (1993b) in focusing on a commitment type
that minmaxes player 2. Recall that v2 is player 2’s mixed-action minmax utility and
that v∗1(a1) is the one-shot bound on player 1’s payoffs when he commits to the action
a1 (see (15.3.4)). In this section, we show that if there is a pure action a′1 that mixed-
action minmaxes player 2 (i.e.,v2 = maxa2 u2(a

′
1, a2)) and the priorµ attaches positive

probability to the simple type ξ(a′1) (who invariably plays the pure action a′1), then a
sufficiently patient normal player 1 earns a payoff arbitrarily close to v∗1(a′1). If there are
multiple pure actions that minmax player 2, then the relevant payoff is the maximum
of v∗1(a′1) over all the minmax actions whose corresponding simple type is assigned
positive probability by 2’s prior.

Definition

16.2.1
The stage game has conflicting interests if a pure Stackelberg action a∗1 mixed-
action minmaxes player 2.

The highest reputation bound is obtained when the game has conflicting interests,
because the reputation bound is then v∗1(a∗1) = v∗1 , player 1’s Stackelberg payoff. Let
v1(ξ0, µ, δ1, δ2) be the infimum, over the set of Nash equilibria, of the normal player 1’s
payoffs.
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Proposition

16.2.1
Suppose µ(ξ(a′1)) > 0 for some pure action a′1 that mixed-action minmaxes
player 2. There exists a value k, independent of δ1 (but depending on δ2), such
that

v1(ξ0, µ, δ1, δ2) ≥ δk1v∗1(a′1)+ (1− δk1)min
a
u1(a).

If player 1 always plays the action a′1, then only in some k periods can player 2 play
anything other than a best response to a′1. The value of k depends on δ2, but not δ1.
Hence, by making player 1 quite patient, we can ensure that these k periods have a
small effect on player 1’s payoffs.

Corollary

16.2.1
Suppose µ(ξ(a′1)) > 0 for some pure action a′1 that mixed-action minmaxes
player 2. For any ε > 0, there exists a δ1 ∈ (0, 1) such that for all δ1 ∈ (δ1, 1)

v1(ξ0, µ, δ1, δ2) > v∗1(a′1)− ε.

The proof of the proposition requires an intermediate result that we state separately
for later use. Let �′ be the set of outcomes at which player 1 plays some action a′1 in
every period. For any history ht ∈H t , let E[U2(σ |ht ) | ht ] be player 2’s expected
continuation payoff, conditional on the history ht .2 For any history ht that arises with
positive probability given�′ (i.e., P{ω ∈ �′ : ht = ht (ω)} > 0), letE[U2(σ |ht ) | �′]
be 2’s expected continuation payoff, conditional on the history ht and �′.3

Lemma

16.2.1
Fix δ2 ∈ (0, 1), η > 0, and an action a′1 ∈ A1. There exists L and ε ∈ (0, 1] such
that for all Nash equilibria σ , pure strategies σ̃2 satisfying σ̃2(h̄

t ) ∈ supp σ2(h̄
t )

for all h̄t ∈H , and histories ht ∈H with positive probability under �′, if

E[U2( (σ1, σ̃2)|ht ) | �′] ≤ v2 − η, (16.2.1)

then there is a period τ , t ≤ τ ≤ t + L, such that if player 1 has always played a′1
and player 2 follows σ̃2, then player 2’s posterior probability of player 1’s action
being a′1 in period τ is less than 1− ε.
Intuitively, if player 2’s equilibrium strategy gives player 2 a payoff below her

minmax payoff, conditional on a′1 always being played, then it must be that player 2
does not expect a′1 to always be played.

Proof Fix a history ht that occurs with positive probability under�′ and suppose (16.2.1)
holds. We assume that in each of the next L+ 1 periods, if player 1 has always
played a′1 and player 2 follows σ̃2, then player 2’s posterior probability of player 1’s
action being a′1 in that period is at least 1− ε, and derive a contradiction for
sufficiently large L and small ε. Given such beliefs, an upper bound on player 2’s
period t expected continuation payoff is given by (where ut+�2 is player 2’s payoff
under the strategy profile σ̃ ≡ (σ1, σ̃2) in period t + � when player 1 plays a′1 in
period t + �),

2. The history ht appears twice in the notation, first in determining the continuation strategy, and
second to determine 2’s beliefs over the type of player 1.

3. Conditional on�′, the history is only needed to determine the continuation strategy of player 2.
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E[U2(σ̃ |ht ) | ht ] ≤ (1− δ2)[(1− ε)ut2 + εM]
+ (1− δ2)δ2[(1− ε)2ut+1

2 + (1− (1− ε)2)M]
+ (1− δ2)δ

2
2[(1− ε)3ut+2

2 + (1− (1− ε)3)M]
. . .

+ (1− δ2)δ
L
2 [(1− ε)L+1ut+L2 + (1− (1− ε)L+1)M]

+ δL+1
2 M

= (1− δ2)[(1− ε)ut2 + εM]

+ (1− δ2)δ2(1− ε)2
L−1∑
�=0

δ�2(1− ε)�ut+�+1
2

+ (1− δ2)δ2

[
1− δL2
1− δ2

− (1− ε)
2(1− δL2 (1− ε)L)

1− δ2(1− ε)

]
M

+ δL+1
2 M.

As L gets large and ε approaches 0, this upper bound approaches (1− δ2)×∑∞
�=0 δ

�
2u
t+�
2 = E[U2(σ̃ |ht ) | �′], that is, it approaches player 2’s expected con-

tinuation payoff conditioning on the event�′. Hence, we can find anL sufficiently
large and ε sufficiently small that

E[U2(σ̃ |ht ) | ht ] ≤ E[U2(σ̃ |ht ) | �′] + η2 < v2.

But then player 2’s continuation value E[U2(σ̃ |ht ) | ht ] falls short of her minmax
payoff, a contradiction.

■

If a′1 minmaxes player 2 and she fails to play a best response to a′1 in some period,
then her continuation payoff conditional on �′ must be less than her minmax payoff.
The following is then an immediate application of lemma 16.2.1.

Corollary

16.2.2
Fix δ2 ∈ (0, 1) and a′1 ∈ A1, where a′1 mixed-action minmaxes player 2. There
exists L and ε > 0 such that for all Nash equilibria (σ1, σ2), pure strategies σ̃2

satisfying σ̃2(h̄
t ) ∈ supp σ2(h̄

t ) for all h̄t ∈H , and histories ht with positive
probability under �′, if

σ̃2(h
t ) �∈ B(a′1),

then there is a period τ , t ≤ τ ≤ t + L, such that if player 1 has always played a′1
and player 2 follows σ̃2, then player 2’s posterior probability of player 1’s action
being a′1 in period τ is less than 1− ε.

Proof of Proposition 16.2.1 Fix a Nash equilibrium and let L and ε be the corresponding
values from corollary 16.2.2. Let

k = L lnµ(ξ(a′1))
ln(1− ε) .
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Let �′ be the set of outcomes in which a′1 is always played, and �k the set of
outcomes in which player 2 chooses an action at2 �∈ B(a′1) in more than k periods.
From corollary 16.2.2, for any period t in which at2 �∈ B(a′1), there must be a period
τ ∈ {t, . . . , t + L} in which qτ < (1− ε) (where qt is 2’s posterior probability
that the action a′1 is chosen in period t , i.e., (15.3.1)). Hence, for every L periods
in which at2 �∈ B(a′1), there must be at least one period in which qτ < (1− ε).
If player 2 chooses an action at2 �∈ B(a′1) in more than k periods, then there
must be more than lnµ(ξ(a′1))/ ln(1− ε) periods in which qt < (1− ε). From
lemma 15.3.1, P(�′ ∩�k) = 0, and we have the claimed upper bound.

■

One might suspect that a game in which a long-lived player 1 faces a succession of
short-lived players is the limiting case of a game with two long-lived players, as player 2
becomes quite impatient. However, as we have seen, the analysis for two long-lived
players is quite different, irrespective of the degree of impatience of player 2.

It might be advantageous for the normal player 1 to mimic a mixed rather than
pure commitment type, giving rise to a game of effectively imperfect monitoring (see
section 16.4). Example 16.2.1 explains why types committed to more complicated pure
strategies are not helpful in the current context, and sections 16.4 and 16.5 explore the
potential advantages of such types.

16.2.2 Examples

Example

16.2.1
The prisoners’dilemma (figure 16.2.1) is a game of conflicting interests. Player 1’s
Stackelberg action is S. Player 2’s unique best response of S yields a payoff of
(0, 0), giving player 2 her minmax level. Proposition 16.2.1 establishes conditions
under which the normal player 1 must earn nearly his Stackelberg payoff, though
this is no improvement on the observation that player 1’s payoff must be weakly
individually rational.

The normal player 1 could benefit from committing in the prisoners’ dilemma
to a strategy that is not simple. Suppose, for example, that � includes a type
committed to tit-for-tat. A long-lived opponent, once reasonably convinced that
tit-for-tat was being played (by either the normal or commitment type of player 1),
would respond by exerting effort. Unfortunately, tit-for-tat sacrifices the conflict-
ing interests property, because a best-responding player 2 no longer earns her
minmax payoff.

E S

E 2, 2 −1, 3

S 3,−1 0, 0

h �

H 2, 3 0, 2

L 3, 0 1, 1

In Out

A 2, 2 5, 0

F −1,−1 5, 0

Figure 16.2.1 Prisoners’ dilemma, product-choice game, and a normal form version of the
chain store game.
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In the absence of coincidental payoff ties, when the Stackelberg action a∗1 min-
maxes player 2, player 2’s best response to other pure player 1 actions must give
her more than the minmax level. A repeated game strategy that allows player 1 a
higher payoff (when player 2 plays a best response) than does the repeated play
of a∗1 must then sometimes put player 2 in the position of expecting a continu-
ation payoff that exceeds her minmax payoff. But then we have the prospect of
histories in which player 2 is close to certain that she faces committment behavior
but earns more than her minmax payoff, disrupting the method of proof used to
establish proposition 16.2.1. As a result, an appeal to more general commitment
types pushes us outside the techniques used to establish the lower bound in propo-
sition 16.2.1 on the normal player 1’s payoff.

●

Example

16.2.2
The product-choice game is not a game of conflicting interests. The Stackelberg
actionH prompts a best response of h that earns player 2 a payoff of 3, above her
minmax payoff of 1. In contrast to conflicting interests games, the normal player
1 and player 2 both fare better when 1 chooses the Stackelberg action (and 2 best
responds) than in the stage-game Nash equilibrium. This coincidence of interests
precludes using the reasoning behind proposition 16.2.1.

●

Example

16.2.3
The chain store game is a game of conflicting interests, in which (unlike the
prisoners’dilemma) the reputation result has some impact. The Stackelberg action
prompts a best response of Out , producing the minmax payoff of 0 for player 2.
The lower bound on the normal player 1’s payoff established in corollary 16.2.1 is
then (up to some ε > 0) close to his Stackelberg payoff of 5, the highest player 1
payoff in the game.

●

Example

16.2.4
Consider a variant of the ultimatum game. Two players must allocate a sur-
plus of size one between them. The actions available are A1 = A2 = {0, 1/n,
2/n, . . . , n/n}, where an action denotes the amount of the surplus allocated to
player 2. Player 1 announces an amount fromA1 to be offered to player 2. Player 2
simultaneously announces a demand from A2 that we interpret as the smallest
demand player 2 is willing to accept. If player 1’s offer equals or exceeds player 2’s
demand, 2 receives player 1’s offer and 1 retains the remainder. Otherwise, both
players receive a payoff of 0.

This game is not a game of conflicting interests. Player 2 has two best responses
to the Stackelberg action a∗1 = 1/n, which are to announce either 0 or 1/n, each
giving player 2 a payoff that exceeds her minmax payoff of 0.

The bound in proposition 16.2.1 is based on player 1 playing the minmax action
â2

1 = 0 and player 2 choosing her best response that is least favorable for player 1.
One best response for player 2 to an offer of 0, is to demand more than 0, producing
a payoff of 0 for player 1. A commitment to offer 0 thus places a rather unhelpful
bound of 0 on player 1’s payoff.

If we removed the offer (demand) 0 from the game, so that A1 = A2 = {1/n,
2/n, . . . , n/n}, then the Stackelberg action would again be 1/n, with player 2’s
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L C R

T 3, 2 0, 1 0, 1

B 0,−1 2, 0 0,−1

Figure 16.2.2 A game without conflicting interests.

unique best response of 1/n now generating her minmax utility. The game thus
satisfies conflicting interests, and corollary 16.2.1 indicates that a patient normal
player 1 is assured of virtually all the surplus.

●

Example

16.2.5
Consider the game shown in figure 16.2.2. The Nash equilibria of the stage game
are TL, BC, and a mixed equilibrium

( 1
2 ◦ T + 1

2 ◦ B, 2
5 ◦ L+ 3

5 ◦ C
)
. Player 1

minmaxes player 2 by playing B, for a minmax value for player 2 of 0. The
Stackelberg action for player 1 is T , against which player 2’s best response is L,
for payoffs of (3, 2). This is accordingly not a game of conflicting interests, and we
cannot be sure that it would be helpful for player 1 to commit to T . However, from
corollary 16.2.1, if the set of possible player 1 types includes a type committed toB
(perhaps as well as a type committed to T ), then (up to some ε > 0) the normal
player 1 must earn a payoff no less than 2.

●

16.2.3 Two-Sided Incomplete Information

Standard reputation models allow uncertainty about player 1’s type but not about
player 2’s. When player 2 is a short-lived player, this does not seem a particularly
unnatural extension of the asymmetry between players. The asymmetry is somewhat
more apparent when player 2 is also a long-lived player.

Suppose that there is uncertainty about the types of both (long-lived) players 1
and 2. Each player’s type is drawn from a countable set before the game begins and
made known to that player only. Let λ0 > 0 be the probability that player 2 is normal.
As in the proof of proposition 16.2.1, player 1 has the option of playing a′1 in every
period, and if µ(ξ(a′1)) > 0, there is an upper bound on the number of periods that
the normal type of player 2 can play anything other than a best response. The other
types of player 2 may do quite different things, but the prior probability distribution
provides a bound on how important these types can be in player 1’s payoff. We thus
immediately have the following:

Proposition

16.2.2
Supposeµ(ξ(a′1)) > 0 for some action a′1 minmaxing player 2. There exists a con-
stant k, independent of player 1’s discount factor, such that the normal player 1’s
payoff in any Nash equilibrium of the repeated game is at least

λ0δk1v
∗
1(a
′
1)+ (1− λ0δk1)min

a
u1(a).
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We thus see that the crucial ingredient in player 1’s ability to establish a reputation
is not that incomplete information be one-sided. Instead, it is important that player 2
assign some probability to the simple commitment type ξ(a′1) and player 1 be arbitrarily
patient. The first feature ensures that player 1 can induce player 2 to eventually play a
best response to a′1. The second feature ensures that the “eventually” in this statement
is soon enough to be of value.

16.3 Weaker Reputations for Any Action

If player 2 puts positive prior probability on ξ(a′1), when facing a steady stream of a′1,
player 2 must eventually come to expect a′1. Short-lived player 2s thus must eventually
best respond to a′1, implying the one-shot bound v∗1(a′1). With a long-lived player 2,
if a′1 minmaxes player 2, there is a bound on the number of times player 2 can take
an action other than the best response to a′1, and so again the one-shot bound v∗1(a′1)
is applicable. If the action a′1 does not minmax player 2, we can no longer bound the
number of periods in which player 2 is not best responding. We can, however, bound the
number of times player 2 can expect a continuation payoff (rather than current-period
payoff) less than her minmax value. The implied player 1 payoff bound is

v
†
1(a
′
1) ≡ min

α2∈D(a′1)
u1(a

′
1, α2), (16.3.1)

where
D(a′1) = {α2 ∈ �(A2) | u2(a

′
1, α2) ≥ v2}

is the set of player-2 actions that in conjunction with a′1, imply at least her minmax
utility.

Cripps, Schmidt, and Thomas (1996) prove the following result.

Proposition

16.3.1
Fix δ2 ∈ [0, 1) and a′1 ∈ A1 with µ(ξ(a′1)) > 0. For any ε > 0, there exists a
δ1 < 1 such that for all δ1 ∈ (δ1, 1),

v1(ξ0, µ, δ1, δ2) ≥ v†
1(a
′
1)− ε.

If a′1 minmaxes player 2, v†
1(a
′
1) = v∗1(a′1), the one-shot bound defined in (15.3.4);

otherwise v†
1(a
′
1) may be strictly smaller. Moreover, it need not be the case that the

Stackelberg action maximizes v†
1(a1). However, this bound holds for all actions, not

just those minmaxing player 2.

Proof Fix ε > 0. Because for all α2 ∈ D(a′1), we have u1(a
′
1, α2) ≥ v†

1(a
′
1), there exists

an η > 0 such that

u2(a
′
1, α2) ≥ v2 − η⇒ u1(a

′
1, α2) ≥ v†

1(a
′
1)− ε

2 . (16.3.2)

The set of stage-game payoff profiles consistent with player 1 choosing the
action a′1 is

F (a′1) ≡ {u(a′1, α2) | α2 ∈ �(A2)}.
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Because this set is convex and each of its elements satisfies (16.3.2), all of its
convex combinations also satisfy (16.3.2).

Let �′ denote the set of outcomes at which player 1 plays a′1 in every period
and let E[U2(σ |ht ) | �′] denote player 2’s expected period t continuation payoff,
conditional on the history ht and �′ (see note 3 on page 516). We can write this
payoff as

E[U2(σ |ht ) | �′] = (1− δ2)E

[ ∞∑
τ=t

δτ−t2 u2(a
′
1, σ2(h

τ )) | �′
]
.

Hence, E[U2(σ |ht ) | �′] is a convex combination of player 2 payoffs from stage-
game payoff profiles in F (a′1). Denoting player 1’s expected period t continuation
payoff, conditional on the history ht and�′, and using player 2’s discount factor,
by E[U1(σ |ht , δ2) | �′], the vector (E[U1(σ |ht , δ2) | �′], E[U2(σ |ht ) | �′]) is a
convex combination of terms in F (a′1). We have noted that any such combination
satisfies (16.3.2), or

E[U2(σ |ht ) | �′] ≥ v2 − η⇒ E[U1(σ |ht , δ2) | �′] ≥ v†
1(a
′
1)− ε

2 . (16.3.3)

We thus have a lower bound on player 1’s payoff, when calculated at player 2’s
discount factor, under the assumption that player 2’s expected continuation value
against the commitment type is within η of her minmax value. We now convert this
into a statement involving player 1’s discount factor and player 2’s equilibrium
expected continuation value (which may not be her continuation value against the
commitment type).

We first note that

E[U1(σ |ht , δ2) | �′] = E[(1− δ2)u1(a
′
1, σ2(h

t ))+ δ2U1(σ |(ht ,a′1at2), δ2) | �′]
or

E[(1− δ2)u1(a
′
1, σ2(h

t )) | �′] = E[U1(σ |ht , δ2) | �′]
− δ2E[U1(σ |(ht ,a′1at2), δ2) | �′].

We can then calculate

E[U1(σ, δ1) | �′]

= (1− δ1)

∞∑
t=0

δt1E[u1(a
′
1, a

t
2) | �′]

= E
[ ∞∑
t=0

δt1
(1− δ1)

(1− δ2)
{E[U1(σ |ht , δ2) | �′] − δ2E[U1(σ |ht+1 , δ2) | �′]}

∣∣∣∣∣�′
]

= (1− δ1)

(1− δ2)

{
E[U1(σ, δ2) | �′]

+ E
[ ∞∑
t=0

E[δt1(δ1 − δ2)U1(σ |ht+1 , δ2) | �′]
∣∣∣∣∣�′

]}
, (16.3.4)

where the outer expectation in the third line is taken over ht and the final equality
is obtained by pulling E[U1(σ, δ2) | �′] = E[U1(σ |∅ , δ2) | �′] out of the sum
and regrouping terms. Let
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k = L lnµ(ξ(a′1))
ln(1− ε) ,

where the value of L is from lemma 16.2.1 (ε and η were determined at the
beginning of this proof). Condition (16.3.3) and lemmas 16.2.1 and 15.3.1 then
imply that the expectation of E[U1(σ |ht+1 , δ2) | �′] can fall short of v∗1 − ε/2 at
most Nk times. We thus have the bound

∞∑
t=0

E[δt1(δ1 − δ2)U1(σ |ht+1 , δ2) | �′]

≥ (δ1 − δ2)

(1− δ1)

(
v

†
1(a
′
1)−

ε

2

)
− (δ1 − δ2)(v

†
1(a
′
1)−mina u1(a))k. (16.3.5)

Inserting this limit in (16.3.4) and taking the limit as δ1 → 1,

lim
δ1→1

E[U1(σ, δ1) | �′] ≥ v†
1(a
′
1)−

ε

2
.

We then need only choose a value δ1 such that the left side of this expression is
within ε/2 of its limit to conclude, as desired, that for all δ1 ∈ (δ1, 1),

E[U1(σ, δ1) | �′] ≥ v†
1(a
′
1)− ε.

■

If µ attaches positive probability to all simple pure commitment types, then a
normal player 1 is assured a payoff of nearly

max
a1∈A1

v
†
1(a1).

Example

16.3.1
The stage game is the battle of the sexes game in figure 16.3.1. Because the
mixed-action minmax utility for player 2 is 3/4, there is no pure action minmaxing
player 2, and proposition 16.2.1 cannot be used to bound player 1’s payoffs. The
Stackelberg action is T , and the set of responses to T in which player 2 receives
at least her minmax utility is the set of actions that place at least probability 3/4
on R. Hence, if 2 assigns positive probability to 1 being the Stackelberg type, the
lower bound on 1’s payoff is 9/4.

●

Remark

16.3.1
Two-sided incomplete information Once again, proposition 16.3.1 has exploited
only the properties of player 2’s best response behavior, in any Nash equilibrium,

L R

T 0, 0 3, 1

B 1, 3 0, 0

Figure 16.3.1 Battle of the sexes game.
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to an outcome in which player 1 invariably plays a′1. Like proposition 16.2.1, it
accordingly generalizes to uncertainty about player 2’s type.

◆

16.4 Imperfect Public Monitoring

In example 16.1.1, although there is some chance that player 1 is a Stackelberg type,
there is an equilibrium in which the normal player 1’s payoff falls well below the
Stackelberg payoff. The difficulty is that player 2 frequently plays an action that is
not her best response to 1’s Stackelberg action. Why does player 2 do so? She fears
that playing the best response when she is not supposed to will push the game off
the equilibrium path into a continuation phase where she is punished. The normal
and Stackelberg types of player 1 would not impose such a punishment, but there
is another “punishment” type who will. Along the equilibrium path player 2 has no
opportunity to discern whether she is facing the normal type or punishment type. This
poses no difficulties in games of conflicting interests, because player 1’s payoff along
the equilibrium path is sufficiently low that she has nothing to fear in being pushed off
the path.

In games of imperfect public monitoring, the sharp distinction between being on
and off the equilibrium path disappears. Player 2 may then have ample opportunity
to become well acquainted with player 1’s behavior, including any punishment pos-
sibilities.4 Indeed, the arguments in this section show that under full-support public
monitoring, with the set of types of example 16.1.1, a sufficiently patient normal
player 1 can be assured of a payoff arbitrarily close to 10.

The imperfect public monitoring game has the structure described in section 7.1
for two long-lived players and finite action sets A1 and A2. The public monitoring
distribution ρ has full support, that is, for all y ∈ Y and a ∈ A1 × A2,

ρ(y | a) > 0.

We also assume a slight strengthening of the public monitoring analog of assump-
tion 15.4.1. For any mixed action α2 ∈ �(A2),

ρ(· | (α1, α2)) = ρ(· | (α′1, α2))⇒ α1 = α′1. (16.4.1)

It is important that player 2’s actions be imperfectly monitored by player 1, so that a
sufficiently wide range of player 1 behavior occurs in equilibrium. It is also important
that player 2 be able to update her beliefs about the type of player 1, in response to
the behavior she observes. Full-support public monitoring with (16.4.1) satisfies both
desiderata. We do not require the signals to be informative about player 2’s behavior.

4. Our analysis essentially follows Celentani, Fudenberg, Levine, and Pesendorfer (1996). Aoyagi
(1996) presents a similar analysis, with trembles instead of imperfect monitoring blurring the
distinction between play on and off the equilibrium path, and with player 1 infinitely patient
while player 2 discounts.
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As usual, player i’s discount factor is denoted δi , player 1’s type is drawn according
to a prior µ with a finite or countable support �, and the support of µ contains the
normal type ξ0.

The set of histories for player 1 is H1 = ∪∞t=0(A1 × Y )t . A behavior strategy
for player 1 is σ1 :H1 ×�→ �(A1). The set of histories for player 2 is H2 =
∪∞t=0(A2 × Y )t , and a behavior strategy for 2 isσ2 :H2 → �(A2). ANash equilibrium
strategy profile σ = (σ1, σ2) and the prior distribution µ induce a measure P over the
set of outcomes � ≡ �× (A1 × A2 × Y )∞.

We now take seriously the prospect that player 1 may be committed to a mixed
strategy or to a strategy that is not simple. In the prisoners’ dilemma, for example,
player 1 may prefer to play tit-for-tat rather than either always exerting effort or always
shirking. We can thus no longer define player 1’s payoff target in terms of the stage
game. However, we would like to define it in terms of some finite game. Hence, let
GN(δ2) be the complete information finitely repeated game that plays the complete
information stage game N times, retaining the discount factor δ2 for player 2. That is,
in GN(δ2), player 1’s payoff is5

1

N

N−1∑
t=0

u1(a
t ) (16.4.2)

and player 2’s payoff is

1− δ2

1− δN2

N−1∑
t=0

δt2u2(a
t ). (16.4.3)

We denote player 1’s expected payoff from a strategy profile σN in GN(δ2) using
(16.4.2) by UN1 (σ

N). The set of player 2’s best replies to a strategy σN1 in GN(δ2) is
denoted by BN(σN1 ; δ2).

For every strategy σN1 in the finitely repeated game of length N , there is a corre-
sponding strategy in the infinitely repeated game that plays σN1 in the first N periods,
then wipes the history clean, starts over, plays it again, and so on. We also let σN1
denote this strategy in the infinitely repeated game, or in any finitely repeated game
whose length is an integer multiple of N , trusting to context to make the appropriate
interpretation clear. The commitment type playing strategy σN1 is denoted by ξ(σN1 ),
and we say a strategy σN1 is in � if ξ(σN1 ) ∈ �. Thus, for any behavior strategy for
player 1, σ1, we have σ1(ξ(σ

N
1 ), h

t
1) = σN1 (ht1) for all ht1 ∈H1. We assume that in

addition to the normal type, � contains at least one such type ξ(σN1 ).
The target for player 1’s payoff is the largest payoff that can be obtained by the

strategies in�, the support of µ, each evaluated in the corresponding finitely repeated
game for the case in which player 1 is arbitrarily patient. Define the set of player 1
payoffs,

V1(δ2, �) ≡ {v1 : ∀ε > 0, ∃N, ξ(σN1 ) ∈ �
s.t. ∀σN2 ∈ BN(σN1 ; δ2), UN1 (σ

N
1 , σ

N
2 ) ≥ v1 − ε}, (16.4.4)

5. Because we are concerned with the payoff target of an arbitrarily patient player 1, it is convenient
to work with average payoffs.
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and set

v
‡
1(δ2, �) = sup V1(δ2, �).

Remark

16.4.1
Simple commitment types If the simple commitment type ξ(α1) is contained
in �, then v‡

1(δ2, �) ≥ v∗1(α1). If � contains only simple commitment types

corresponding to a countably dense subset of A1, then v‡
1(δ2, �) = v∗∗1 .

◆

Remark

16.4.2
Payoff bounds The bound v‡

1 may be much higher than v∗∗1 . Consider, for exam-
ple, the public monitoring prisoners’ dilemma of section 7.2. Let� contain a type
committed to the player 1 component of the forgiving strategy of section 7.2.2. If

3δ2(p − q) ≥ 1

and q is not too much larger than r , it is a best response to the forgiving strategy
for player 2 to also exert effort after ȳ and shirk after y in every period, except
the last, where she shirks after both signals. Suppose p = 1− r2. Player 1’s pay-
off according to (16.4.2), under the forgiving strategy (with 2’s best response)
then approaches 2 as r → 0 and N →∞ (see remark 7.2.1). Celentani, Fuden-
berg, Levine, and Pesendorfer (1996, theorem 2) establish conditions under which
limδ2→1 v

‡
1(δ2, �) = max{v1 : v ∈ F †p}, that is, as player 2 becomes increas-

ingly patient, the bound v‡
1(δ2, �) approaches the largest feasible payoff for player

1 consistent with player 2’s pure-minmax payoff.
◆

Recall that v1(ξ0, µ, δ1, δ2) denotes the infimum, over the set of Nash equilibria,
of the normal player 1’s payoffs.

Proposition

16.4.1
Suppose (16.4.1) holds. For any η > 0 and δ2, there is a δ1 < 1 such that for all
δ1 ∈ (δ1, 1),

v1(ξ0, µ, δ1, δ2) ≥ v‡
1(δ2, �)− η.

We first collect some preliminary results to be used in the proof.

Lemma

16.4.1
For any η > 0 and δ2 > 0, there existsN ′, δ′1, ε′, and a strategy σN

′
1 forGN

′
(δ2),

with ξ(σN
′

1 ) ∈ �, such that if player 2 plays an ε′-best response to σN
′

1 inGN
′
(δ2),

then player 1’s δ1-discounted payoff in GN
′
(δ2) is at least v‡

1(δ2, �)− η/2.

Proof Fix η > 0. Because v‡
1(δ2, �) is the supremum of V1(δ2, �), we can find an N ′

sufficiently large and a strategy σN
′

1 with ξ(σN
′

1 ) ∈ � for player 1 such that for

every best response σN
′

2 for player 2 in GN
′
(δ2),

UN
′

1 (σN
′

1 , σN
′

2 ) ≥ v‡
1(δ2, �)− η

6
.

Fix this N ′ and σN
′

1 . Because the stage game is finite and hence has bounded
payoffs, we can find a value δ′1 such that for all δ1 ∈ (δ′1, 1) and for any sequence
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of N ′ action profiles (a0, a1, . . . , aN
′−1), the average payoff to player 1 is within

η/6 of the δ1-discounted payoff, that is,∣∣∣∣∣∣
1

N ′
N ′−1∑
t=0

u1(a
t )− 1− δ1

1− δN ′1

N ′−1∑
t=0

δt1u1(a
t )

∣∣∣∣∣∣ <
η

6
.

Fix this value of δ′1. Finally, note that the ε-best response correspondence is upper
hemicontinuous in ε. Hence, there exists an ε′ such that if player 2 plays an ε′-best
response σ̃ N

′
2 to σN

′
1 in GN

′
(δ2), then the δ1-discounted payoff to player 1 from

the profile (σN
′

1 , σ̃N
′

2 ) and from the profile (σN
′

1 , σN
′

2 ) are η/6-close, for some

best response σN
′

2 . Combining these three yields the result.
■

Let σN be a strategy profile in GN(δ2) and let ρN(· | σN) be the induced distri-
bution over public histories in YN , in gameGN(δ2). Because YN is finite, ρN(· | σN)
is an element of R|Y |N .

The following lemma requires full-support monitoring. In a perfect monitoring,
finitely repeated prisoners’ dilemma, for example, player 2’s strategy of playing grim
trigger until the final period and then defecting is a best response to tit-for-tat but not
to a strategy that exerts effort after every history. Nonetheless, the strategy profiles
generate identical signal distributions, causing the counterpart of lemma 16.4.2 to fail
in that context. The result holds with full-support public monitoring because there is
then no indistinguishable out-of-equilibrium behavior that can affect whether player 2
is playing a best response.

Lemma

16.4.2
For every ε > 0, N ∈ N, and σN1 , there exists a γ > 0 such that for all σ̃ N1 , if
|ρN(· | (σN1 , σN2 ))− ρN(· | (σ̃N1 , σN2 ))| < γ for σN2 an ε-best response to σN1 in
GN(δ2), then σN2 is a 2ε-best response to σ̃ N1 .

Proof Fix a strategy profile (σN1 , σ
N
2 ) inGN(δ2). Because payoffs are given by (7.1.1), it

suffices to show that if {σN1,(n)}∞n=1 is a sequence under which ρN(· | (σN1,(n), σN2 ))
converges to ρN(· | (σN1 , σN2 )), then σN1,(n) converges to σN1 , where we do not

distinguish between strategies that are realization equivalent.6 It suffices for this
result to show that ρN(· | (·, σN2 )) is a one-to-one mapping from the set of player
1 strategies in game GN(δ2) to the set of distributions over YN . Because the
mapping is also continuous, it has a continuous inverse, which gives the desired
conclusion.

We accordingly seek a contradiction by assuming that ρN(· | (σN1 , σN2 )) =
ρN(· | (σ̃N1 , σN2 )) but σN1 �= σ̃ N1 . If the latter is to be the case, there must be some
period t ≤ N − 1 and a period t history ht1 = (a0

1y
0, a1

1y
1, . . . , at−1

1 yt−1) with
aτ1 ∈ supp σ τ1 (h

τ
1) = supp σ̃ τ1 (h

τ
1) such that

σ̃ N1 (h
t
1) �= σN1 (ht1). (16.4.5)

6. Given full-support public monitoring, distinct public strategies cannot be realization equivalent.
Two strategies σN1 and σ̃ N1 can only be realization equivalent if they differ only at information
sets that both strategies preclude from being reached.
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Letht2 = (a0
2y

0, a1
2y

1, . . . , at−1
2 yt−1) for some aτ2 ∈ supp σ τ2 (h

τ
2). It follows from

(16.4.1) and (16.4.5) that

ρ(· | (σ̃N1 (ht1), σN2 (ht2))) �= ρ(· | (σN1 (ht1), σN2 (ht2))).

Since ρ has full support, this inequality then contradicts ρN(· | (σN1 , σN2 )) =
ρN(· | (σ̃N1 , σN2 )).

■

Remark

16.4.3
Observed player 1 actions The displayed inequality ρ(· | (σ̃N1 (ht1), σN2 (ht2))) �=
ρ(· | (σN1 (ht1), σN2 (ht2))) contradictsρN(· | (σN1 , σN2 )) = ρN(· | (σ̃N1 , σN2 )) even
when player 1’s actions are perfectly monitored, as long as player 2’s actions are
monitored with full support signals.

◆

We use finitely repeated games of the formGN(δ2) to formulate our payoff target,
so it will be helpful to divide the infinitely repeated game into blocks of length N .
We refer to the kth block of periods of length N (i.e., periods Nk to N(k + 1)− 1) as
“block” GN,k (note that the initial block is the 0th block).

Though the incomplete information infinitely repeated game has a fixed prior
µ ∈ �(�), the proof also considers the posteriors µ′ ∈ �(�), and it is convenient
to therefore consider different priors, µ′. Given a strategy profile σ and a prior µ′,
let ρN

σ,µ′(· | hNk2 ) be player 2’s “one-block” ahead prediction of the distribution over

signals in block GN,k , for any private history hNk2 ∈H Nk
2 .

Let P(σ
N
1 ,σ2) be the probability measure over outcomes � implied by σ2 and

conditioning on the event that player 1’s type is ξ(σN1 ) ∈ �. Because the measure
assigns probability one to the event {ξ = ξ(σN1 )}, it does not depend on the prior µ′.

Lemma

16.4.3
Fix λ,µ† ∈ (0, 1) and γ > 0, integer N , and a strategy σN1 . There exists an
integer L such that for any pair of strategies σ1 and σ2, and all µ′ ∈ �(�) with
µ′(ξ(σN1 )) ≥ µ†,

P(σ
N
1 ,σ2)

(∣∣{k ≥ 0 : ∣∣ρN
(σN1 ,σ2),µ

′
(· | hNk2

)− ρN(σ1,σ2),µ
′
(· | hNk2

)∣∣ ≥ γ }∣∣ ≤ L) ≥ 1− λ.

Proof This is an immediate application of lemma 15.4.3, indexing time by k and taking
G k to be the σ -algebra generated by H Nk

2 , the player 2 histories after blockGN,k .
■

Proof of Proposition 16.4.1 Fix a Nash equilibrium σ of the infinitely repeated game of
incomplete information. Recall thatM andm denote the maximum and minimum
stage-game payoffs.

Fix a value η > 0 with v‡
1(δ2, �)− η > m.7 Then, from lemma 16.4.1, there

is a game length N ′, a strategy σN
′

1 in GN
′
(δ2) with µ(ξ(σN

′
1 )) > 0, a lower

bound on player 1’s discount factor δ′1 < 1, and an ε′ > 0, so that if player 2 plays

an ε′-best response to σN
′

1 in GN
′
(δ2) and δ1 ∈ (δ′1, 1), player 1’s δ1-discounted

payoff in GN
′
(δ2) is at least v‡

1(δ2, �)− η/2. The strategy σN
′

1 is our building

7. If v‡
1(δ2, �)− η ≤ m, then the result is immediate.
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block for providing player 1 with a payoff within η of v‡
1(δ2, �). Recall that σN

′
1

also denotes a strategy in G∞ for the normal type of player 1 and a commitment
type in �.

Fix a value κ so that

δκN
′

2 (M −m) < ε′(1− δ2)

2
. (16.4.6)

We will use this to bound the impact of variations in payoffs that occur after κN ′
periods on player 2’s payoffs, and so obtain an ε′-best response.

Set ε = ε′(1− δ2)/[2(1− δN2 )] and N = κN ′. Denote by σN1 the strategy in

the gameGN(δ2) that plays σN
′

1 by restarting κ − 1 times. For later reference, note

that the strategies σN
′

1 and σN1 are identical when viewed as infinitely repeated

game strategies, and the commitment type ξ(σN
′

1 ) plays the strategy σN1 . Conse-

quently, the measures induced by P(σ
N ′
1 ,σ2) and P(σ

N
1 ,σ2) on (A1 × A2 × Y )∞ are

also identical. Fix γ at the value from lemma 16.4.2 for these values of ε, N , and
the strategy σN1 .

Letµ(σN
′

1 , N,µ) be the infimum of the posterior probability assigned to type

ξ(σN
′

1 ) in the first N periods of play in the repeated game, given the prior dis-
tribution µ, where the infimum is taken over all possible histories that could be
observed in the first N periods and over strategy profiles σ . Because ρ(y | a) is
positive for all y and a and µ(ξ(σN

′
1 )) > 0,µ(σN

′
1 , N,µ) > 0.

Fix a value of λ to satisfy

(1− (1− λ)κ)(M −m) < η

4
. (16.4.7)

For µ† = µ(σN ′1 , N,µ) and the values N , γ , λ, and strategy σN1 already deter-
mined, lemma 16.4.3 yields a value of L with the property stated in that lemma.

We can thus conclude that with P(σ
N ′
1 ,σ2)-probability at least (1− λ), there are at

most L “exceptional” blocks GN,k in which the distribution over public histories
induced by (σN

′
1 , σ2) differs from that induced by the Nash equilibrium strategy σ

by more than γ .
Consider a positive probability historyhNk2 that reaches an unexceptional block.

By (16.4.6), player 2’s continuation strategy σ2|hNk2
must be at least an ε-best

response in the block GN,k , because otherwise it could not be a best response
in the infinitely repeated game. From lemma 16.4.2, this ensures that player 2 is
playing a 2ε-best response to σN

′
1 in GN,k . But then player 2 must be playing at

least a 2ε(< ε′)-best response to σN
′

1 in the game GN
′

comprising the first N ′
periods of the block GN,k , and hence by lemma 16.4.1 player 1 must receive a
δ1-discounted payoff at least v‡

1(δ2, �)− η/2 during these periods.
We have thus divided the infinitely repeated game into blocks of length N and

have shown that with probability at least 1− λ, in the firstN ′ periods of all but at
most L exceptional blocks, player 1 earns a payoff at least v‡

1(δ2, �)− η/2. This
is helpful but applies only to the first N ′ periods of each block of length N , and
hence covers at most a κ−1-proportion of the periods in the game.

Now suppose that period N ′ has been reached with a player 2 private his-
tory hN

′
2 . We can view the continuation as a repeated game of incomplete
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information, called the N ′ game. The state space is �′ = �× (A1 × A2 × Y )∞
(a copy of�). The prior distribution over� is given by player 2’s posterior beliefs
conditional on her private history hN

′
2 , denotedµ′. The important observation here

is that the posterior probability assigned to ξ(σN
′

1 ) is at leastµ(σN
′

1 , N,µ) = µ†,
a fact we use presently to apply lemma 16.4.3. Player 2’s continuation strategy is
given by σ ′2 = σ2|hN ′2

. Finally, player 2 also has beliefs over the previous private

actions of player 1, and so has a belief over player 1 continuation strategies σ1|hN ′1
.

This belief is equivalent to a mixed strategy, which has a realization equivalent
behavior strategy σ ′1, giving player 1’s strategy in the N ′ game.

We are interested in the case in which player 1 plays in the N ′ game as the

commitment type σN
′

1 . Let P
(σN

′
1 ,σ2)

N ′ denote the marginal of P(σ
N ′
1 ,σ2)(· | hN ′2 ) on

� and the set of player 1 and 2 histories beginning in period N ′ (where P(σ
N ′
1 ,σ2)

is the measure over outcomes in the original game, given that player 1 plays

as σN
′

1 ). Then P
(σN

′
1 ,σ2)

N ′ is the measure over outcomes in the N ′ game. We can
now apply lemma 16.4.3 to the game starting in period N ′, concluding that with

P
(σN

′
1 ,σ2)

N ′ -probability at least (1− λ), there are at most L exceptional blocks in
this game. These blocks now run from periods Nk +N ′ to N(k + 1)+N ′ − 1
in the original game. As this result holds for every player 2 private history, we
can conclude that in the original repeated game of incomplete information, with

P(σ
N ′
1 ,σ2)-probability at least (1− λ)2, there are at most 2L exceptional blocks.
We can argue as before for the unexceptional blocks that have appeared in the

application of lemma 16.4.3 to the N ′ game, concluding that in the second N ′
periods of each of the blocks of length N of the original game, player 1 earns an
average payoff at least v‡

1(δ2, �)− η/2.
We now do the same for the game beginning at period 2N ′, and so on, through

period (κ − 1)N ′. We conclude that of the blocks of length N ′ into which the
infinitely repeated game has now been divided, with probability at least (1− λ)κ ,
player 1 has an average payoff at least v‡

1(δ2, �)− η/2 in all but the possibly
κL exceptional cases (L exceptional cases for each of the κ infinitely repeated
games we have examined, beginning at periods 0, N, . . . , N(κ − 1)). Assuming
the worst case—namely, that player 1’s payoff is m in the exceptional cases and
that the latter all occur at the beginning of the game—player 1’s payoff in the
repeated game is at least

(1− λ)κ
[
(1− δκLN

1 )m+ δκLN
1

(
v

‡
1(δ2, �)− η

2

)]
+ (1− (1− λ)κ)m

= (1− δκLN
1 )m+ δκLN

1

(
v

‡
1(δ2, �)− η

2

)
− δκLN

1 (1− (1− λ)κ)
×
[
v

‡
1(δ2, �)− η

2
−m

]
≥ (1− δκLN

1 )m+ δκLN
1

(
v

‡
1(δ2, �)− η

2

)
− δκLN

1
η

4

= (1− δκLN
1 )m+ δκLN

1

(
v

‡
1(δ2, �)− 3η

4

)
,

where the inequality uses (16.4.7). Letting δ1 get large now gives the result.
■
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16.5 Commitment TypesWho Punish

In example 16.1.1, player 2 does not play a best response to the Stackelberg type
because she fears that doing so will trigger an adverse reaction from the punishment
type. The key virtue of imperfect monitoring in section 16.4 lies in ensuring that no
such features of player 1’s strategy remain hidden from player 2. Evans and Thomas
(1997) achieve a similar result, with a similar bound on the normal player 1’s payoff, in
a game of perfect monitoring. The key to their result is the presence of a commitment
type who punishes player 2 for not behaving appropriately.

Fix an action a′1 ∈ A1, with best response a′2 for player 2 for which u2(a
′
1, a
′
2) >

v
p

2 , so that 2’s best response gives her more than her pure minmax payoff. Let â2
1 be

the action for player 1 that (pure-action) minmaxes player 2. Consider a commitment
type for player 1 who plays as follows. Begin in phase 0. In general, phase k consists
of k periods of â2

1 , followed by the play of a′1. If player 2 plays anything other than a′2
in periods n+ 1, . . . of phase n, the strategy switches to phase n+ 1.

The commitment type thus punishes player 2, in strings of ever-longer punish-
ments, for not playing a′2. Let σ̂1 denote this strategy. We assume throughout that
σ̂1 ∈ � and let µ̂0 be the prior probability attached to this commitment type. Let �̂ be
the set of outcomes in which player 1 plays as σ̂1.

The first step in assessing why such a strategy might be useful is the following:

Lemma

16.5.1
Fix an integer K > 0 and η > 0. Then there exists an integer T (K, η, µ̂0) such
that for any pure strategy σ2 and anyω ∈ �̂, , there are no more than T (K, η, µ̂0)

periods t in which 2 attaches probability no greater than 1− η to the event that
player 1 plays as σ̂1 in periods t, . . . , t +K , given that 2 plays as σ2.

Proof FixK , η, µ̂0, and a pure strategy σ2. Let qt be the probability that player 2 attaches
to the event that player 1 plays σ̂1 in periods t, . . . , t +K , given that 2 plays as σ2.
Then qt is a random variable on�. Let µ̂t be the period t posterior probability that
player 1 is committed to σ̂1. Fix an outcome ω ∈ �̂ consistent with σ2.8 Suppose
{t�}L�=0 is a sequence of periods in which qt� ≤ 1− η, where t�+1 ≥ t� +K + 1
and the value of L (possibly infinite) remains to be investigated. By Bayes’ rule,

µ̂t�+K+1 ≥ µ̂t�

1− η .

Because µ̂t is nondecreasing in t on �̂, we then have

µ̂tL ≥ µ̂0

(1− η)L ,

ensuring, because µ̂tL ≤ 1, that

L ≤ ln µ̂0

ln(1− η)
and hence T (K, η, µ̂0) ≤ L(K + 1).

■

8. A similar argument, presented in more detail, appears in the proof of lemma 15.3.1.
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The bound T (K, η, µ̂0) in this result is independent of the players’discount factors
and the strategy σ2.

Proposition

16.5.1
Fix ε > 0. Let � contain σ̂1, for some action profile a′ with u2(a

′) > vp2 . Then
there exists a δ2 < 1 such that for all δ2 ∈ (δ2, 1), there exists a δ1 such that for
all δ1 ∈ (δ1, 1),

v(ξ0, µ, δ1, δ2) ≥ u1(a
′)− ε.

Proof It suffices to show, for any Nash equilibrium σ ∗ of the repeated game with player
2 assigning positive probability to pure strategy σ2, that there is a finite upper
bound on the number of times player 2 triggers a punishment when playing σ2,
on the subset of �̂ consistent with σ2. This ensures that if player 1 plays as σ̂1,
player 2 will choose a′2 in all but (a bounded number of) finitely many periods, at
which point the payoff bound holds for a sufficiently patient player 1.

Fix the bound δ2 < 1 such that for all δ2 ∈ [δ2, 1),

(1− δ2)M + δ2v
p

2 < µ̂0u2(a
′)+ (1− µ̂0)((1− δ2)m+ δ2v

p

2 ).

Now fix δ2 ∈ (δ2, 1), and then fix η > 0 sufficiently small and an integer L
sufficiently large that

ηM + (1− η)[(1− δ2)M + (δ2 − δL2 )vp2 + δL2 M]
< µ̂0u2(a

′)+ (1− µ̂0)[(1− δ2)m+ δ2v
p

2 ].
Notice that this inequality then also holds for all larger values of L. If player 2
attaches probability at least 1− η to player 1 playing as σ̂1 in periods t, . . . , t + L
(given σ2), if 2 has triggeredL− 1 previous punishments, and if strategy σ̂1 plays
a′1 in the current period, then the left side of this expression is an upper bound on
the payoff player 2 can receive if 2 does not play a′2 in period t , and the right side
is a lower bound on the payoff she receives from doing so. The inequality then
implies that player 2 will not trigger the punishment. From lemma 16.5.1, player
2 can thus trigger at most L− 1+ T (L, η, µ̂0) punishments.

■

Remark

16.5.1
Stackelberg payoff If the action a′1 on which σ̂1 is based is player 1’s Stackelberg
action, or if � includes a variety of such types, based on a sufficiently rich set
of actions, then proposition 16.5.1 gives us player 1’s Stackelberg payoff as an
approximate lower bound on his equilibrium payoff in the game of incomplete
information. The only restriction is that his Stackelberg payoff be consistent with
player 2 earning more than her pure-strategy minmax.

Evans and Thomas (1997) show that this phenomenon is more general. Some-
what more complicated commitment types can be constructed in which the
commitment type σ̂1 plays a sequence of actions during its nonpunishment periods,
rather than simply playing a fixed action a1, and punishes player 2 for not playing
an appropriate sequence in response. Using such constructions, Evans and Thomas
(1997, theorem 1) establish that limδ2→1 limδ1→1 v1(ξ0, µ, δ2, δ1) = max{v1 :
v ∈ F †p}.9 The idea behind the argument is to construct a commitment type

9. The same payoff bound is obtained in proposition 16.4.1 when � is sufficiently rich
(remark 16.4.2).
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consisting of a phase in which payoffs at least (max{v1 : v ∈ F †p} − ε,vp2 + ε)
are received, as long as player 2 behaves “appropriately,” with inappropriate
behavior triggering ever-longer punishment phases. Conditional on seeing behav-
ior consistent with the commitment type, a sufficiently patient player 2 must then
eventually find it optimal to play the appropriate response to the commitment type.
Making player 1 arbitrarily patient then gives the inner limit.

◆

The payoff bound for the normal player 1 is established by showing that player 2
will risk only finitely many punishments from the commitment type of player 1. Then
why build a commitment type with arbitrarily severe punishment capabilities? If we fix
both the prior probability of the commitment type and player 2’s discount factor, then
we could work with a finitely specified commitment type. If we seek a single type that
works for all nonzero prior probabilities and player 2 discount factors, as is commonly
the case in establishing reputation results, then we require the infinite specification.

Like the other reputation results we have presented, this one requires that the
uncertainty about player 1 contains the appropriate commitment types. However, the
types in this case are more complicated than the commitment types that appear in
many reputation models, particularly the simple types that suffice with short-lived
player 2s.10 In this case, the commitment type not only repeatedly plays the action
that brings player 1 the desired payoff but also consistently punishes player 2 for not
fulfilling her role in producing that payoff. We can thus think of the commitment as
involving behavior both along the path of a proposed outcome and on paths following
deviations. Work on reputations would be well served by a better-developed model of
which commitment types are likely to be contained in �.

16.6 Equal Discount Factors

The reputation results established so far in this chapter allow player 2 to be arbitrarily
patient, but then hold player 2’s discount factor δ2 fixed and make player 1 yet arbitrarily
more patient by taking δ1 → 1. What if we eliminate this asymmetry by requiring the
players to share a common discount factor?11

Example 16.1.1 has shown that if the set� of player 1 types includes an appropriate
punishment type, the normal player 1 may receive an equilibrium payoff arbitrarily
close to his minmax payoff, even when � includes the pure Stackelberg type. Though
presented in the context of player 1 being arbitrarily more patient than player 2, none

10. As Evans and Thomas (1997) note, a commitment type with punishments of arbitrary length
cannot be implemented by a finite automaton. Evans and Thomas (2001), working with two
infinitely patient long-lived players, argue that commitment strategies capable of imposing arbi-
trarily severe punishments are necessary if reputation arguments are to be effective in restricting
attention to efficient payoff profiles.

11. The symmetric case of perfectly patient players on both sides is studied by Cripps and Thomas
(1995), Shalev (1994), and Israeli (1999). Cripps and Thomas (1995) show that when there is
some prior probability that player 1 (only) may be a Stackelberg type, the normal player 1’s
payoff in any Nash equilibrium must be at least the bound established by Cripps, Schmidt, and
Thomas (1996) for discounted games with player 1 arbitrarily more patient than player 2.
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L R

T 1, 1 0, 0

B 0, 0 0, 0

Figure 16.6.1 A common interest game.

of the arguments in example 16.1.1 required asymmetric patience. It is then clear that
some assumption like conflicting interests will be necessary if we hope to obtain a
strong reputation-induced payoff bound with symmetric patience. In fact, given that
asymmetric patience played a central role in proposition 16.2.1, it will be no surprise
that we require even more stringent conditions with symmetric patience. We illustrate
the possibilities with five examples.

16.6.1 Example 1: Common Interests

This section presents an example, following Cripps and Thomas (1997), that retains
much of the structure of example 16.1.1 but in which player 1 is restricted to being
either normal or Stackelberg. Player 2’s deviations must now be punished only by the
normal and Stackeberg types, which will call for more complication in constructing
equilibria. We show that if the two players have identical discount factors, then there
exist equilibria with normal player 1 payoffs arbitrarily close to his minmax payoff, if
the commitment type is not too likely and the players are sufficiently patient.12 The
possibility of the Stackelberg type does not place an effective lower bound on normal
player 1’s equilibrium payoff.

We consider the game shown in figure 16.6.1. Player 1 may be a normal type, with
probability 1− µ̂0, or a Stackelberg type committed to playing T , with probability µ̂0.
Players 1 and 2 obviously must receive the same equilibrium payoffs. We show that
for any γ > 0, there exists µ̂(γ ) > 0 and δ(γ ) < 1 such that if µ̂0 < µ̂(γ ) and δ1 =
δ2 ∈ (δ(γ ), 1), then there exists an equilibrium in which the normal type of player 1
receives a payoff less than γ .

To construct the equilibrium, we begin with period N , whose value is to be deter-
mined (and depends on δ). In each period t ∈ {0, . . . , N − 1}, we say that we are in
phase one of the strategy profile if every previous period has produced either the action
profile TL or TR. In phase one, player 2 playsR. The normal player 1 mixes between T
andB, placing probability φt on T in period t . If this mixture produces the outcome T ,
then we continue to the next period, still in phase one. If this mixture produces B in
period t , then player 1 is revealed to be normal. Players 1 and 2 then condition their

12. The fact that the two players have the same discount factor is important in this example. Celen-
tani, Fudenberg, Levine, and Pesendorfer (1996, section 5) present an example of a game that
similarly fails conflicting interests and involves only normal and Stackelberg types for player 1.
In equilibrium, the normal player 1 receives his pure minmax payoff (which is less than his
Stackelberg payoff), for a fixed probability of the commitment type and sufficiently (symmetric
or asymmetric) patient players.
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continuation behavior on the outcome of a public correlating device, choosing with
probability δN−t−1 to play TL in every subsequent period and with the complemen-
tary probability to play BR in every subsequent period. Both continuation outcomes
are subgame-perfect equilibria of the continuation game. Should period N be reached
while still in phase one, TL is then played in every period, regardless of player 1’s
type or of previous play. Once again, this is an equilibrium of the continuation game.
Should player 2 play L and player 1 play B in phase one, then 1 is again revealed to
be normal and thereafter BR is played.

If each of theN possible periods of phase one produces the action profile TR, then
player 1’s realized payoff is δN . Moreover, player 1 is mixing between T andB in each
of these periods (in phase 1), and hence must be indifferent over all of the outcomes
that could occur in the first N periods. This ensures that player 1’s equilibrium payoff
must be δN . Because our goal is to show that equilibria exist in which player 1 receives
a small payoff, much will hinge on evaluating δN .

We first verify that player 1 is indifferent between T and B when in phase one.
A play of T in period N − 1 gives an expected payoff of δ (because TL is then played
in every subsequent period), as does a play of B (because it leads with probability
δN−(N−1)−1 = 1 to the play of TL in every subsequent period). Working backward,
the expected payoff from playing either T or B in any preceding period t is δN−t .
Player 1’s equilibrium mixture is thus optimal.

Ensuring that we have an equilibrium then requires only that player 2 prefers to
choose R in each of the first N periods in phase one. The payoff from R in period t is
δN−t . A play of L brings a payoff of 0 if 1 plays B and (1− δ)+ δN−t if 1 plays T .
Player 2’s choice of R is optimal if

[µ̂t + (1− µ̂t )φt ](1− δ + δN−t ) ≤ δN−t . (16.6.1)

We use this equation to define φt for t = 1, . . . , N − 1 (considering period 0 later) as
the solution to

µ̂t + (1− µ̂t )φt = δN−t

1− δ + δN−t , (16.6.2)

making player 2 indifferent in every period.
This ensures that player 2’s strategy is optimal (with period 0 yet to be considered).

It remains to identify the probabilities µ̂t for t ∈ {0, . . . , N − 1}, verify that the values
of φt we have specified are contained within the unit interval, and then to examine δN .
We begin by identifying the probabilities µ̂0, . . . , µ̂N−1 in phase one, in the process
ensuring that they are less than 1 and are increasing in t . The former property ensures
that φt ≥ 0, whereas the latter ensures that φt ≤ 1 because, from Bayes’ rule,

µ̂t+1 = µ̂t

µ̂t + (1− µ̂t )φt . (16.6.3)

We then set µ̂N = 1 and then work backward. From (16.6.2) and (16.6.3), we have

µ̂N−1 = δ and φN−1 = 0.
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More generally, successively performing this calculation gives

µ̂t =
N−1∏
τ=t

δN−τ

1− δ + δN−τ (16.6.4)

for t ∈ {1, . . . , N − 1}. This ensures that the µ̂t are increasing and all less than unity.
The value ofN is now set to anchor this sequence of posterior probabilities at the prior
µ̂0. Choose N such that the expression on the right side of (16.6.4) for t = 0 is not
smaller than the prior, that is, choose N such that

N−1∏
τ=0

δN−τ

1− δ + δN−τ ≥ µ̂
0. (16.6.5)

Having fixed N , φ0 is determined by the requirement that the posterior value µ̂1,
following a period 0 outcome of T , equals the value determined by (16.6.4), that is,
φ0 solves

µ̂1 = µ̂0

µ̂0 + (1− µ̂0)φ0
. (16.6.6)

Our choice of N ensures

[µ̂0 + (1− µ̂0)φ0] = µ̂0

µ̂1
≤ δN

1− δ + δN ,

and hence that player 2 finds R optimal in period 0 (see (16.6.1)).
We now relate the size of N , δ, and an upper bound on µ̂0. Letting N(δ) denote

the largest integer satisfying (16.6.5) and taking N = N(δ) in the construction yields
an equilibrium, for all δ. Moreover, N(δ)+ 1 then fails (16.6.5), that is,

µ̂0 >

N(δ)∏
τ=0

δN(δ)+1−τ

1− δ + δN(δ)+1−τ .

Taking logs, using ln x ≥ 1− 1/x, and reorganizing the summation,

ln µ̂0 >

N(δ)+1∑
τ=1

(
1− 1− δ + δτ

δτ

)

= −1− δ
δ

N(δ)∑
τ=0

1

δτ

= −1− δ
δ
× 1− ( 1

δ
)N(δ)+1

1− 1
δ

= 1− 1

δN(δ)+1
.

Rearranging the inequality given by the extreme terms, we have

δN(δ) <
1

δ(1− ln µ̂0)
.
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Hence, choosing µ̂(γ ) and δ(γ ) so that

1

δ(γ )(1− ln µ̂(γ ))
< γ

ensures that, if µ̂0 < µ̂(γ ) and δ ∈ (δ(γ ), 1), then player 1’s equilibrium payoff is at
most γ .

16.6.2 Example 2: Conflicting Interests

It is surprising that reputation effects need not appear in the game shown in figure 16.6.1,
where the players both stand to gain from 1’s reputation. Nonetheless, our experi-
ence with asymmetrically patient players (sections 16.2–16.3) suggests that we should
expect reputations to be effective only under strong conditions. We now show that
conflicting interests alone does not suffice.

The stage game is shown in figure 16.6.2. The minmax playoffs for the two players
are (0, 0). The stage game has a unique component of Nash equilibria in which player 2
choosesR and player 1 mixes with probability greater than or equal to 1/2 onB. Player
1’s (pure) Stackelberg action is T . Player 2’s best response to T gives 2 her minmax
payoff of 0, and hence this is a game of conflicting interests.

Player 1 is the Stackelberg type with probability µ̂0 and is otherwise normal. As
in the previous example, for all γ > 0, there exists µ̂(γ ) > 0 and δ(γ ) < 1 such that
if µ̂0 < µ̂(γ ) and δ1 = δ2 ∈ (δ(γ ), 1), then there exists an equilibrium in which the
normal type of player 1 receives a payoff less than γ .

We again work backward from a period N to be determined. Play during periods
0, . . . , N − 1 is said to be in phase one if the history consists only of realizations TL
or TR. Should play reach period N while in phase one, TL is thereafter played forever
(with subsequent player 1 deviations punished by switching to perpetual play of BR
and player 2 deviations ignored).

In phase one, player 2 chooses R and the normal player 1 mixes (so that in all,
except perhaps the initial period, 2 is indifferent betweenL andR), with probability φt

on T . The outcome BR prompts a public correlation with probability δN−t−1 attached
to a continuation equilibrium with payoffs (1, 1/2)—the normal player 1 plays B and
2 mixes equally betweenL andR along the equilibrium path, with deviations punished
by a temporary phase of mutual minmaxing, followed by a return to the equilibrium

L R

T 1, 0 0,−1

B 2, 0 0, 1

Figure 16.6.2 A game of conflicting interests, in which
player 1’s Stackelberg action T and player 2’s best response
combine to minmax player 2.
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L R

T δN−1−t(1, 0) δN−1−t(1, 0)

B (1, 0) δN−1−t
(
1, 1

2

)+ (1− δN−1−t)(0, 1)

Figure 16.6.3 Period t + 1 continuation payoffs for t < N , if in phase
one in period t (only outcomes TL and TR in previous periods), as a
function of the period t action profile, assuming (for t < N − 1) player 2
indifference between L and R in subsequent periods.

path—and the remaining probability to the perpetual play of the stage-game Nash
equilibrium BR. An outcome of BL causes a switch to perpetual play of TL (with
subsequent player 1 deviations punished by switching to perpetual play of BR).

Figure 16.6.3 shows the discounted continuation payoffs for each period t out-
come, for periods t < N , if in phase one. For sufficiently large (common) discount
factors, we obviously have equilibrium continuation play after any history not in phase
one. In addition, any mixtures by the normal player 1 are best responses in phase 1,
because T and B in period t both bring the expected payoff δN−t . We must then con-
sider the conditions for R to be a best response for player 2 throughout phase one.
Choosing L gives player 2 a current and future payoff of 0, and R gives a payoff of
(from figure 16.6.3)

[µ̂t + (1− µ̂t )φt ]((1− δ)(−1))

+ (1− [µ̂t + (1− µ̂t )φt ])((1− δ)+ δN−t 1
2 + (δ − δN−t )).

Indifference in periods t = 1, . . . , N − 1 requires

µ̂t + (1− µ̂t )φt = 2− δN−t
4− 2δ − δN−t .

Setting µ̂N = 1, for t = 1, . . . , N − 1, we can then solve for

µ̂t =
N−1∏
τ=t

2− δN−τ
4− 2δ − δN−τ . (16.6.7)

As in the previous example, for fixed δ, the value of N is chosen to satisfy

µ̂0 ≤
N−1∏
τ=0

2− δN−τ
4− 2δ − δN−τ , (16.6.8)

and the initial randomization by the normal player 1 is determined by the requirement
that the posterior value µ̂1 after a realization of T is equal to the expression in (16.6.7).
Given this choice of N and randomization φ0, player 2 finds R optimal in the initial
period.
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We now argue that for sufficiently small prior probability on the Stackelberg type
and sufficiently patient players, there is an equilibrium with low payoffs. Let N(δ)
be the largest integer satisfying (16.6.8) and note that setting N = N(δ) yields an
equilibrium, for all δ. Moreover, because N(δ)+ 1 fails (16.6.8), we have

µ̂0 >

N(δ)∏
τ=0

2− δN(δ)+1−τ

4− 2δ − δN(δ)+1−τ ,

Taking logs and using ln x ≥ 1− 1/x,

ln µ̂0 >

N(δ)∑
τ=0

(
1− 4− 2δ − δN(δ)+1−τ

2− δN(δ)+1−τ

)

= −2(1− δ)
N(δ)+1∑
τ=1

1

2− δτ
> −2(N(δ)+ 1)(1− δ).

Rearranging the extreme terms, we have

N(δ) > − ln µ̂0

2(1− δ) − 1.

Hence, there is an equilibrium in which the normal type has a log payoff N(δ) ln δ
satisfying

N(δ) ln δ < −
(

ln µ̂0

2(1− δ) + 1

)
ln δ.

Because (using l’Hôpital’s rule)

lim
δ→1
−
(

ln µ̂0

2(1− δ) + 1

)
ln δ = ln µ̂0

2
,

for any ε > 0 and sufficiently large δ,

δN(δ) <

√
µ̂0 + ε.

For any γ > 0, we can then take µ̂0(γ ) = (γ − ε)2, at which point there exists a δ(γ )
such that for all δ ∈ (δ(γ ), 1), the normal player 1’s payoff is less than γ .

We can then hope for reputation effects to take hold only for games satisfying
stronger conditions than conflicting interests.13 The next two examples illustrate.

13. Cripps and Thomas (2003) study games of incomplete information with payoff types with posi-
tive probability attached to a (payoff) Stackelberg type. They show that as the common discount
factor of player 1 and 2 approaches unity, there exist equilibria in which player 1’s payoff falls
short of the bound established in Cripps, Schmidt, and Thomas (1996). Because Cripps and
Thomas (1995) showed that equilibria do respect this bound in the limiting case of perfectly
patient players, we thus have a discontinuity.
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L R

T 2, 1 0, 0

B 0, 0 −1, 2

Figure 16.6.4 A strictly dominant action game. Player 1’s
Stackelberg action, T , is a dominant action in the stage
game for the normal type and player 2’s best response gives
1 the largest feasible stage-game payoff.

16.6.3 Example 3: Strictly Dominant Action Games

Suppose player 1’s Stackelberg action is a strictly dominant action for the normal type
in the stage game, and player 2’s best response to this action produces the highest stage-
game payoff available to player 1 in the set Fp. Figure 16.6.4 presents an example.
We say that such a game is a strictly dominant action game. Notice that player 2’s best
response to 1’s Stackelberg action need not minmax player 2, and hence conflicting
interests are not required. Chan (2000) shows that if such a game is perturbed to add a
single possible commitment type for player 1, in the form of a type who always plays
the Stackelberg action, then the normal player 1 receives the Stackelberg payoff v∗1 in
any sequential equilibrium. This result holds regardless of the discount factors of the
two agents. We prove this result here for the game shown in figure 16.6.4.

Low payoffs could be achieved for player 1 in sections 16.6.1–16.6.2, despite the
possibility of being a Stackelberg type, because the normal player 1 could be induced
to reveal his type. In figure 16.6.4, because the commitment action is strictly dominant
for the normal player 1 and provides player 1 with the largest possible payoff when
player 2 chooses a best response, one cannot force the normal player 1 to reveal his
type. As a result, player 1 can build a reputation for playing like the Stackelberg type
that imposes a lower bound on 1’s payoff.

Let σ = (σ1, σ2) be a candidate equilibrium. Our first task is to show that the
normal player 1 always chooses T after every history in this equilibrium.14 Suppose
this is not the case, and thus that there exists a period t and a history ht at which
σ1|ht (B) > 0. We construct a recursive argument that leads to a contradiction.

To begin, let t0 be the first period in which there is a history ht0 with σ1|ht0 (B) > 0.
If this is to be optimal, it must be the case that σ attaches positive probability to the
event that if player 1 chooses T in period t0 and every subsequent period, then a
future period t and history ht , consistent with ht0 and subsequent choices of T by
player 1, appears under which player 2 chooses R. Otherwise, playing T in period t0
and subsequent periods ensures the continuation payoff 2 for player 1, and so a payoff
superior to any that can be obtained by playing B in period t0.

Call the first such future period t and the corresponding history ht . Because
σ2|ht (R) > 0, there must exist ε > 0, and a time t ′ ≥ t and history ht

′
(consistent

14. Here we see that the result is established for sequential rather than Nash equilibria.
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with ht ) under which 1 plays T in periods t, . . . , t ′ and in period t ′, σ1|ht ′ (B) > ε.
If not, and therefore player 1 chooses T with probability larger than 1− ε after every
continuation history featuring the persistent play of T , then as ε approaches 0 a lower
bound on 2’s continuation payoff when playing L in the current period approaches 1,
whereas an upper bound on the payoff from playing R approaches δ, contradicting the
optimality of R.

Set t1 = t ′ and ht1 = ht ′ . Continuing in this fashion, we obtain a sequence of
periods {tn}∞n=0 and histories {htn}∞n=0 with each htn an initial segment of htn+1 and
with the properties that (i) player 1’s realized action is T in every period of each
history htn , (ii) σ1|htn puts probability bounded away from 0 onB after infinitely many
of the histories htn , and (iii) player 2 puts positive probability on R after infinitely
many such histories htn . This is a contradiction. In particular, the posterior probability
that player 2 attaches to the event that 1 is the Stackelberg type must rise to 1 along
this sequence of histories, ensuring that a best response cannot put positive probability
on R infinitely often.15

We conclude that player 1 must choose T after every history. The best response
is then for 2 to choose L after every history, yielding the result. Notice that we have
used no assumptions about player 1’s patience in this argument, and it holds even if
player 1 is less patient than player 2.

16.6.4 Example 4: Strictly Conflicting Interests

This example, following Cripps, Dekel, and Pesendorfer (2004), illustrates a sec-
ond class of games in which a reputation result can be achieved with two long-lived
players and equal patience. A game of strictly conflicting interests is a game of con-
flicting interests in which the combination of player 1’s Stackelberg action and each
of player 2’s best responses yields the highest stage-game payoff possible for player 1,
or maxv∈Fp v1, and the (mixed) minmax playoff v2 to player 2, and in which every
other payoff profile v′ ∈ Fp with v′1 = maxv∈Fp v1 also gives v′2 = v2.

The low equilibrium payoffs obtained in sections 16.6.1–16.6.2 appear because
player 1 can provide incentives for player 2 to not play a best response to the Stack-
elberg action while also causing the posterior probability of player 1’s type to change
very slowly. This is done by relying heavily on continuation payoffs to create incen-
tives (again, an impossibility with short-lived player 2s), allowing the normal and
Stackelberg types to play very similarly and hence reveal little information. Strictly
conflicting interests preclude such a possibility. Player 2 can be given incentives to
not best respond to the Stackelberg action only if the normal and Stackelberg types
play quite differently in the current period, ensuring rapid belief revision. This allows
the normal player 1, by mimicking the Stackelberg type, to enforce a payoff bound
near the Stackelberg payoff. We illustrate this argument by showing that the type of
equilibrium constructed in sections 16.6.1 and 16.6.2 cannot be used to give the normal
player 1 a payoff near his minmax level.

15. Notice we use the fact that the only commitment type is the pure Stackelberg type, because the
argument is that player 2 attach high probability to the Stackelberg type rather than Stackelberg
action.
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L R

T 2, 0 0,−1

B 1, 0 0, 1

Figure 16.6.5 A game of strictly conflicting interests.

L R

T δN−1−t(2, 0) δN−1−t(2, 0)

B ≈(1, 0) δN−1−t(2, 0)+ (1− δN−1−t)(0, 1)

Figure 16.6.6 Period t + 1 continuation payoffs for t < N , if period t is in
phase one.

The stage game is shown in figure 16.6.5. The Stackelberg action is T . Player 2’s
best response gives her a payoff of 0, the minmax level.

During the first N periods of an equilibrium patterned after sections 16.6.1
and 16.6.2, the game is in phase one if only outcomes TL and TR have been observed.
Reaching period N in phase one produces perpetual play of TL. An outcome of BL
reveals that player 1 is the normal type, at which point we continue with an equilibrium
of the complete information game that we can choose to give a payoff arbitrarily close
to (1, 0) (as δ gets large). A play of BR induces a public mixture between continu-
ing with permanent play of TL (probability δN−t−1) and BR to support the normal
player 1’s indifference.

The period t + 1 continuation payoffs under this strategy, for t < N , in phase one
and as a function of the current action profile, are given in figure 16.6.6. With what
probability must the normal player 1 choose B in period t < N to support player 2’s
mixture? Making the approximation that the continuation payoff following BL is liter-
ally (1, 0) allows us to calculate a lower bound on this probability (by making L less
attractive to player 2). Player 2’s indifference requires

0 = (1− ψt)(1− δ)(−1)+ ψt [(1− δ)+ δ − δN−t ],

where ψt = (1− µ̂t )(1− φt ) is the product of the posterior probability (1− µ̂t ) that
player 1 is normal and the probability (1− φt ) that the normal player 1 chooses B. In
period N − 1, for example, we must have ψN−1 = 1/2. The probability attached
to B drops off slowly as we move backward through previous periods. As a
result, the posterior probability attached to player 1’s being the Stackelberg type
increases rapidly, and N is relatively small. This ensures that δN approaches unity as
does δ.
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To see what lies behind the result, compare the conflicting interests game of
section 16.6.2 with the strictly conflicting interests game of this section. In each
case, we are interested in the possibility of a relatively low equilibrium payoff for
player 1.

A low equilibrium payoff for player 1 requires that player 2 choose R (or more
generally, that player 2 choose an action that is not a best response to player 1’s
commitment type). If the incentives to play R can be created with a player 1 strategy
that prompts player 2 to revise her beliefs about player 1 only very slowly, then the
possibility arises of a low equilibrium payoff for player 1. In particular, the obvious
route to a high player 1 equilibrium payoff, persistently playing T while player 2’s
expectation that she faces such behavior increases to the point that she plays L, now
takes ineffectively long. This is the case in section 16.6.2. Suppose instead that the
only way to create incentives for player 2 to playR ensures that player 2 will revise her
beliefs about player 1 quite rapidly. Then playing as the commitment type promises
a relatively high payoff for player 1, leading to a large lower bound on player 1’s
equilibrium payoff.

In both figures 16.6.2 and 16.6.5, player 2 is willing to playR only if either player 1
attaches a sufficiently large probability to B or playing R gives rise to a sufficiently
lucrative continuation payoff (or some combination of both). The continuation payoffs
listed in figure 16.6.3 show that in the game of section 16.6.2, a relatively large contin-
uation payoff for player 2 could be attached to play of BR. This is possible because the
game does not exhibit strictly conflicting interests, and hence player 1’s Stackelberg
payoff is not his largest stage-game payoff. A relatively large payoff for player 1 can
then be attached to BR, maintaining 1’s incentives to play B while also providing a
relatively lucrative payoff for player 2. This ensures that incentives for 2 to play R
can be created while attaching only a small probability to 1 playing B. But then very
little information is revealed about player 1.16 In figure 16.6.5, the strictly conflicting
interests property ensures that if player 1 is to be provided the relatively high contin-
uation payoff required to induce play of B, then 2 must receive a low continuation
payoff. This in turn ensures that the incentives for 2 to choose R must come primarily
from player 1’s current play of B. But if this is the case, B must be played with high
probability, ensuring that player 2’s posteriors about player 1’s type evolve rapidly.
There is then little cost to player 1 of always choosing T , ensuring a payoff close to
the Stackelberg payoff. Player 1’s payoff in any equilibrium must then be near the
Stackelberg payoff.

Cripps, Dekel, and Pesendorfer (2004) show that this result depends neither on
the particular game we have examined nor the candidate equilibrium. For any game
of strictly conflicting interests and any ε > 0, there is a δ andµ such that if δ > δ and
the total probability of all commitment types other than the Stackelberg type is less
than µ, then player 1’s equilibrium payoff must be within ε of his pure Stackelberg
payoff.

16. With a short-lived player 2, or even with two differentially patient long-lived players, there is
no issue of how rapidly player 2 learns about player 1. We simply make player 1 sufficiently
patient that however long it takes player 2 to play a best response to the commitment type, it is
soon enough.
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E S

E 3, 3 0, 0

S 0, 0 1, 1

Figure 16.6.7 Game of common interest.

16.6.5 Bounded Recall

A game features common interests if the stage game contains a payoff profile that
strictly dominates any other distinct payoff profile. The game examined in section
16.6.1 is an example. Aumann and Sorin (1989) examine repeated games of common
interest played by two long-lived and equally patient players. There is uncertainty about
both players’ types. The set �i of player i’s types includes every pure simple type,
and includes only types committed to pure strategies with bounded recall. Aumann
and Sorin (1989) show that for every γ > 0, there is a discount factor δ(γ ) and prob-
ability µ such that for any discount factor in (δ(γ ), 1) and any prior distribution µ0

over � that places probability at least 1−µ on the normal type, every pure-strategy
equilibrium of the repeated game must give payoffs within γ of the efficient payoff
profile.

Example

16.6.1
The game given in figure 16.6.1 is a game of common interest. In Aumann and
Sorin’s (1989) setting, the normal players must receive a payoff near 1. We
illustrate the reasoning behind their result with the variation of this game shown in
figure 16.6.7, modified so as to have two strict equilibria and labeled symmetrically
to conserve on notation.

Let the set � include the normal type and a type committed to each of the
one-period recall strategies. We specify a commitment type by a strategy with a
triple, xyz, where x, y, z ∈ {E, S} and where x specifies the first action taken by
the strategy, y specifies the action if the opponent playedE in the previous period,
and z specifies the action taken if the opponent played S in the previous period.17

Figure 16.6.8 shows the eight one-period recall strategies, with the payoffs they
obtain against one another, evaluated in the limit as discount factors approach
unity. Notice that these include a type committed to S (SSS) and one committed
to E. Let the prior distribution attach probability µ̂ to each of these eight types,
with 1− 8µ̂ probability of a normal type.

Now consider a pure-strategy equilibrium in which the normal types of play-
ers 1 and 2 choose strategies σ1 and σ2. The bounded recall of the commitment
types ensures that for any commitment type ξ that produces a different out-
come path against σ1 than does σ2, σ1 must earn close (arbitrarily close to, as
δ approaches 1) the highest possible payoff against ξ . Intuitively, on observing an

17. To complete the strategy specification, assume that one’s own past deviations are ignored when
choosing continuation play.
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EEE EES ESE ESS SEE SES SSE SSS

EEE 3, 3 3, 3 0, 0 0, 0 3, 3 3, 3 0, 0 0, 0

EES 3, 3 3, 3 1, 1 1, 1 3, 3 0, 0 1, 1 1, 1

ESE 0, 0 1, 1 2, 2 0, 0 0, 0 1, 1 0, 0 0, 0

ESS 0, 0 1, 1 0, 0 1, 1 0, 0 1, 1 0, 0 1, 1

SEE 3, 3 3, 3 0, 0 0, 0 3, 3 3, 3 0, 0 0, 0

SES 3, 3 0, 0 1, 1 1, 1 3, 3 1, 1 1, 1 1, 1

SSE 0, 0 1, 1 0, 0 0, 0 0, 0 1, 1 2, 2 0, 0

SSS 0, 0 1, 1 0, 0 1, 1 0, 0 1, 1 0, 0 1, 1

Figure 16.6.8 Payoffs from commitment types with one-period recall.

action not played by σ2, the strategy σ1 can experiment sufficiently to identify the
opponent’s commitment type and then play a best response to that type. Given the
limited recall of that type’s strategy, the experimentation has no long-run impact
on payoffs.18 Notice that we use the restriction to pure strategies here. Mixtures
play a crucial role in obtaining the low equilibrium payoffs in sections 16.6.1
and 16.6.2.

These considerations leave two possibilities for the equilibrium strategy σ2.
One is that σ1 and σ2 combine to produce a path of persistent mutual effort. In
this case, the normal player equilibrium payoff becomes arbitrarily close to (3, 3)
as µ̂ gets small and δ gets large. The other possibility is that σ1 and σ2 do not pro-
duce persistent mutual effort. In this case, by playing commitment strategy EEE
instead of σ2, player 2 can ensure that 2’s strategy and σ1 produce an outcome
path that eventually features persistent mutual effort and hence a payoff that again
approaches (3, 3) as µ̂ gets small and δ gets large. Thus the equilibrium payoff
must be close to (3, 3).

It is important for this result that set of types be sufficiently rich. If the only
commitment types are SSS and SES, there is an equilibrium of the repeated game
in which the normal types invariably shirk. Second, bounded recall among the
commitment types is also important. Suppose the eight commitment types of fig-
ure 16.6.8 are joined by another commitment type who plays E in odd periods
and S in even ones, as long as the opponent has always done so, and plays S after
every other history. Consider a candidate equilibrium in which the normal players

18. Grim trigger does not have bounded recall. If player 1 assigns positive probability to 2 being a
grim trigger type, a play of S can lead to permanent S, making experimentation potentially too
costly.
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choose E in odd periods and S in even ones. In the absence of this additional
type, player 1 would have an incentive to continually play E, causing player 2 to
play a best response to what appears to be an EEE player. Doing so in the pres-
ence of our newest type raises the risk of perpetual shirking, making this strategy
less attractive. The restriction to bounded-recall commitment types excludes such
possibilities.

●

16.6.6 Reputations and Bargaining

Reputations have played a role in work generalizing Rubinstein’s (1982) model of
alternating offers bargaining to incomplete information, raising issues related to those
that appear in repeated games. Chatterjee and Samuelson (1987, 1988) begin with a
model of bargaining between a buyer and seller, each of whom may be either hard
or soft. The gains from trade are largest with two soft opponents, smaller but pos-
itive if one is soft and one hard, and nonexistent if both are hard. Chatterjee and
Samuelson (1987) limit the offers available to the agents to model the bargaining as
a war of attrition. Individual rationality limits hard agents to a single demand that
they make after every history, whereas soft agents face a choice between mimicking
the hard agents or making a concession. The first concession ends the game with an
agreement.

The game generically has a unique sequential equilibrium in which soft agents
continually mix between conceding and mimicking their hard types. As play proceeds
without a concession, each agent revises upward his posterior that his opponent actu-
ally is hard. Eventually, these posteriors become sufficiently high that it is no longer
worthwhile for soft agents to continue, and the game either ends with a soft-agent
concession or the realization that both agents are hard and that there are no gains from
trade. The ex ante expected division of the surplus depends on the prior distribution of
types, with a soft agent’s expected value increasing as the agent is more likely to be
hard and the opponent more likely to be soft.

The hard agents in this bargaining model are the counterpart of action commitment
types in repeated games. The soft agents are normal types whose payoffs are bounded
by the payoffs they would receive if they mimicked hard types. The gains from doing
so are a result of the belief revision that such behavior elicits from the opponent. The
key difference is that a concession ends the bargaining game. Thus, there are histories
that induce unique continuation values, eliminating the ability to use future play in
creating the rewards and punishments that lie behind the multiplicity of equilibria in
repeated games.

The equilibria in Chatterjee and Samuelson (1987) depend heavily on the structure
of the model, most notably the specification of possible types and the restriction on
actions that makes the bargaining a concession game. Abreu and Gul (2000) show that
these equilibrium properties can be derived as necessarily characterizing the equilibria
of sufficiently patient players in a more general game. Abreu and Gul (2000) again
work with two-sided uncertainty about types,19 but allow a richer set of commitment

19. Schmidt (1993a) examines finite-horizon bargaining games with one-sided incomplete informa-
tion about types.
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types and an unrestricted set of offers. This opens the possibility that play may look
nothing like a concession game. However, if players can make offers sufficiently
rapidly, equilibria of the game have a concession game structure. Normal types choose
a commitment type to mimic and do so until a normal type makes a concession that
essentially ends the game.

These results rest on two important insights. First, once the type of each player is
known, the players face a version of Rubinstein (1982) complete information bargain-
ing game featuring a unique equilibrium outcome (with immediate agreement). We
thus again have histories after which future rewards and punishments cannot be used
to create incentives. Second, by focusing on short time periods, “Coase conjecture”
arguments (Gul, Sonnenschein, and Wilson 1986) can be invoked to again achieve
immediate agreement in games of one-sided incomplete information. Because the first
concession (i.e., the first deviation from mimicking a commitment type) reveals that
the conceding player is normal and yields one-sided incomplete information, we again
have a concession game.

16.7 Temporary Reputations

The results of section 15.5 extend to games with two long-lived players. Examining
games with uncertainty about player 1’s type, we present the conditions under which a
long-lived player 2 must eventually almost surely learn the type of player 1. The model
(and notation) is as in section 15.5, except that player 2 is now a long-lived player.

As we saw in section 16.4, when player 2 is long-lived, nonsimple Stackelberg
types may give rise to higher lower bounds on player 1’s payoff than do simple types.
We accordingly do not restrict attention to simple commitment types.

When dealing with commitment types that are not simple, we must impose a
noncredibility analogue of assumption 15.5.3 directly on the infinitely repeated game
of complete information. We assume the commitment type plays a repeated-game
strategy σ̂1 with the properties that (i) player 2’s best response σ̂2 is unique on the
equilibrium path and (ii) there exists a finite time T o such that for every t > T o, a
normal player 1 would almost surely want to deviate from σ̂1, given player 2’s best
response. That is, there is a period t continuation strategy for player 1 that strictly
increases her utility. A strategy σ̂1 satisfying these criteria at least eventually loses its
credibility and hence is said to have “no long-run credibility.”

Player 2’s set of best responses to strategy σ1 in the game of complete information
is given by:

B(σ1) ≡ {σ2 : U2(σ1, σ2) ≥ U2(σ1, σ
′
2) ∀σ ′2}.

Let Uti be player i’s period t continuation value, viewed as a random variable defined
on the set of outcomes �.

Definition

16.7.1
The strategy σ̂1 has no long-run credibility if there exists T o and εo > 0 such that
for every t ≥ T o,
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1. σ̂2 ∈ B(σ̂1) implies that with P(σ̂1,σ̂2)-probability one, σ̂ t2 is pure and

Eσ̂ [Ut2 | G t
2 ] > E(σ̂1,σ

′
2)[Ut2 | G t

2 ] + εo, (16.7.1)

for all σ ′2 attaching probability zero to the action played by σ̂2(h
t
2) after P(σ̂1,σ̂2)-

almost all ht2 ∈H t
2 , and

2. there exists σ̃1 such that for σ̂2 ∈ B(σ̂1), P(σ̂1,σ̂2)-almost surely,

E(σ̃1,σ̂2)[Ut1 | G t
1 ] > Eσ̂ [Ut1 | G t

1 ] + εo.
This definition captures the two main features of assumption 15.5.3, a unique best

response and absence of equilibrium, in a dynamic setting. In particular, the stage-game
action of any simple strategy satisfying definition 16.7.1 satisfies assumption 15.5.3.
In assuming the best response is unique, we need to avoid the possibility that there
are multiple best responses to the commitment action “in the limit” (as t gets large).
We do so by imposing a uniformity condition in definition 16.7.1(1), that inferior
responses reduce payoffs by at least εo. The condition on the absence of equilibrium in
definition 16.7.1(2) similarly ensures that for all large t , player 1 can strictly improve
on the commitment action. Again it is necessary to impose uniformity to avoid the
possibility of an equilibrium in the limit.

Proposition

16.7.1
Suppose the monitoring distribution π satisfies assumptions 15.4.1, 15.5.1, and
15.5.2 and the commitment type’s strategy σ̂1 is public and has no long-run cred-
ibility. Then in any Nash equilibrium of the game with incomplete information,
µ̂t → 0 P̃-almost surely.

We require the commitment strategy σ̂1 to be public so that player 1 can usefully
anticipate player 2’s best response to σ̂1, once 1 is convinced 2 plays a best response
to σ̂1. This is automatically the case in section 15.5, where the commitment type is
simple. The combination of publicness and no long-run credibility still leave a vast
array of behavior as possible commitment strategies.

The proof of proposition 16.7.1 (Cripps, Mailath, and Samuelson 2004b, sec-
tion 4) follows that of proposition 15.5.1, accounting for two complications. First, an
additional argument is required to show that a long-lived player 2 best responds to
the commitment type once convinced she is almost certainly facing the commitment
strategy. Second, we can ensure only that for some fixed period t , the normal type’s
contradictory deviation from the commitment strategy occurs within in some finite
number of periods, t, . . . , t + L, exacerbating the measurability problems confronted
in the proof of proposition 15.5.1.



17 Finitely Repeated Games

The concept of a reputation was introduced into economics in response to the observa-
tion that certain finitely repeated games have counterintuitive subgame-perfect equi-
libria. Selten (1978) used the chain store game, shown in figure 17.0.1 (and previously
encountered in figures 5.4.1 and 16.2.1), to dramatize this issue. The only subgame-
perfect equilibrium of the extensive-form stage game involves player 2 choosing In
and player 1 choosingA. Building on this uniqueness, a backward induction argument
shows that the only subgame-perfect equilibrium in the finitely repeated chain store
game, no matter how long, features entry and acquiescence in every period. However,
one’s intuition is that if player 2 enters in the first period, player 1 might fight, implicitly
making a statement of the form “I know fighting is costing me now, but it will be well
worth it if subsequent player 2s are convinced by this display that I will fight them as
well, and hence decide not to enter.” Similar reasoning arises in the finitely repeated
prisoners’ dilemma. The unique Nash equilibrium, featuring persistent shirking,
contrasts with the intuition that players are likely to exert effort in early periods.

With Rosenthal (1981) as a precursor, Kreps, Milgrom, Roberts, and Wilson
(1982), Kreps and Wilson (1982a), and Milgrom and Roberts (1982) addressed this
“chain store paradox” with a model centered around incomplete information about
player 1’s type.1 With some (possibly quite small) probability, player 1 is a commitment
type who always fights entry. If the finitely repeated game is long enough, this allows
an equilibrium in which the player 2 chooses Out virtually all of the time. Notice
that player 1’s payoff under incomplete information lies outside the set of equilibrium
payoffs in the repeated game with complete information. We have seen a similar
possibility in public monitoring infinitely repeated games in section 15.4.

A similar argument allows equilibrium effort to appear in the finitely repeated
prisoners’ dilemma. Continuing in this vein, Fudenberg and Maskin (1986, section 5)
present a folk theorem for finitely repeated games of incomplete information about
players’ types.

This chapter presents three examples of reputation equilibria in finitely repeated
games, examining the chain store game, the perfect monitoring prisoners’ dilemma,
and the imperfect monitoring product-choice game.

1. See Aumann (2000) for a related investigation. Masso (1996) shows that entry can occur in a
subgame-perfect equilibrium of the chain store game with complete information if the player 2s
are uncertain as to their place in the line of potential player 2s, and if they cannot observe
perfectly the previous history of play. The idea behind this result is that no player 2 can ever
know that she is the last one, ensuring that the backward induction argument never gets started.

549
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Figure 17.0.1 Chain store game. Player 2 can choose either to stay out of
a market (Out) or enter (In), at which point player 1 can choose to fight
(F ) or acquiesce (A). Player 1’s payoffs appear first at each terminal
node. We assume c > 1 and b ∈ (0, 1).

These stage games have unique equilibria. Section 4.4 explains why equilibria
of repeated games whose stage games have unique equilibria are not representative
of equilibria in finitely repeated games whose stage games have multiple equilibria.
Finitely repeated games with multiple stage-game equilibria, when repeated suffi-
ciently often, look much like infinitely repeated games.

Section 15.5 showed that uncertainty about a player 1’s type cannot persist forever
in an infinitely repeated game of imperfect monitoring. Similarly, types must also
become known in sufficiently long finitely repeated games (see Cripps, Mailath, and
Samuelson 2004b, section 3.4). In contrast, sections 17.1 and 17.2 construct equilibria
for the finitely repeated chain store game and prisoners’ dilemma game in which no
information is revealed about player 1’s type until the very end of the game, no matter
how long the game. We see again that perfect and imperfect monitoring have quite
different implications for reputation building.2

17.1 The Chain Store Game

The chain store stage game is shown in figure 17.0.1. The game is played in T periods,
with a long-lived player 1 facing a new player 2 in each period. Player 1 does not
discount. In each period, both players observe all of the previous choices. These

2. Jackson and Kalai (1999) take an alternative approach to arguing that reputations must be
temporary in a finitely repeated game. They consider a sequence of finitely repeated games,
set in two possible environments. In the pure environment, there are only normal player 1s. In
a mixed environment, at the beginning of each finitely repeated game, player 1 is drawn to be a
commitment type with probability µ̂ and is otherwise normal. Over the course of the repeated
finitely repeated games, player 2s draw inferences about the probability that the environment
is mixed. Jackson and Kalai (1999) show that if the environment is indeed normal, then player
2’s posterior that the environment is normal approaches 1 almost surely. This in turn implies
that the probability attached to a commitment type of player 1 eventually falls so low as to
eliminate any reputation effects in the finitely repeated game. Conlon (2003) argues that the rate
at which reputations disappear in Jackson and Kalai’s (1999) model can be very slow, and hence
reputation effects can persist for a very long time.
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choices will not be very informative about player 1’s behavior unless player 2 has
chosen In in the past.

The calculations are easier to follow if we number periods in reverse, so that
1 is the last period and T the first, with period t following period t + 1. With prior
probability µ̂T , player 1 is a commitment type who chooses the Stackelberg action F .
We assume µ̂T is sufficiently small that player 2 would prefer to enter, given probability
1− µ̂T of a normal player 1, if certain that the normal player 1 would acquiesce. The
posterior probability attached to 1 being the commitment type in period t is given by µ̂t .

We present a sequential equilibrium for the finitely repeated game. We begin with
the evolution of player 2’s posterior beliefs about player 1. Let at be the realized profile
of actions in period t . Then3

µ̂t =



µ̂t+1, if at+1 = (Out, ·),
max{bt , µ̂t+1}, if at+1 = (In, F ) and µ̂t+1 > 0,

0, if at+1 = (In, A) or µ̂t+1 = 0.

Player 2’s behavior in period t is given by

αt2(In) =




0, if µ̂t > bt ,

1− 1
c
, if µ̂t = bt ,

1, if µ̂t < bt .

Finally, the commitment player 1 always fights entry. The normal player 1 fights in
period t , should player 2 enter, as follows:

αt1(F ) =




0, if t = 1,

1, if t > 1 and µ̂t ≥ bt−1,
(1−bt−1)µ̂t

(1−µ̂t )bt−1 , if t > 1 and µ̂t < bt−1.

Throughout the game, the critical event is the observation of A from player 1.
Once this happens, the posterior probability that player 1 is the commitment type drops
to 0 and remains there, with each subsequent period featuring (In, A). Describing the
equilibrium is thus a matter of identifying play following histories in which an A has
not been observed. Play begins in an initial phase in which the posterior probability
of a commitment type, µ̂t , is unrevised from the prior µ̂T and exceeds bt−1. During
this phase, no entry occurs, and the posterior proceeds to the next period unchanged at
µ̂t+1 = µ̂T . Should entry occur, the normal player 1 fights with probability one and
the posterior again remains unchanged. As the game length T increases, the length of
this initial period similarly increases, becoming an arbitrarily large fraction of total
play as T gets large. Hence, for very long finitely repeated games, entry is deterred in
virtually all periods.

This first phase ends with a pair of transition periods. The first of these periods is
the last period t in which µ̂T > bt . In this period, player 2 remains out and the posterior

3. Notice that bt denotes the parameter b raised to the power t , whereas at and µ̂t have their usual
meanings of the period t action profile and posterior belief.
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Figure 17.1.1 Illustration of equilibrium strategies for the chain store game.
Player 2’s action is listed first in each case. The figure traces the evolution of the
posterior belief µ̂t , given that each nontrivial player 2 mixture produces the
realization In and player 1’s mixture produces the realization F after any such
entry. All other belief updating is degenerate.

probability remains at µ̂T .4 In the out-of-equilibrium event that player 2 enters in this
period, however, the normal player 1 would mix between F and A, with the posterior
(in the event of F ) increasing from µ̂t to µ̂t−1 = bt−1. Equilibrium play would then
continue as prescribed. In the second transition period, say, t ′, player 2 enters with
probability one, and the normal player 1 mixes his response to bring the posterior from
µ̂T up to µ̂t

′−1 = bt ′−1.
This transition period is followed by a phase in which both player 1 and player 2

mix (see figure 17.1.1). If player 2’s mixture produces entry and player 1 fights, then
the posterior probability climbs along the function bt , with µ̂t = bt in each period. If a
period t occurs in which the realization of player 2’s mixture is to stay out, then there is
no revision in the posterior probability, with µ̂t−1 then lagging behind bt−1. There then
follows a period in which player 2 enters with certainty and the normal player 1 mixes
in response, restoring the equality µ̂t−2 = bt−2 (assuming player 1’s realization is to
fight). The game culminates in a final period in which player 1 is thought to be the com-
mitment type with probability b, player 2 mixes, and the normal player 1 acquiesces.

Why would we expect the equilibrium to take this form?5 It is clear that if the
game is long and the commitment type rare, then the normal type of player 1 must
fight entry in early periods. If not, a single instance of F would push the posterior on

4. We assume there is no value of t for which µ̂T = µ̂t = bt .
5. Because there is no t such that bt = µ̂T , this is the unique sequential-equilibrium outcome

(Kreps and Wilson 1982a). Kreps and Wilson (1982a) work with a payoff rather than action
commitment type of player 1, allowing additional sequential equilibrium outcomes (see
remark 15.3.2).
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the commitment type to 1, ensuring that there is no subsequent entry and thus offering
a bonus well worth the cost of fighting. In the final period, in contrast, the normal
player 1 will surely acquiesce and the commitment type will fight. The task is now to
specify play during a transition period that connects these two pieces.

Actions during these transition periods will in general have to be mixed. If not,
then we have an initial phase in which player 2s stay out and player 1 fights (if entry
occurs), followed by a final phase in which player 2s enter and the normal player 1
acquiesces. Consider the final period of the first phase. Given the putative equilibrium
strategies, no information is revealed, and no adjustment in future play is prompted
by fighting entry. But given that this is the case, a normal player 1 would not fight,
disrupting the equilibrium. If we attempt to rescue the equilibrium by assuming that
only the commitment player 1 fights in this period, then we have the difficulty that
player 2 would find it optimal to enter (given that the posterior of a commitment player 1
remains fixed at its prior value of µ̂T ). Therefore, the transition phase must involve
mixed actions, creating the dependence between current actions and future play that
sustains incentives to fight just before the transition phase.

The equilibrium strategies are constructed to preserve the indifferences required
for these mixtures. First, player 2 is willing to mix in the final period, knowing that the
normal player 1 acquiesces and the commitment player 1 fights, only if b(1− µ̂1)+
(b − 1)µ̂1 = 0, leading to the requirement that the terminal posterior probability must
equal b. From this beginning, we determine player 2’s mixture in each period to make
the normal player 1 indifferent between acquiescing and fighting in the previous period,
and jointly choose a sequence of posterior probabilities that player 1 is the commitment
type and a sequence of mixed strategies for the normal player 1 so that player 2 is
indifferent between entering and staying out in each period. We work backward in this
way until the required mixtures hit pure strategies, giving the first phase in which entry
does not occur and the normal player 1 would fight if it did.

We now verify that the proposed strategies constitute an equilibrium. Begin with
the calculation of posterior probabilities. The nontrivial cases are those in which entry
has occurred in period t , the equilibrium calls for player 1 to mix, and player 1’s
realized action is to fight. Then we have

µ̂t−1 = µ̂t

µ̂t + (1− µ̂t ) (1−bt−1)µ̂t

(1−µ̂t )bt−1

= bt−1,

matching the equilibrium specification.
We next consider the optimality of player 2s’ behavior. The only nontrivial case

here is a period in which µ̂t = bt and hence player 2 mixes between entering and not
doing so. The latter gives a payoff of 0, so that optimality requires

b

[
(1− µ̂t )

(
1− (1− b

t−1)µ̂t

(1− µ̂t )bt−1

)]
+ (b − 1)

[
µ̂t + (1− µ̂t ) (1− b

t−1)µ̂t

(1− µ̂t )bt−1

]
= 0,

where the first term in brackets on the right side is the probability that player 1
acquiesces, and the second the probability that player 1 fights. A straightforward
simplification of the right side, using µ̂t = bt , verifies the equality.
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It remains to verify the optimality of player 1’s strategy. Again, the nontrivial
case is one in which player 1 mixes. It is a straightforward calculation that player 1 is
indifferent in period 2 if called on to randomize. In earlier periods, acquiescing gives
a (repeated-game) payoff of 0. Fighting gives a payoff of−1+ (1/c)c = 0.6 It is then
clear player 1 is indifferent between fighting and acquiescing, giving an equilibrium.

Finally, we describe the length of the second two phases of the equilibrium, in
which the possibility of entry appears. The first period in which the player 2s potentially
enter corresponds to the largest integer smaller than the (noninteger) value of t solving

µ̂T = bt .

Hence the smaller the prior probability of a commitment player 1, the longer the mixing
phase of the equilibrium. Viewing this phase as a transition from the prior probability
of µ̂T to the terminal posterior of bt , with the rate at which the posterior increases set by
the requirement that each player’s mixed actions are calculated to preserve indifference
on the part of the other player, this is expected. Rearranging this expression, we can
say that the length of the final two phases is on the order of− ln µ̂T . As a result, entry
will be deterred in most periods of long games.

17.2 The Prisoners’ Dilemma

This section presents an equilibrium for the T period prisoners’ dilemma. We assume
that both players are long-lived with no discounting. In addition, there is uncertainty
about the types of both players. We present a sequential equilibrium in which for
sufficiently long games, the outcome features mutual effort in most periods.7

It will help in interpreting various steps of the derivation to represent the prisoners’
dilemma as in figure 17.2.1. It then simplifies the calculations to assume that d = b − c,
as is the case with the prisoners’ dilemma of figure 1.2.1 with which we commonly
work. We will note as we proceed where the argument depends upon this assumption.
Define

φ = c

b
< 1.

We again number the periods so that the final period is period 1 and the first period
is T .

6. The first term (−1) is the current cost of fighting. The second is calculated by noting that if
player 2 enters in the next period (probability 1− 1/c), then arguing recursively on the period,
the normal player 1 will be indifferent between fighting and acquiescing, with the latter producing
a payoff of 0; whereas if player 2 stays out (probability 1/c), then the normal player 1 reaps a
payoff of c, but the absence of belief revision ensures that player 2 enters in the next period,
with player 1’s mixture again ensuring an expected payoff of 0.

7. The equilibrium we examine is taken from Conlon (2003). Kreps, Milgrom, Roberts, and Wilson
(1982) examine prisoners’ dilemmas of arbitrary (finite) length in which one player is known to
be normal and the other may be either normal or a commitment type who plays tit-for-tat. They
show that there is an upper boundK on the number of stages in which defection can occur with
positive probability, in any sequential equilibrium of the finitely repeated game of any length.
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Figure 17.2.1 Prisoners’ dilemma, where we assume d = b − c (left).
Our common example of a prisoners’ dilemma, from figure 1.2.1 and
reproduced here on the right, satisfies this assumption. As we have seen
(e.g., sections 2.2 and 2.5.6), this case has some special and convenient
properties.

Each player is a normal type with probability 1− µ̂T and is a commitment type
who plays grim trigger with probability µ̂T . The players’ types are independently
drawn. Using grim trigger rather than (say) tit-for-tat as the commitment type simplifies
the calculations by making it easy to keep track of the commitment type’s action once
a player has shirked. Each player observes only his own type.

We construct a strongly symmetric sequential equilibria. Define

qt = probability player i exerts effort in period t ,

µ̂t = period t probability that player i is the commitment type,

and rt = probability a normal player i exerts effort in period t .

We will be interested in these probabilities only after histories in which no shirking has
yet occurred. Given the symmetry of the prior distribution from which types are drawn
and our focus on strongly symmetric equilibria, these probabilities will be identical
for the two players after such a history, obviating the need for player subscripts. These
three probabilities are linked by the identity

qt = (1− µ̂t )rt + µ̂t ,
allowing us to solve for

rt = qt − µ̂t
1− µ̂t . (17.2.1)

Once shirking occurs, both players shirk for the remainder of the game. In partic-
ular, suppose player 1 shirks in period t and that this is the first incidence of shirking.
Given that commitment types play grim trigger, this reveals that player 1 is normal.
If player 2 is the commitment type, then player 2 will shirk for the remainder of the
game. If player 2 is normal, then exerting effort in period t − 1 will reveal that player 2
is indeed normal, moving us to a continuation game in which both players are known
to be normal and in which the continuation equilibrium calls for subsequent shirking.
As a result, player 2 has nothing to gain from exerting effort in period t − 1, and
hence must shirk. A similar argument shows that the players must also shirk in each
subsequent period.
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Figure 17.2.2 Equilibrium phases for the equilibrium constructed for the
finitely repeated prisoner’s dilemma. In any period t > K + 1, both players
exert effort (given no previous shirking). Periods K + 1 to 2 are a transition
phase during which normal players mix between effort and shirking (given
no previous shirking). In period 1 (the final period), normal players shirk
and commitment players exert effort (again, if there has been no previous
shirking). Any instance of shirking produces shirking from both players in all
subsequent periods.

To specify an equilibrium, it then suffices to consider histories in which there
has been no shirking. We identify the posterior probabilities qt and µ̂t for each t =
1, . . . , T , counting on (17.2.1) to fill in the actions of the normal players. We then
verify that beliefs satisfy Bayes’ rule and that behavior is optimal.

We begin by choosing an evenK ∈ N0 so that (recallφ < 1, so that either µ̂T ≥ φ,
or for some k, φk+1 ≤ µ̂T < φk)

φ ≤ φ−K2 µ̂T < 1. (17.2.2)

We examine an equilibrium in which both players exert effort during the first
T −K − 1 periods of play. The next K periods are a transition phase during which
normal players mix between effort and shirking, as long as there has been no previ-
ous shirking. The first incidence of shirking prompts all players to shirk thereafter.
Should period 1 be reached with no shirking having occurred, normal players shirk
and commitment players exert effort. Figure 17.2.2 illustrates.

To see the role played by K , suppose first that µ̂T > φ. In this case, commitment
players are relatively plentiful. We can then take K = 0, meaning that there is no
intermediate phase of behavior and every player exerts effort until the final period,
with normal players then shirking. To verify that this behavior is optimal, consider the
choice facing a normal player in the penultimate period (period 2). No information has
yet been revealed about the probability that the opponent is a commitment type, which
accordingly stands at its prior value of µ̂T . The equilibrium action of effort gives a
current-period payoff of d plus an expected payoff in the final period of µ̂T b, obtained
by shirking while a commitment opponent (present with probability µ̂T ) exerts effort.
Shirking in period 2 gives a payoff of b, with a final-period payoff of 0 (given mutual
shirking in the final period). Using the equality d = b − c, the proposed behavior is
optimal if, as we have assumed, µ̂T > φ. Hence, the prior probability of a commitment
opponent is sufficiently large that normal players are willing to exert effort to induce
effort from commitment opponents, keeping alive until the final period the chance to
fleece commitment opponents by shirking.

Suppose instead that µ̂T < φ. It now cannot be an equilibrium for all players to
exert effort until the final period. A normal player facing such a supposed equilibrium



17.2 ■ The Prisoners’ Dilemma 557

would instead shirk in the penultimate period, deeming it better to earn a payoff of
b now and sacrifice final-period payoffs than to earn only d now in return for the
unlikely event that the opponent is committed and hence exerts effort in the final
period. Instead, an intermediate phase of play is required to connect the initial phase of
unbroken effort with the final phase in which only commitment players (if any) exert
effort. During this intermediate phase, the mixed strategies of normal players ensure
that if effort is observed, the posterior probability attached to a commitment opponent
increases. The requirement is that this posterior probability reach φ by period 1 to
sustain normal player effort in period 2. The number of periods required to make this
transition is K .

We continue the specification of an equilibrium with the unconditional probability
of player 1 effort, given by (where these are well-defined probabilities by (17.2.2))

q1 = q3 = · · · = qK+1 = φ−K2 µ̂T ,
q2 = q4 = · · · = qK = φ K

2 +1 1

µ̂T
,

and

qt = 1 if t > K + 1.

Effort is thus chosen until the final K + 1 periods are reached. Within these periods,
the probability of effort is constant across even-numbered periods, as it is across odd-
numbered periods. Notice that if we take the product of the probability of effort across
any two periods t and t + 1 for t ≤ K + 1, we have

qtqt+1 = φ, (17.2.3)

a relationship that simplifies calculations.
The equilibrium is completed by specifying the posterior probability of a commit-

ment opponent as

µ̂t =



µ̂T , if t ≥ K + 1,

µ̂T

qK+1qK · · · qt+1
, if t ≤ K .

(17.2.4)

Again, we see that the probability of a commitment opponent does not move until
period K + 1, after which it climbs steadily.

We begin the verification of equilibrium by ensuring that Bayes’ rule is satisfied.
As long as there has been no previous shirking, a commitment player exerts effort with
probability one. Bayes’ rule then implies that the probability of a commitment player
in period t , given effort in period t + 1, is given by the probability of a commitment
player in period t + 1 (times the unitary probability of effort) divided by the probability
of effort in period t + 1, or
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µ̂t = µ̂t+1

qt+1
.

This immediately leads to (17.2.4).
It remains only to check the optimality of the proposed behavior of the normal

types. We begin with period 1. The relevant observation here is that we have

µ̂1 = µ̂T

qK+1 · · · q2
= µ̂T

φ
K
2

= q1,

where the central equality is obtained by applying (17.2.3) to theK/2 adjacent products
that appear in the denominator. Hence, in the final period, the probability of effort equals
the probability of a commitment opponent. As a result, normal players are shirking
with probability one. The specified behavior in the final period is optimal, because
shirking must be a best response for normal players in this period.

Now consider a period t ∈ {2, . . . , K + 1}. In each such period, normal players
mix between effort and shirking. The payoff from S given by

bqt ,

and the payoff from E is

(d + bqt−1)qt − c(1− qt ).

To obtain these expressions, we argue recursively, noting that they trivially hold and
are equal for t = 2. Suppose they hold for t − 1, and consider t . Shirking gives an
immediate payoff of b if the opponent exerts effort, for an expected payoff of bqt ,
followed by the zero payoffs of mutual shirking. Effort gives an immediate payoff
of −c if the opponent shirks, followed by a future of mutual shirking and zero pay-
offs, for an expectation of −c(1− qt ). If the opponent instead exerts effort (which
occurs with probability qt ), the player in question receives d in the current period,
followed by a continuation payoff that can be evaluated at the expected payoff bqt−1

of shirking next period (because the player will either be indifferent between effort
and shirking next period, or strictly prefer to shirk when the next period is the final
period).

Using the relationship d = b − c, the condition for indifference becomes

qtqt−1 = φ.

This ensures that we have optimality for any t ≤ K + 1. For larger values of t , the
prescription that normal types exert effort is optimal if8

qtqt−1 ≥ φ.
8. We are underestimating the value of effort here with the presumption that the player shirks in

the following period.
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Period qt µ̂t rt

10 1 1/50 (=.02) 1

9 1 1/50 (=.02) 1

8 1 1/50 (=.02) 1

7 27/50 1/50 (=.02) 26/49 (=.53)

6 50/81 1/27 (=.04) 47/78 (=.60)

5 27/50 3/50 (=.06) 24/47 (=.51)

4 50/81 1/9 (=.11) 41/72 (=.57)

3 27/50 9/50 (=.18) 18/41 (=.44)

2 50/81 1/3 (=.33) 23/54 (=.43)

1 27/50 27/50 (=.54) 0

Figure 17.2.3 Example equilibrium for finitely repeated prisoners’
dilemma. Conditional on not having observed shirking in previous
rounds, qt is the probability of effort in period t , µ̂t is the probability a
player is a commitment type, and rt is the probability that a normal type
exerts effort.

For values of t ≥ K + 3, qtqt−1 = 1 > φ. For the case of t = K + 2, this is
qK+2qK+1 = qK+1 ≥ qK+1qK = φ, giving the result.

To illustrate this equilibrium, we take an example from Conlon (2003). Let the
payoffs of the prisoners’ dilemma be as given in the right panel of figure 17.2.1 and
let µ̂T = 1/50. We have c/b = φ = 1/3, and a value of K = 6 satisfies (17.2.2).
This ensures that the ending phase of the game will consist of the final period and a
transitional phase of six periods. The path of play is given in figure 17.2.3 for a game
of length 10. Should the game be longer, additional periods would simply be added to
the initial phase in which effort occurs with probability one.

As expected, the posterior probability of a commitment type increases from its
prior of 1/50 to a posterior of 27/50, the latter being high enough to support effort
from normal types in period 2, even though only commitment types will exert effort in
the last period. A curious feature of the equilibrium is the see-saw nature of the proba-
bility of effort in the transitional periods. This is an implication of the relationship that
qtqt−1 = φ = 1/3 in these periods. This requires either that the probability of effort
alternate between high and low values in the final phases or that it be constant. Sup-
pose we attempted to construct an equilibrium in which the probability of effort was
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Period qt µ̂t
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Figure 17.2.4 Outcome for candidate equilibrium in which
qt qt−1 is a constant in the transition phase.

constant in the final periods. That probability would then have to be 1/
√

3 to satisfy
qtqt−1 = φ = 1/3, and the requirement that q1 = µ̂1 would fix the terminal posterior
of a commitment type at the same value. We can then work backward to characterize
the equilibrium path, with the results reported in figure 17.2.4. The difficulty is now
apparent. For these strategies to be an equilibrium, the descending sequence of pos-
terior probabilities µ̂t , as we move backward from the final period, must hit the prior
probability of 1/50. This terminal condition will typically fail, as it does here, ensur-
ing that an equilibrium with a constant probability of effort over the final phase does
not exist.

17.3 The Product-Choice Game

We present here an example of a finitely repeated game with imperfect public monitor-
ing. The presence of imperfect monitoring significantly complicates the calculations.
We accordingly limit the example to two periods and return to our convention that the
initial period is period 0.

Player 1 is long-lived and player 2 short-lived. Player 1 discounts, but because the
game lasts only two periods, we ignore the normalization (1− δ) on payoffs.

The stage game is the product-choice game, shown again in figure 17.3.1. The set
of public signals is given by Y = {y, ȳ}. The signal depends only on player 1’s action
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h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 17.3.1 The product-choice game.

a1 according to the distribution

ρ(ȳ | a1a2) =
{
p, if a1 = H,
q, if a1 = L,

where 0 < q < p < 1. Player 2’s actions are public.
We assume that there are only two types, the normal type (ξ0) and the pure Stack-

elberg type (ξ(H), who plays H in every period). We let the prior probability that
player 1 is the Stackelberg type be denoted by µ̂0, with µ̂1 denoting the corresponding
probability in period 1.

We suppose player 1 is relatively patient, that is,

δ ≥ 1/(2p − 2q).

We see shortly that this assumption is required for the equilibrium we construct.
Two calculations will be useful. Suppose that player 1 is thought to be the Stackel-

berg type with probability µ̂0 and that the normal type of player 1 is expected to choose
H with probability γ . Then the updated posteriors that player 1 is the Stackelberg type,
following signals ȳ and y, are given by

ϕ(µ̂0 | ȳ) = pµ̂0

pµ̂0 + (1− µ̂0)[γp + (1− γ )q]

and

ϕ(µ̂0 | y) = (1− p)µ̂0

(1− p)µ̂0 + (1− µ̂0)[γ (1− p)+ (1− γ )(1− q)] .

If γ = 1, the Stackelberg and normal types play identically, and signals reveal no
information:

ϕ(µ̂0 | y) = µ̂0 = ϕ(µ̂0 | ȳ).
For any γ < 1, the Stackelberg type is more likely to generate signal ȳ, and hence

ϕ(µ̂0 | y) < µ̂0 < ϕ(µ̂0 | ȳ).



562 Chapter 17 ■ Finitely Repeated Games

17.3.1 The Last Period

Suppose that the last period, period 1, has been reached via a history h1 and with a
posterior probability µ̂1 that player 1 is the Stackelberg type. Player 1’s behavior in
the second period is

σ1(h
1, ξ(H)) = H,

and σ1(h
1, ξ0) = L.

The Stackelberg type chooses H , and the normal type chooses the strictly dominant
action L.

Player 2 thus faces a lottery of µ̂1 ◦H + (1− µ̂1) ◦ L, to which player 2’s best
response is

σ2(h
1)



= h, if µ̂1 > 1

2 ,

∈ [0, 1], if µ̂1 = 1
2 ,

= �, if µ̂1 < 1
2 .

The value to the normal player 1 as a function of the posterior is

V1(µ̂
1)



= 3, if µ̂1 > 1

2 ,

∈ [1, 3], if µ̂1 = 1
2 ,

= 1, if µ̂1 < 1
2 .

Hence, a posterior of 1/2 is critical for player 1. The second-period implications of
first-period behavior depend only on whether the result is a posterior above, equal to,
or below 1/2, with higher posteriors being more valuable for the normal player.

17.3.2 The First Period, Player 1

First period behavior depends on the prior probability that player 1 is the Stackelberg
type. The normal player 1 can only pool with ξ(H) when µ̂0 = 1/2. For other priors,
the lack of belief revision under pooling implies that player 2’s behavior in the last
period is independent of the realized signal, precluding pooling.

Three prior probabilities will be critical points for player 1’s behavior, given by

0 < µ̂′ < 1
2 < µ̂′′ < 1.

The prior µ̂′′ is determined by the requirement that if the normal type of player 1
is expected to play H with probability zero in period 0 and signal y is observed, then
the posterior belief is 1/2, that is,

ϕ(µ̂′′ | y) = 1
2 ,

or
(1− p)µ̂′′

(1− p)µ̂′′ + (1− µ̂′′)(1− q) =
1

2
,

and so

µ̂′′ = 1− q
2− p − q >

1

2
.
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First-period behavior for µ̂0 > µ̂′′ is unambiguous. Even a negative signal leads to the
most valuable posterior probability, exceeding 1/2. As a result, the normal player 1
will choose L in the first period.

Analogously, the prior µ̂′ is determined by the requirement that if the normal
player 1 is expected to choose H with probability zero in the first period and the
favorable signal ȳ is observed, then the posterior probability attached to the Stackelberg
type is 1/2, that is,

ϕ(µ̂′ | ȳ) = 1
2 ,

or
pµ̂′

pµ̂′ + (1− µ̂′)q =
1

2
,

and so

µ̂′ = q

p + q <
1

2
.

If µ̂0 < µ̂′, then there is no signal that can move the second-period posterior probability
above 1/2, no matter what behavior is expected of player 1 in the first period. As a
result, the normal player 1 has no incentive to deviate from choosingL and will choose
L in the first period when µ̂ < µ̂′.

We see here a potential nonmonotonicity in player 1’s behavior. We can create
incentives for the normal player 1 to play H in the first period only for intermediate
priors, with L being optimal for both quite optimistic or quite pessimistic priors. A
choice of H is an investment in player 2’s future (second-period) behavior. Such an
investment is worthwhile only for intermediate priors, which are relatively sensitive
to new information. In contrast, extreme priors are sufficiently insensitive to new
information that they are not worth trying to influence, either because they are safely
high or irretrievably low. This difficulty in creating incentives for extreme priors will
play an important role in chapter 18.

For priors µ̂0 ∈ (µ̂′, µ̂′′), posterior beliefs may land on either side of 1/2, depend-
ing on the first-period signal. The normal player 1 now faces a nontrivial intertemporal
trade-off. Our assumption that player 1 is relatively patient then becomes impor-
tant. Let γ 0 be the probability attached to H in period 0. For priors µ̂0 ∈ (µ̂′, 1/2)
[µ̂0 ∈ (1/2, µ̂′′), respectively], γ 0 ∈ (0, 1)—if γ 0 = 0, the update after ȳ [y] leads to
h [�] in the last period for sure, making a deviation to H profitable.

We proceed in three steps.

Step 1. Consider first µ̂0 = 1/2. We argue that in this case, equilibrium requiresγ 0 = 1,
and thus µ̂1 = µ̂0 = 1/2 regardless of which signal is received. Suppose 0 ≤ γ 0 < 1,
so that ϕ(µ̂0 | y) < 1/2 < ϕ(µ̂0 | ȳ). Let θ be the probability that player 2 chooses h
in the first period. Then the payoff from H in period t = 0 is

2θ + δp3+ δ(1− p) = 2θ + δ + 2δp,

and the payoff from L is

3θ + (1− θ)+ δq3+ δ(1− q) = 2θ + 1+ δ + 2δq.

Consequently, the payoff from H is strictly larger than from L,

2θ + δ + 2δp − (2θ + 1+ δ + 2δq) = −1+ 2δ(p − q) > 0,
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and so the normal player 1 is not willing to place any probability onL, a contradiction.
Therefore, we must have γ 0 = 1.

This player 1 behavior requires that player 2 in the second period play differently
after ȳ and y. To see this, let β̄ andβ be the probabilities placed on h by player 2 in the
second period, after observing signals ȳ andy in the first period (and given µ̂1 = 1/2).
Then for H to be a best response for player 1 in the first period, we require

1 ≤ δ{p(β̄3+ (1− β̄))+ (1− p)(β3+ (1−β))
− (q(β̄3+ (1− β̄))+ (1− q)(β3+ (1−β)))}

= 2δ(p − q)(β̄ −β),

which holds if and only if

β̄ ≥ β + 1

2δ(p − q) .

The equilibrium allows any second-period play consistent with this inequality. If we
evaluate this equality at δ = 1/(2(p − q)), we get β̄ = 1 and β = 0.9

Step 2. Consider µ̂0 ∈ (µ̂′, 1/2). In this case, the posterior after y must be less than
1/2, causing player 2 to choose � in the second period. The only opportunity for
making player 2 indifferent in the second period, and thus for designing player 2’s
second-period behavior to support indifference on the part of the normal player 1 in
the first period, is for player 2’s posterior after ȳ to be 1/2. This requires

pµ̂0

pµ̂0 + (1− µ̂0)[γ 0p + (1− γ 0)q] =
1

2
,

which we solve for

γ 0 = pµ̂0 + µ̂0q − q
(p − q)(1− µ̂0)

.

Note that γ 0 = 0 if µ̂0 = µ̂′ and γ 0 = 1 if µ̂0 = 1/2.
To support player 1’s first-period indifference, player 2 must randomize in the

second period. Because player 2 cannot randomize after receiving signaly (the posterior
after y is less than 1/2 and hence β = 0), we must have

β̄ = 1

2δ(p − q)
and β = 0.

Step 3. Consider a prior probability µ̂0 ∈ (1/2, µ̂′′). In this case, the posterior proba-
bility after signal ȳ exceeds 1/2, inducing player 2 to choose h in period 2. The only
possibility for player 2 to be indifferent in the second period is for the posterior after

9. The restriction δ ≥ 1/(2(p − q)) implies the inequality can be satisfied by β, β̄ ∈ [0, 1].
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Prior Player 1 Player 2

µ̂0 γ 0 β̄ β

[0, µ̂′] 0 0 0

[
µ̂′, 1

2

] pµ̂0+µ̂0q−q
(p−q)(1−µ̂0)

1
2δ(p−q) 0

1
2 1

[ 1
2δ(p−q) , 1

]
β̄ − 1

2δ(p−q)[ 1
2 , µ̂

′′] 1−2µ̂0+µ̂0p+µ̂0q−q
(p−q)(1−µ̂0)

1 1− 1
2δ(p−q)[

µ̂′′, 1
]

0 1 1

Figure 17.3.2 The normal player 1’s first period probability of
playing H (γ 0) and player 2’s second period probability of h after
signal ȳ (β̄) and after signal y (β), as a function of the prior
probability µ̂0 of the Stackelberg type.

signal y to equal 1/2. Hence, the normal player 1 randomizes in the first period so that
player 2’s posterior after y is 1/2:

(1− p)µ̂0

(1− p)µ̂0 + (1− µ̂0)[γ 0(1− p)+ (1− γ 0)(1− q)] =
1

2
.

Solving, we have

γ 0 = 1− 2µ̂0 + µ̂0p + µ̂0q − q
(p − q)(1− µ̂0)

.

Note that γ 0 = 0 if µ̂0 = µ̂′′ and γ 0 = 1 if µ̂0 = 1/2.
To support this player 1 behavior, player 2 must again randomize in the second

period. Analogously to step 2, we then have

β̄ =1

and β =1− 1

2δ(p − q) .

Summary. The normal player 1’s first-period behavior and player 2’s second-period
behavior is summarized in figure 17.3.2.

17.3.3 The First Period, Player 2

In the first period, player 2 is thus facing a probability onH of µ̂0 + (1− µ̂0)γ 0(µ̂0).
Let µ̂∗ be the critical value of µ̂0 that will make player 2 indifferent between first-period
actions, so that µ̂∗ satisfies
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µ̂∗ + (1− µ̂∗)γ 0(µ̂∗) = 1
2 .

Because commitment player 1 types always choose H and normal types mix, we will
have µ̂∗ < 1/2, allowing us to substitute for γ 0(µ̂∗) (see figure 17.3.2) to obtain

µ̂∗ + (1− µ̂∗) pµ̂
∗ + µ̂∗q − q

(p − q)(1− µ̂∗) =
1

2

and solve for
µ̂∗ = p + q

4p
,

with
µ̂′ < µ̂∗ < 1

2 < µ̂′′.

Hence, µ̂0 < µ̂∗ implies that the probability ofH falls short of 1/2, whereas µ̂0 > µ̂∗
implies that the probability of H exceeds 1/2. The first-period player 2 is indifferent
between h and � if and only if µ̂0 = µ̂∗, playing h if µ̂0 > µ̂∗ and playing � if µ̂0 < µ̂∗.
When µ̂0 = µ̂∗, any mixture on player 2’s part is compatible with equilibrium.

Remark

17.3.1
Markov equilibria Player 2’s second-period mixed action in this equilibrium,
when her posterior probability of the Stackelberg firm is 1/2, depends on the
prior probability of the Stackelberg firm and the signal by which this posterior
was reached. A prior greater than 1/2 combined with signal y elicits a different
probability on h than does a prior smaller than 1/2 combined with signal ȳ. Such
an equilibrium is not Markov.10

The equilibria we have constructed for both the chain store and prisoners’
dilemma games are Markov equilibria. Kreps and Wilson (1982a, p. 265) note
that if the parameters in the chain store game in figure 17.0.1 are altered so that
c < 1, then the chain store game no longer has a Markov equilibrium, with player
2’s behavior near the end of the game depending on the posterior probability that
player 1 is the commitment type and on the history of play in the last k periods,
where k is the smallest integer for which kc > 1. If k > 1, the equilibrium is not
a weak Markov equilibrium (see remark 5.6.1).

◆

10. Because different priors can be viewed as describing different games, and the posterior of 1/2
in the last period only arises after one signal realization, given a prior not equal to 1/2, it would
be consistent with the formal definition (but not its spirit) to view the equilibrium as Markov.



18 Modeling Reputations

This chapter explores models of reputations that move beyond the framework develo-
ped in chapters 15–17. Our motivation is fourfold.

First, existing models do not readily capture the full spectrum of issues encom-
passed in the popular use of the word reputation. It is common to think of reputations
as assets—things of value that require costly investments to build and maintain, that
can be enhanced or allowed to deteriorate, that gradually run down if neglected, and
that can be bought and sold. We would like a model that captures this richness.

The repeated games of adverse selection examined in chapters 15–17 may well
have equilibria capturing many of these features. The focus on payoffs that is charac-
teristic of the reputation literature leaves the nature of the attendant equilibria largely
unexplored, but the analysis leaves hints as to the structure of these equilibria. The argu-
ment that player 2 must eventually come to expect the commitment action if player 1
invariably plays it (sections 15.3.1 and 15.4.2) is suggestive of a reputation-building
phase. The results of section 15.5 and 16.7 suggest that ultimately reputations are opti-
mally depleted. As intriguing as these results are, however, these models do not provide
the explicit links between the structure of the interaction and equilibrium behavior that
would be especially useful in studying reputations.

Second, in a similar spirit, we seek not only a characterization of equilibrium
payoffs but also equilibrium behavior. We typically proceed in this chapter by con-
structing equilibria, feeling free to limit attention to equilibria whose features we find
particularly interesting. This is in keeping with our view that much is to be learned by
focusing on the behavioral implications of the theory of repeated games.

Third, reputations in standard models are built by mimicking behavior to which
one would like to be committed. We refer to these as pooling reputations, because the
payoff bounds arise out of pooling one’s actions with those of the commitment type.
In contrast, this chapter focuses on separating reputations, in which players strive
to distinguish themselves from types for whom they would like to not be mistaken.
Stackelberg types may not always be conveniently available. Consumers may approach
the market not in terms of finding a firm who necessarily provides good service, but
of avoiding the one who is incapable of doing so. The normal firm may then find that
there are effectively no Stackelberg types with whom to pool but that providing good
service is essential in distinguishing himself from inept types.

The reputation results presented in chapter 15 allow player 1 to “choose” his
most preferred type from a possibly countably infinite set of possible types, and hence
depend on neither the presence of Stackelberg types nor the absence of other types. The

567
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presence of inept types, even if quite likely, has no effect on the argument. Separating
reputations thus appear to require not only inept types but only inept types. Why pursue
a model built on such a strong restriction?

In our view, this question must be addressed not in the context of the model but
in the setting for which the model is intended. The question of which types should
be included in the model is one of how the agents view their environment. We think
the possibility of a Stackelberg commitment type is sometimes quite relevant, but we
are also interested in situations in which consumers’ evaluations of the market are
dominated by the possibility of inept types.

Fourth, many equilibria in repeated games require what often appears to be an
implausible degree of coordination among the players. We will work in this chapter
with models deliberately designed to limit such coordination. This in turn will provide
a natural setting for reputations based on separation.

We regard the ability to use histories to coordinate future play as one of the
fundamental hallmarks of repeated games. At the same time, we prefer some caution
when embedding the possibilities for such coordination in a model. Indeed, as we
explained at the beginning of chapter 15, we could build a theory of reputations on
pure coordination with no need for incomplete information. Instead, even after using
incomplete information to create an intrinsic link between current play and future
expectations, we are concerned that reputation models may be leaning too heavily on
coordination. Once again, we return to the view that work on repeated games would
be well served by a better understanding of the structure of the equilibria involved.

18.1 An Alternative Model of Reputations

18.1.1 Modeling Reputations

We begin with a variant of the product-choice game (see figure 1.5.1), and much of
this chapter will have the flavor of an extended example built around this game. As
is typically the case, our first step is to add incomplete information about player 1’s
type. The normal player 1 has the option of choosing high or low effort. We add a
single commitment type of player 1, ξ(L), who necessarily chooses low effort. For
example, effectively exerting high effort may require complementary skills or inputs
that this type lacks. In keeping with this interpretation, we will frequently refer to the
commitment type of player 1 as inept. We will also often refer to player 1 as a firm and
player 2 as a consumer.

We are interested in equilibria in which the normal type of player 1 exerts high
effort. We already have payoff bounds for the normal player 1 in the presence of (for
example) a Stackelbeg commitment type. Thus, whether the motivation is to pool with
a good type or separate from a bad type, it seems the effect is that player 1 exerts
high effort. How do the two models differ? Our separating model always features an
equilibrium in which both the inept and normal type of player 1 exert low effort, with
player 2 never drawing any inferences about player 1 and with both players receiving
their minmax payoffs. Rather than imposing a lower bound on player 1’s payoff, the
incomplete information raises the possibility that player 1 can achieve a higher payoff.
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If we are simply concerned with the possibility of high payoffs for player 1, why
is this not simply another folk theorem exercise? Why does incomplete information
play a role? We view player 2 as a continuum of small and anonymous players (see
sections 2.7 and 7.8) and in addition assume that the various player 2s are idiosyn-
cratic, in the sense that different consumers receive different realizations from an
imperfect monitoring technology (see section 15.4.3), each observing only their own
signal. This idiosyncrasy disrupts the coordination that typically plays a central role
in creating intertemporal incentives. A consumer who has just received a bad meal
from a restaurant has no way of knowing whether this is simply an unlucky draw
from a restaurant who continues to exert high effort or whether it is a signal that the
restaurant is shirking. By itself, this inference problem is not particularly problematic.
In a standard public monitoring game, bad signals trigger punishments even though
players know they are not an indication of shirking (in equilibrium). However, for this
behavior to be consistent with equilibrium, it is important that there be coordination in
the punishment, not only among the small anonymous players but also with player 1.
The idiosyncratic signals rob the players of this coordination possibility.

Each short-lived player’s signals provide information about player 1’s type. As
in pooling models of reputations, this introduces a link between current and future
behavior. In particular, the firm may now find it optimal to exert high effort because
doing so increases the consumer posterior that the firm is normal rather than inept,
in turn allowing the firm to reap the rewards of high effort. Eventually, however,
the consumers’ posteriors will come arbitrarily close to attaching probability one to
the firm’s being normal. At this point, further experience has virtually no effect on
consumer posteriors and hence, given a belief that normal firms exert high effort, on
their actions. But then the firm has an irresistible incentive to deviate to low effort,
unraveling the putative equilibrium. Increased patience might allow this unraveling to
be postponed, but it cannot be avoided.

To obtain an equilibrium with consistent high effort, consumers’ posteriors about
the firm must be bounded away from certainty. This will be the case, for example, if
consumers have bounded memory, using only some finite number of their most recent
observations in drawing inferences about the firm’s type. Overwhelming evidence that
the firm is normal could then never be amassed.

We adopt a different approach here, assuming that in every period there is some
possibility that the firm is replaced by a new firm whose type is randomly drawn
from a prior distribution over types. Consumers understand the possibility of such
replacements but cannot observe them. Intuitively, the possibility of changing types
plays a role whenever one’s response to a disappointing experience with a firm known
for good outcomes is not simply “I’ve been unlucky” but also “I wonder if something
has changed.” This again ensures that consumers can never be too certain about the
firm, and thus that the firm always faces incentives to choose high effort.

Remark

18.1.1
Interpreting replacements A firm’s type, normal or inept, can be interpreted as
reflecting a variety of factors, including the composition and skills of its workforce,
technology and capital stock, access to appropriate materials, management style
and organization, and workplace culture. A replacement may literally be a change
in ownership of the firm but may also be a change in some key characteristic.
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Throughout this chapter, we take a replacement to be a departure of the firm’s
current owner. This is a convenience for the bulk of the chapter, but is necessary
for the analysis in section 18.7.2.

◆

Remark

18.1.2
The role of patience By introducing the prospect that a firm’s characteristics
or even identity are constantly subject to revision, we place an upper bound on
the effective discount factor, no matter how patient the firm happens to be. As
a result, appealing to the limit as δ gets arbitrarily close to 1 no longer creates
arbitrarily effective incentives. Instead, we follow the suggestion of section 3.2.3
and remark 15.3.8 in focusing on cases in which the cost of high effort is relatively
small.

◆

18.1.2 The Market

We consider a single long-lived player, or the firm, facing a continuum of small and
anonymous players (consumers), indexed by i ∈ [0, 1]. In each period t , the firm
chooses an effort level at1 ∈ {L,H }. Each consumer is long-lived and observes an
idiosyncratic realization of a signal (see section 15.4.3). The signal has two possible
values, z̄ (good) and z (bad), with marginal distribution1

πi(z̄ | a) =
{
ρH if a1 = H ,

ρL, if a1 = L,

where

0 < ρL < ρH < 1.

In each period t and for each group of consumers having experienced a common
history of signals, a proportion ρat1 of this group receives the good signal. A determin-
istic sequence of effort choices thus yields a deterministic sequence of distributions of
consumers’ histories.

Remark

18.1.3
Idiosyncratic signals There are well-known technical complications in modeling
a continuum of independent random variables (see, for example, Al-Najjar 1995).
In our case, independence is unnecessary. The critical feature of the model is that if
the firm is expected to exert effort level at1 in period t , then each consumer assigns
a probability of ρat1 to the event that she receives a good signal and believes that
a fraction ρat1 of consumers will receive the good signal. This can be achieved
as follows. Fix the first-period effort choice a1. Let ω be the realization of a
uniform random variable on [0, 1]. Then consumers in

([ω − 1, ω + ρa1 − 1] ∪
[ω,ω + ρa1 ]

) ∩ [0, 1] receive the good signal and consumers in the complement
the bad signal. The subpopulation who received a good signal in the first period
can be viewed in a natural way as a population distributed on Iz̄, an interval of

1. Using ρH and ρL (rather that πH and πL) to denote the private-signal distribution facilitates the
transition to the subsequent model with public signals.
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length ρa1 , whereas the subpopulation who received a bad outcome in the first
period can be viewed as a population distributed on Iz, an interval of length
1− ρa1 . Second-period signals are determined from second-period effort and the
realizations of a uniformly distributed random variable on Iz̄ and one distributed
on Iz. These two random variables are independent of each other and of the
realization of ω. This construction has an obvious recursion, yields the desired
pattern of signal realizations, and only requires a countable number of independent
random variables (one for each possible finite history of utility realizations).

◆

The aggregate distribution of the signals received by consumers in any period is
perfectly informative about the firms’s effort choice in that period—consumers need
only observe the fraction of good signals to infer effort. However, a consumer observes
neither the aggregate distribution nor the signal of any other consumer.

The (normal) firm’s stage-game payoff is the difference between its revenue and
its costs. Low effort is costless, but high effort requires a cost of c.

Rather than explicitly modeling the interaction between firm and consumers as
a noncooperative game, we specify the firm’s revenues as a function of consumer
expectations about effort (we followed a similar modeling strategy in example 5.5.3).
A consumer receives payoff 1 from signal z̄ and 0 from z. Consumer expectations
are given by a distribution function F , with F(x) being the proportion of consumers
who expect the firm to exert high effort with probability less than or equal to x. We
denote by F the set of possible distribution functions on [0, 1] describing consumer
expectations. The firm’s revenue, as a function of F ∈ F, is denoted by p : F→ R.
We assume p is strictly increasing, so that higher expectations of high quality lead to
higher revenue,

F ′ � F ⇒ p(F ′) > p(F ),

where� is strict first-order stochastic dominance. We also assume thatp(Fn)→ p(F)

for all sequences {Fn} converging weakly to F .
An obvious example of a market interaction with these properties is perfect price

discrimination, in which each consumer buys one unit of the good in each period and
the firm charges each consumer her reservation price. We let p(1) and p(0) denote the
revenue of the firm in the special cases in which every consumer expects high effort
with probability 1 and 0, respectively.

We assume that

ρH − ρL > c,

ensuring that high effort is the efficient choice. We further assume that

p(1)− p(0) > c,

making H the pure Stackelberg action for the firm.2

2. The condition ρH − ρL > c suffices for H to be the firm’s Stackelberg action if the firm is a
perfect price discriminator, but not if the consumers retain some surplus.
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In the repeated game, the normal firm maximizes the discounted sum of expected
profits, with discount factor δ. There are two types of firm, normal and inept. An inept
firm can only choose low effort.

Before play begins, nature determines the original type of the firm, choosing
normal with probability µ0

0 (with the subscript distinguishing the normal type and the
superscript the prior expectation) and inept with probability 1− µ0

0. The firm learns its
type, but consumers do not. Moreover, in each subsequent period, there is a probability
λ that the firm is replaced, with probability µ0

0 of the new firm being normal. We view
λ as the probability that an exogenous change in personal circumstances, such as
reaching retirement age, causes an existing owner to leave the market, to be replaced
by a new owner.

Remark

18.1.4
Replacements Given our interpretation of a replacement as the departure of the
current firm, the firm’s effective discount factor is δ(1− λ) and the firm is con-
cerned only with payoffs conditional on not being replaced. If we interpreted a
replacement as a change in characteristic of a continuing firm (see remark 18.1.1),
the appropriate discount factor would be δ and the firm’s expected payoff would
include flow payoffs received (perhaps as a different type) after having been
“replaced.” Because the firm cannot affect the replacement probability, the two
formulations yield qualitatively similar results.

◆

Consumers cannot observe whether a replacement has occurred. For example,
the ownership of a restaurant might change without changing the restaurant’s name
and without consumers being aware of the change. Section 18.2 explains why the
possibility of changing type is crucial to the results.

At the beginning of period t , each consumer i is characterized by her posterior
probability that the firm is normal and her posterior probability that the firm will exert
high effort, denoted υti . If the firm is normal, it makes its (unobserved) effort choice.
The firm receives revenues that depend on the distribution F t of consumers’ beliefs
about the firm’s effort, but not on the firm’s type or action in that period. Consumers
observe their own signals and update beliefs about the type of firm. Finally, with
probability λ, the firm is replaced.

For consumer i ∈ [0, 1], a period t history is a t-tuple of signals, hti ∈ {z, z̄}t ≡
H t

2 , describing the payoffs consumer i has received in periods 0 through t − 1. The
set of all consumer histories is H2 = ∪t≥0H

t
2 . A belief function for consumer i is

a function υi :H2 → [0, 1], where υi(hti) is the probability consumer i assigns to
the firm exerting high effort in period t , given history hti . Because every history of
signals has positive probability under any sequence of effort choices of the firm, it
is necessarily the case that as long as consumers use Bayes’ rule and start with a
common prior, two consumers observing the same sequence of signals have the same
beliefs about the firm’s behavior. In particular, υi(ht2) = υj (ht2) for all ht2 ∈H2 and
all i, j ∈ [0, 1]. We accordingly describe consumers’ beliefs by a single function υ :
H2 → [0, 1]. Given a sequence of realized effort choices by the firm, ht1, there is
an induced probability measure on H t

2 , denoted ψt(· | ht1). Then, given υ and ht1,
Fυ,ht1

(x) = ψt({ht2 : υ(ht2) ≤ x}|ht1) and the revenue in period t after the history ht1
is given by p(Fυ,ht1).
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Recalling that an effort level deterministically induces a distribution of signals,
we can take a period t history ht1 for the firm to be the t-tuple of realized effort choices,
ht1 ∈ {L,H }t ≡H t

1 , describing the choices made in periods 0 through t − 1. The set
of all possible firm histories is H1 = ∪t≥0H

t
1 . A pure strategy for a normal firm is a

strategy, σ1 :H1 → {L,H }, giving the effort choice after observing history ht1.
If λ > 0, then with probability one, there will be an infinite number of replacement

events, infinitely many of which will introduce new normal firms into the game. This
description of histories ignores such replacement events. Restricting attention to firm
histories in H1 implies that a new normal firm, entering after the effort history ht1,
behaves in the same way as an existing normal firm after the same history. Although
this restriction may rule out some equilibria, any equilibrium under this assumption
will again be an equilibrium without it. We sometimes refer to a strategy σ1 as the
normal firm’s (or normal type’s) strategy, although it describes the behavior of all new
normal firms as well.

The pair (σ1, υ) will be an equilibrium if σ1(h
t
1) is maximizing for normal firms

after every effort history ht1 ∈H1, and consumers’ beliefs about effort choice, υ,
are (correctly) determined by Bayes’ rule. A precise general definition of equilibrium
requires tedious notation. The difficulty is that a mixed strategy, or a pure strategy in
which the firm sometimes takes high effort and there are replacements that might be
either normal or inept, gives rise to a random sequence of effort levels.3 Because the
firm’s strategy may call for different effort choices after different effort histories, a
consumer must then use her outcome history to form a posterior over the firm’s effort
histories, yielding an intricate updating process. In particular, the posterior probability
that a consumer assigns to the firm being normal is not necessarily a sufficient statistic
for her history of outcomes. In the equilibria we examine, however, the normal firm
takes the same equilibrium action after any realized effort-level history, implying that
a consumer’s posterior belief concerning the firm’s competency is a sufficient statistic
for her outcome history.

18.1.3 Reputation with Replacements

We examine a pure-strategy equilibrium in which the normal firm always chooses high
effort. Let ϕ(µ0 | z) denote the posterior probability that the firm is normal, after the
consumer has received a single signal, z ∈ {z, z̄}, given a prior probability of µ0 that
the firm is normal and that the normal firm chooses high effort:

ϕ(µ0 | z̄) = (1− λ) ρHµ0

ρHµ0 + ρL(1− µ0)
+ λµ0

0

and ϕ(µ0 | z) = (1− λ) (1− ρH )µ0

(1− ρH )µ0 + (1− ρL)(1− µ0)
+ λµ0

0.

These equations incorporate the assumption that a normal firm always chooses high
effort and the possibility of replacement. For any history ht2, let ϕ(µ0

0 | ht2) denote the
posterior belief of a consumer who had observed ht2 ∈H2.

3. Even if σ1(h
t
1) = H for all ht1 ∈ H1, the induced effort path will switch between high and low

effort whenever a replacement changes the type of the firm.
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Definition

18.1.1
A profile (σ1, υ) is a high-effort equilibrium if

1. σ1(h
t
1) = H is maximizing for the normal firm, for all ht1 ∈H1, given υ, and

2. υ(ht2) = ϕ(µ0
0 | ht2) for all ht2 ∈H2.

Because the only off-the-equilibrium-path information sets are those of the normal
firm, a high-effort equilibrium is trivially sequential.

Remark

18.1.5
Low-effort equilibrium The pair (σ1, υ)withσ1(h

t
1) = L for allht1 andυ(ht2) = 0

for all ht2 is the low-effort profile. Because consumers never expect the normal
firm to exert effort under this proflie, the signals are uninformative, and the normal
firm has no incentive to exert effort. The low-effort profile is thus a sequential
equilibrium for all costs of effort and all discount factors.

◆

Proposition

18.1.1
Suppose λ ∈ (0, 1). There exists c̄ > 0 such that for all 0 ≤ c < c̄, there exists a
high-effort equilibrium.

Proof Let µ′0 solve ϕ(µ0 | z) = µ0, and let µ′′0 solve ϕ(µ0 | z̄) = µ0. Suppose the nor-
mal firm always exerts high effort. Then, ϕ(µ0 | z) ∈ [λµ0

0, 1− λ+ λµ0
0] for all

µ0 ∈ [0, 1] and z ∈ {z, z̄}. Moreover, λµ0
0 < µ′0 < µ0

0 < µ′′0 < 1− λ+ λµ0
0 and

ϕ(µ0 | z) ∈ [µ′0, µ′′0] for all µ0 ∈ [µ′0, µ′′0] and all z ∈ {z, z̄}. For z ∈ {z, z̄},
ϕ−1(µ0 | z) denotes the inverse of µ0 under ϕ(· | z); for µ0 < minµ̌0 ϕ(µ̌0 | z),
set ϕ−1(µ0 | z) = 0 and for µ0 > maxµ̌0 ϕ(µ̌0 | z), set ϕ−1(µ0 | z) = 1. As
ϕ−1(µ0 | z)− ϕ−1(µ0 | z̄) > 0 for all µ0 ∈ (λµ0

0, 1− λ+ λµ0
0), there is a

constant β > 0 such that ϕ−1(µ0 | z)− ϕ−1(µ0 | z̄) ≥ β for all µ0 ∈ [µ′0, µ′′0].
LetGa1 denote the distribution over posteriors that the firm is normal in period

t + 1 (suppressing time superscripts) that results from a choice of effort a1,
given the distribution of consumer posteriors, G. Then we have Ga1(µ0) =
ρa1G(ϕ

−1(µ0 | z̄))+ (1− ρa1)G(ϕ
−1(µ0 | z)), so that

GL(µ0)−GH(µ0) = (ρH − ρL)(G(ϕ−1(µ0 | z))−G(ϕ−1(µ0 | z̄))) ≥ 0.

Observe that the average consumer posterior under G is
∫
µ0dG(µ0) = 1−∫

G(µ0)dµ0. Choose ε satisfying 0 < ε < min{β,µ′0 − ϕ−1(µ′0 | z̄), 1− µ′′0}.
Then, because ε < β,

∫ 1

0
G(ϕ−1(µ0 | z))−G(ϕ−1(µ0 | z̄)) dµ0

≥
∫ µ′′0

µ′0
G(ϕ−1(µ0 | z̄)+ ε)−G(ϕ−1(µ0 | z̄)) dµ0.

LetK be the largest integer k for which ϕ−1(µ′0 | z̄)+ kε ≤ µ′′0. By construction

ϕ−1(µ′0 | z̄)+ (K + 1)ε < 1. Construct an increasing sequence {µ′(k)0 }K+1
k=0 by

setting µ′(k)0 = ϕ(ϕ−1(µ′0 | z̄)+ kε | z̄); note that µ′(0)0 = µ′0. For k = 0, . . . , K ,

if f (k) : [µ′(0)0 , µ
′(1)
0 ] → [µ′(k)0 , µ

′(k+1)
0 ] is defined by the function f (k)(µ0) =

ϕ(ϕ−1(µ0 | z̄)+ kε | z̄), then f (k)(µ′(0)0 ) = µ′(k)0 and f (k)(µ′(1)0 ) = µ′(k+1)
0 . As

f (k) is continuous, it is onto. Also, f (k+1)(µ0) = ϕ(ϕ−1(f (k)(µ0) | z̄)+ ε | z̄),
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and because ϕ(· | z̄) is concave, df (k+1)(µ0)/dµ0 ≤ df (k)(µ0)/dµ0. Then for
k = 0, . . . , K ,∫ µ

′(k+1)
0

µ
′(k)
0

G(ϕ−1(µ0 | z̄)+ ε) dµ0

=
∫ µ

′(1)
0

µ
′(0)
0

G(ϕ−1(f (k)(µ0) | z̄)+ ε)df (k)(µ0)

dµ0
dµ0

=
∫ µ

′(1)
0

µ
′(0)
0

G(ϕ−1(f (k+1)(µ0) | z̄))df (k)(µ0)

dµ0
dµ0

≥
∫ µ

′(1)
0

µ
′(0)
0

G(ϕ−1(f (k+1)(µ0) | z̄))df (k+1)(µ0)

dµ0
dµ0.

Then, because µ′(0)0 = µ′0, µ′(K+1)
0 > µ′′0, and the support of G is a subset of

[µ′0, µ′′0],∫ µ′′0

µ′0
G(ϕ−1(µ0 | z̄)+ ε)−G(ϕ−1(µ0 | z̄)) dµ0

=
K∑
k=0

∫ µ
′(k+1)
0

µ
′(k)
0

G(ϕ−1(µ0 | z̄)+ ε)−G(ϕ−1(µ0 | z̄)) dµ0

≥
∫ µ

′(1)
0

µ
′(0)
0

K−1∑
k=0

G(ϕ−1(f (k+1)(µ0) | z̄))df (k+1)(µ0)

dµ0

−
K∑
k=0

G(ϕ−1(f (k)(µ0) | z̄))df (k)(µ0)

dµ0
dµ0

+
∫ µ

′(K+1)
0

µ
′(K)
0

G(ϕ−1(µ0 | z̄)+ ε) dµ0

=
∫ µ

′(K+1)
0

µ
′(K)
0

G(ϕ−1(µ0 | z̄)+ ε) dµ0 −
∫ µ

′(1)
0

µ
′(0)
0

G(ϕ−1(µ0 | z̄)) dµ0

≥ G(ϕ−1(µ
′(K)
0 | z̄)+ ε)(µ′(K+1)

0 − µ′(K)0 )−G(ϕ−1(µ
′(1)
0 | z̄))(µ′(1)0 − µ′(0)0 )

≥ µ′(K+1)
0 − µ′(K)0 ,

where the last inequality is implied by ϕ−1(µ
′(1)
0 | z̄) ≤ µ′0 and ϕ−1(µ

′(K)
0 | z̄)+

ε ≥ µ′′0. Thus,
∫ 1

0 [GL(µ0)−GH(µ0)] dµ0 is bounded away from 0 (the bound
depends only on ε and not on the period t distribution G or on t), and
(because the normal firm is always expected to be choosing high effort) so is∫ 1

0 FL(µ0)− FH (µ0) dµ0, where Fa1 is the distribution in period t + 1 of con-
sumer expectations of the probability that the firm exerts high effort. This in turn
implies that there is a constant � (independent of t) such that period t + 1 rev-
enues after high effort in period t exceed those after low effort in period t by at
least �. Thus a sufficient condition for an equilibrium with high effort is that the
discounted value of this difference exceeds the cost, c < δ(1− λ)�.

■
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It is expected that a high-effort equilibrium exists only if the cost of high effort is
not too large. The upper bound for c being “not too large” is in turn nonzero only if there
is a positive probability of an inept replacement (λ(1− µ0

0) > 0). The value functions
induced by high and low effort approach each other as the posterior probability µt0
assigned to the normal type approaches 1, because the values diverge only through
the effect of current outcomes on future expectations, and current outcomes have very
little effect on future expectations when consumers are currently quite sure of the
firm’s type. The prospect of inept replacements bounds the posterior µt0 away from
1, ensuring that high effort is always (before cost) more valuable than low effort, and
thus that high effort will be optimal for sufficiently small c > 0.

18.1.4 How Different Is It?

The model of section 18.1.3 exhibits five features, the first four of which are not
commonly found in reputation models.

1. Player 1’s type is not fixed immutably at the beginning of the game but evolves
according to a Markov process.

2. The commitment type is a “bad” type, from whom player 1 would like to
separate.

3. The collection of small and anonymous uninformed players receive idiosyn-
cratic signals.

4. The small and anonymous players respond continuously to changes in their
beliefs.

5. The signals received by the uninformed players do not depend on their actions.
Given the interpretation of player 1 as a firm and player 2 as consumers, this
suggests that consumers never stop purchasing from the firm, no matter how
pessimistic they might be concerning the firm’s type or effort level.

The next five sections investigate the role of each feature in the reputation result.

18.2 The Role of Replacements

Insight into the role of replacements is most effectively provided by examining the
special case of the model in which there are no replacements, that is, λ = 0.

Suppose first there are no replacements and µ0
0 = 1, so that the original and only

firm is known to be normal. It is then immediate that the only pure-strategy equilibrium
of the repeated game calls for the firm to always exert low effort. A consumer who
receives the (idiosyncratic) signal z when the firm is supposed to exert high effort will
assume the firm exerted high effort but the consumer received an unlucky draw from
the monitoring distribution. Given that the signals are idiosyncratic, bad signals will
then prompt no punishments from consumers, creating an irresistible incentive for the
firm to exert low effort and destroying the equilibrium.

The logic of the complete information case also holds with incomplete information
(µ0

0 < 1), in the absence of replacements, though the argument is more involved.
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Suppose the normal firm is following a pure strategy. The posterior probability that
the firm is normal, given a prior probability of µ0 and the signal z ∈ {z, z̄} is (where
α1 ∈ {0, 1} is the probability of H )

ϕ(µ0 | z̄) = [α1ρH + (1− α1)ρL]µ0

[α1ρH + (1− α1)ρL]µ0 + ρL(1− µ0)
(18.2.1)

and

ϕ(µ0 | z) = [α1(1− ρH )+ (1− α1)(1− ρL)]µ0

[α1(1− ρH )+ (1− α1)(1− ρL)]µ0 + (1− ρL)(1− µ0)
. (18.2.2)

Extending the notation in an obvious manner, we write ϕ(µ0
0 | ht2) for the update from

a prior µ0
0 after the history ht2. If a consumer believes the normal firm is following the

pure strategy σ1, she attaches probability ϕ(µ0
0 | ht2)αt1(σ1) to the firm exerting high

effort, after observing history ht2.

Proposition

18.2.1
If there are no replacements (λ = 0), there is a unique pure-strategy sequential
equilibrium, and in this equilibrium the normal player 1 exerts low effort in every
period.

Proof Suppose (σ1, υ) is an equilibrium and σ1 is a pure strategy. Suppose σ1 calls for
the normal firm to sometimes exert high effort in equilibrium. Because there are
no replacements, the firm’s history evolves deterministically (recall that an effort
level maps deterministically into a distribution of consumer signals), and hence
σ1 determines the periods in which the firm exerts high effort.

It is immediate that σ1 must call for high effort infinitely often. If this were not
the case, there is a final period t∗ in which the firm exerts high effort. The revenue
in every subsequent period would then be p(0), independently of the outcome in
period t∗, ensuring that high effort is suboptimal in period t∗.

Hence, let Tn(H) ≡ {t ≥ n : at1(σ1) = H } be those periods larger than n

in which high effort is exerted. Similarly, let Tn(L) ≡ {t ≥ n : at1(σ1) = L} =
{n, n+ 1, . . .}\Tn(H). Then, for t ∈ Tn(L), all consumers expect the firm to
choose low effort with probability one, that is,

p(F t ) = p(0),
where F t is the distribution of consumer expectations over player 1’s effort level
in period t .

For any period t ∈ Tn(H), we have, for any history ht2,

υ(ht2) = ϕ(µ0
0 | ht2),

and hence the probability distribution function F t of consumers’ period t proba-
bilities of high effort is given by the distribution function of consumers’ posterior
beliefs that the firm is normal, Gt . If t ∈ Tn(L), then Gt+1 = Gt . Moreover,
because Tn(H) �= ∅ for all n, conditional on the firm being normal, Gt(x)→ 0
for all x < 1 as t →∞, that is, consumers eventually become convinced they
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are facing the normal firm. Thus, for all ε > 0, there exists t (ε) such that for
all t ≥ t (ε), Gt(1− ε) < ε. That is, at least a fraction 1− ε of consumers
have observed a private history ht2 that yields an update ϕ(µ0

0 | ht2) > 1− ε.
Observe that for all η > 0 and k ∈ N, there exists ε(η, k) > 0 such that µ0 >

1− ε(η, k)⇒ ϕ(µ0 | z(k)) > 1− η, where z(k) is the history of k consecutive
realizations of the bad signal z, which in turn implies that for any k-period history
hk2, ϕ(µ0 | hk2) > 1− η. Let Gη be the distribution function given by Gη(x) = η
for x < 1− η and Gη(x) = 1 for x ≥ 1− η. Then, for all t ′ ≥ t (ε(η, k)) and all
t ∈ {t ′, . . . , t ′ + k},Gt first order stochastically dominatesGη. Thus the continu-
ation payoff from deviating in a period t ′ ∈ Tt(ε(η,k))(H) is at least (omitting the
normalization (1− δ))

p(Gη)+
∑

t∈Tt ′ (H)
t ′+1≤t≤t ′+k

δt−t ′(p(Gη)− c)+
∑

t∈Tt ′ (L)
t ′+1≤t≤t ′+k

δt−t ′p(0)+ δk+1

(1− δ) (p(0)− c),

for any k > 0. Becausep(Gη)→ p(1) as η→ 0, by choosing k large and η small,
this lower bound can be made arbitrarily close to

p(1)+
∑

t∈Tt ′ (H),
t≥t ′+1

δt−t ′(p(1)− c)+
∑

t∈Tt ′ (L),
t≥t ′+1

δt−t ′p(0).

Because the continuation payoff from following σ1 is no more than∑
t∈Tt ′ (H)

δt−t ′(p(1)− c)+
∑

t∈Tt ′ (L)
δt−t ′p(0),

the normal firm has a profitable deviation. Thus, there is no equilibrium in pure
strategies with the normal firm ever choosing high effort.

■

The possibility of an inept type potentially provides the firm with an incentive to
exert high effort, because a consumer who receives signal z “punishes” the firm by
increasing the probability with which the consumer thinks the firm is inept. The diffi-
culty is that a firm who builds a reputation is too successful at building the reputation.
Eventually, almost all consumers become almost certain that the firm is normal, in the
sense that the posterior probability attached to a normal firm gets arbitrarily close to
1 for an arbitrarily large subset of consumers. The incentive to exert high effort arises
only out of the desire to affect consumers’ beliefs about the firm. As the posterior
probability of a normal firm approaches unity, the effect of signal z or z̄ on this belief
becomes smaller. At some point, the current signal will have such a small effect on
the current belief that the cost c of high effort overwhelms the very small difference in
beliefs caused by signal z̄ rather than z, and the normal firm will then find it optimal to
revert to low effort. Consumers and the firm can foresee that this will happen, however,
causing the equilibrium to unravel. The only pure-strategy equilibrium calls for only
low effort to be exerted.

Remark

18.2.1
Mixed strategies The complete information version of this model shares many
features with the model analyzed in section 12.5. In section 12.5 (and in a variant
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of the current model discussed in section 18.4.1), the uninformed players choose
from a discrete set, so mixed strategy equilibria can be constructed (using similar
techniques to belief-free equilibria). It is not known if an analogous approach
works in the current context, nor whether belief-free equilibria exist in incomplete
information games (see the discussion at the end of section 18.3.1).

◆

Remark

18.2.2
Symmetric information A similar role for replacements was described by
Holmström (1982) in the context of a signal-jamming model of managerial
employment. The wage of the manager in his model is higher if the market pos-
terior over the manager’s type is higher, even if the manager chooses no effort.
In contrast, the revenue of a firm in the model of section 18.1 is higher for higher
posteriors only if consumers also believe that the normal firm is choosing high
effort. Because the market directly values managerial talent, Holmström’s man-
ager always has an incentive to increase effort in an attempt to enhance the market
estimation of his talent. In contrast to proposition 18.2.1, an equilibrium then exists
(without replacements) in which the manager chooses effort levels that are higher
than the myopic optimum. In agreement with the spirit of proposition 18.2.1, how-
ever, this overexertion disappears over time, as the market’s posterior concerning
the manager’s type approaches 1. Holmström (1982) is one of the first publications
to use changing types to obtain a sustained reputation effect.

Neither the market nor the manager knows the talent of the manager in Holm-
ström’s (1982) model. The manager’s evaluation of the profitability of effort then
reflects only market beliefs. In contrast, the normal firms in section 18.1 are more
optimistic about the evolution of posterior beliefs than are consumers. However,
the underlying mechanism generating incentives is the same. When the firms in
section 18.1 do not know their types, being symmetrically uninformed with con-
sumers, the existence of a high-effort equilibrium is possible with replacements
and impossible without.

◆

Propositions 18.1.1 and 18.2.1 combine to provide the seemingly paradoxical
result that it can be good news for the firm to have consumers constantly fearing that
the firm might “go bad.” The purpose of a reputation is to convince consumers that
the firm is normal and will exert high effort. As we have just seen, the problem with
maintaining a reputation in the absence of replacements is that the firm essentially
succeeds in convincing consumers it is normal. If replacements continually introduce
the possibility that the firm has turned inept, then there is an upper bound, short of unity,
on the posterior µt0, so the difference in posteriors after different signals is bounded
away from 0. The incentive to exert high effort in order to convince consumers that
the firm is still normal then always remains.

Remark

18.2.3
Competition and beliefs Replacements are not the only mechanism by which
incentives for high effort can be sustained. Section 18.4.6 discusses competition
in a model where consumers can leave a firm (and so impose a significant cost)
after any reduction in beliefs.

◆



580 Chapter 18 ■ Modeling Reputations

18.3 Good Types and Bad Types

The next item on our agenda is to explore the differing roles of good and bad
commitment types in reputation results. We do this in the context of the product-
choice game, reproduced in figure 18.3.1, played by a long-lived player 1 facing a
single short-lived player 2. This is the standard long-lived/short-lived player setting
considered in sections 2.7 and 7.6 and examples 15.3.1 and 15.4.1.

18.3.1 Bad Types

Suppose first that the set of possible types � is given by {ξ0, ξ(L)}, so that player 1
may be either normal or committed to action L. The lower bound on player 1’s payoff,
established in proposition 15.3.1, in this case tells us only that in the repeated game of
perfect monitoring, player 1 must earn at least his minmax payoff of 1.

A tighter bound is not available, and the possibility of an inept type in this setting
has no effect on the set of payoff possibilities for player 1. For example, the pooling
profile in which the normal type (as well as the inept type) always playsL and player 2
always plays � is trivially an equilibrium. The introduction of a rare inept type also
does not alter the conclusion of proposition 3.6.1. Any payoff in the interval (1, 2] is
also an equilibrium payoff for a sufficiently patient player 1 in the game of incomplete
information.

Proposition

18.3.1
For any ε > 0 and v1 ∈ [1, 2], there is a discount factor δ such that for any
δ ∈ (δ, 1) there exists a subgame-perfect equilibrium with payoff to the normal
player 1 within ε of v1.

Proof Fix v1 ∈ [1, 2] and ε > 0. In the game of complete information with normal player
1, there exists an equilibrium σ with payoff v1 for player 1 (proposition 3.6.1).
Let strategies in the incomplete information game specifyH for the normal player
1 and L for the commitment type in the first period (with player 2 playing a best
response), with any history featuring L in the first period followed by permanent
play ofL� and any history featuringH by strategy profile σ . For sufficiently large
δ, this is an equilibrium of the game of incomplete information with a payoff for
the normal player 1 contained in [δv1, 2(1− δ)+ δv1], and hence within ε of v1.

■

The difficulty in using the possibility of the inept type to impose bounds on player
1’s payoff is that there exists a low equilibrium payoff for the normal player 1 in the

h �

H 2, 3 0, 2

L 3, 0 1, 1

Figure 18.3.1 Product-choice game.
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game of incomplete information. This can be used as a punishment if player 1 does
not choose an action revealing his type. An equilibrium strategy profile can thus be
constructed that creates incentives for player 1 to reveal his type and then proceeds as
in a game of complete information.

Suppose that the monitoring is imperfect and public (as in section 7.6.2). Once
again, the lower bound established by the appropriate reputation argument, proposi-
tion 15.4.1, has no force, implying only that player 1 must earn at least his minmax
payoff. Less is known about the structure of equilibria in this case. For example,
consider the belief-free equilibrium constructed for the complete information product-
choice game of section 7.6.2. In that equilibrium, player 1 plays 1

2 ◦H + 1
2 ◦ L in

each period, ensuring player 2’s indifference, with player 2 mixing as a function of her
signal to ensure the optimality of player 1’s mixture. In an attempt to reproduce this
in the game of incomplete information, suppose the normal player 1 chooses L with
probability

1− 2µt(ξ(L))

2− 2µt(ξ(L))
,

where µt(ξ(L)) is the period t posterior that player 1 is type ξ(L). As long as
µt(ξ(L)) < 1/2, this probability is well defined and ensures that player 2 faces the
expected action 1

2 ◦H + 1
2 ◦ L. However, each signal y pushes upward the posterior

belief that player 1 is type ξ(L). As this belief increases, the probability the normal
type attaches to L decreases, exacerbating the belief revision. With probability 1, the
posterior that player 1 is the type ξ(L) will be pushed above 1/2, at which point the
equilibrium collapses.4

The structure of equilibria in repeated games of imperfect monitoring and incom-
plete information remains relatively unexplored. Section 17.3 constructs an equilibrium
for the twice-played product-choice game that illustrates the complexities.

18.3.2 Good Types

Now consider the infinitely repeated product-choice game with the set of types� given
by {ξ0, ξ(H)}, so that player 1 is either normal or committed to the pure Stackelberg
action H . With either perfect or imperfect monitoring, the result is straightforward.
Propositions 15.3.1 and 15.4.1 ensure that a sufficiently patient normal player 1 earns
a payoff arbitrarily close to 2. For example, there is an equilibrium in the perfect
monitoring game in which the normal player 1 plays H in every period, supported by
the threat that any deviation to L prompts the perpetual play of L�.5

We now add replacements to the perfect monitoring version of the model. In each
period, player 1 continues to the next period with probability 1− λ > 1/2, and is
replaced by a new player 1 with probability λ. The type of the new player 1 is ξ(H)

4. The integrity of the construction of the belief-free equilibrium can be preserved using replace-
ments, as long as the probability of inept types is sufficiently low and the replacement rate is
sufficiently high that the posterior on ξ(L) can never exceed 1/2.

5. Player 1 might consider playingH once this punishment has been triggered, in hopes of resusci-
tating player 2’s belief that 1 is the commitment type, but the consistency condition of sequential
equilibrium precludes success (remark 15.3.2).
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with probability µ0(ξ(H)) ≡ µ̂0, the prior probability of the commitment type, with
complementary probability on the normal type.

A profile in which the normal player 1 always plays H , supported by permanent
reversion toL� onceL is observed, is no longer a sequential equilibrium, when player 1
is sufficiently patient and replacements sufficiently unlikely. Suppose that under this
profile, the punishment is triggered. At this point, the first play ofH by player 1 causes
player 2 to believe that player 1 has been replaced by a commitment type. Given that
replacements are not too likely, 2’s best response is to play h. But then the normal
type of player 1, if sufficiently patient, will play H , vitiating the optimality of the
punishment. Hence we cannot simply transfer the no-replacement equilibrium profile
to the game with replacements.

We construct an equilibrium for the case in which player 1 is sufficiently patient.
In each period t in which µ̂t is less than or equal to 1/2, the normal player 1 attaches
the probability

α1(µ̂
t ) ≡ 1− 2µ̂t

2− 2µ̂t

toH . This implies that in such a period, player 2 faces the mixed action 1
2 ◦H + 1

2 ◦ L,
because

µ̂t + (1− µ̂t )1− 2µ̂t

2− 2µ̂t
= 1

2
, (18.3.1)

and thus is indifferent between h and �. When µ̂t ≤ 1/2, player 2 mixes, putting
probability α2(µ̂

t ) (to be calculated) on h. For values µ̂t > 1/2, player 2 plays h
for sure and the normal player 1 chooses L. Notice that the actions of the consumer
and the normal player 1 depend only on the posterior probability that player 1 is the
Stackelberg type, giving us a profile in Markov strategies (section 5.6).

It remains only to determine the mixtures chosen by player 2, which are designed so
that the normal player 1 is behaving optimally. Letϕ(µ̂ | H)be the posterior probability
attached to player 1 being ξ(H), given the prior µ̂ and an observation of H . If the
normal type chooses H with probability α1(µ̂), we have

ϕ(µ̂ | H) = (1− λ) µ̂

µ̂+ (1− µ̂)α1(µ̂)
+ λµ̂0 = 2(1− λ)µ̂+ λµ̂0, (18.3.2)

using (18.3.1) for the second equality, and the corresponding calculation for L is

ϕ(µ̂ | L) = λµ̂0.

For each value µ̂ ∈ [λµ̂0, ϕ(λµ̂0 | H)), let µ̂(0), µ̂(1), . . . , µ̂(N) be the sequence
of posterior probabilities (with dependence on µ̂ suppressed in the notation) satisfying
µ̂(i) = ϕ(µ̂(i−1) | H) for (i = 1, . . . , N), with µ̂(N) being the first such probabil-
ity to equal or exceed 1/2. We associate one such sequence with every value
µ̂ ∈ [λµ̂0, ϕ(λµ̂0 | H)), giving an uncountable collection of finite sequences.

The function ϕ(µ̂ | H) defined in (18.3.2) is linear in µ̂, with positive intercept
and slope exceeding 1. This ensures that no two of the sequences we have constructed
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have terms in common. In addition, the union of the sequences’ terms is a superset of
[λµ̂0, 1/2].

We now construct player 2’s strategy. For each sequence of posteriors we have just
constructed, we attach a player 2 action to each posterior in the sequence. Fix such a
sequence {µ̂(0), . . . , µ̂(N)}. LetV (i)0 be the value to the normal player 1 of continuation
play, beginning at posterior µ̂(i). Player 2 must randomize so that the normal type of
player 1 is indifferent between L and H , and hence to satisfy, for k = 0, . . . , N − 1,

V
(k)
0 = (2α2(µ̂

(k))+ 1)(1− δ(1− λ))+ δ(1− λ)V (0)0 (18.3.3)

= 2α2(µ̂
(k))(1− δ(1− λ))+ δ(1− λ)V (k+1)

0 , (18.3.4)

where we normalize by (1− δ(1− λ)). Finally,

V
(N)
0 = 3(1− δ(1− λ))+ δ(1− λ)V (0)0 , (18.3.5)

because the normal player 1 chooses L with certainty for µ̂t > 1/2.
Solving (18.3.3) for k = 0 gives

V
(0)
0 = 2α2(µ̂

(0))+ 1. (18.3.6)

Solving the equality of the right side of (18.3.3) with (18.3.4) yields, for k =
0, . . . , N − 1,

V
(k+1)
0 = V (0)0 + 1− δ(1− λ)

δ(1− λ) . (18.3.7)

These two equations tell us a great deal about the equilibrium. The value V (0)0 is

relatively low, whereas the remaining values V (1)0 = V (2)0 = · · · = V (N)0 ≡ V̄0 are
higher and equal to one another. This in turn implies (from (18.3.3)) that α2(µ̂

(0))

is relatively low, and the remaining probabilities α2(µ̂
(1)) = · · · = α2(µ̂

(N−1)) ≡ ᾱ2

are higher and equal to one another. These properties reflect the special structure of the
product-choice game, most notably the fact that the stage-game payoff gain to player
1 from playing L rather than H is independent of player 2’s action.

It remains to calculate α2(µ̂
(0)) and ᾱ2, confirm that both are probabilities, and

confirm that a normal player 1 facing posterior µ̂(N) prefers to playL. All other aspects
of player 1’s strategy are optimal because he is indifferent between H and L at every
other posterior belief.

Rearrange (18.3.5) and (18.3.7) to give[
1 − δ(1− λ)
1 − 1

][
V̄0

V
(0)
0

]
=
[

3(1− δ(1− λ))
1−δ(1−λ)
δ(1−λ)

]
,

and then solve for

V̄0 = 2 (18.3.8)

and V
(0)
0 = 3δ(1− λ)− 1

δ(1− λ) .



584 Chapter 18 ■ Modeling Reputations

Inserting the second of these in (18.3.6), we calculate

α2(µ̂
(0)) = 2δ(1− λ)− 1

2δ(1− λ) ,

which falls in the interval (0, 1) if and only if δ(1− λ) > 1/2, which becomes the
“sufficient patience” condition for this equilibrium. From (18.3.4) for any k > 0, we
have (because V (k)0 = V̄0),

V̄0 = 2ᾱ2(1− δ(1− λ))+ δ(1− λ)V̄0,

so that

V̄0 = 2ᾱ2,

and so (from (18.3.8)) ᾱ2 = 1.
The final step is to verify that player 1 prefers L when the posterior is µ̂(N), at the

cost of temporarily removing any possibility in player 2’s mind that he is type ξ(H) and
triggering a temporary reduction in the probability with which consumers play h. This
is not obvious, because choosing H leaves the posterior unchanged and preserves a
regime in which consumers choosehwith probability one. However, a simple argument
suffices to show that L is optimal for any µ̂(N) ≥ 1/2, on noting that the equilibrium
value of any such posterior equals V (N)0 . The required optimality condition is

3(1− δ(1− λ))+ δ(1− λ)V (0)0 ≥ 2(1− δ(1− λ))+ δ(1− λ)V (N)0 .

This is implied by the fact that mixing is optimal for posterior µ̂(N−1), or

(2α2(µ̂
(N−1))+ 1)(1− δ(1− λ))+ δ(1− λ)V (0)0

= 2α2(µ̂
(N−1))(1− δ(1− λ))+ δ(1− λ)V (N)0 .

Phelan (2001) constructs a similar equilibrium in a game that does not have the
equal-gain property of the product-choice game, that player 1’s payoff increment from
playing H is independent of player 2’s action. The equilibrium then has a richer
dynamic structure including mixing on the part of player 2 for any posterior less
than 1/2.

The breakdown of player 1’s reputation in this model is unpredictable, in the sense
that the probability of a reputation-ending exertion of low effort is the same regardless
of the current posterior that player 1 is good. A normal player 1 who has labored long
and hard to build his reputation is just as likely to spend it as is one just starting. Once
the reputation has been spent, it can be rebuilt, but only gradually, as the posterior
probability of a good type gets pushed upward once more.

18.4 Reputations with Common Consumers

If we interpret short-lived players as a continuum of long-lived but anonymous players
and assume that they receive common signals and play pure strategies, then the model
is formally equivalent to the case of a single short-lived player (see section 15.4.3).
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In contrast, our analysis rests heavily on the assumption that the anonymous players
receive idiosyncratic signals. For example, section 18.2 notes that in the absence of
replacements, consumers who receive bad signals do not punish the firm because they
know (in a high-effort profile) that the firm exerted high effort. If the consumers receive
common signals, there is no difficulty in using bad signals to trigger punishments, even
if consumers are confident the firm exerted high effort. This type of dependence on
public signals underlies the typical intertemporal incentive in public monitoring games.
The difficulty with idiosyncratic signals is that a bad signal brings a consumer no infor-
mation about what other consumers have seen, preventing the consumer coordination
that is essential for effective incentives.

This section explores the role of the idiosyncratic consumer signals with which we
worked in section 18.1 by examining the corresponding model with common consumer
signals. We are especially interested in exploring the extent to which the idiosyncrasy
of signals (like private monitoring in part III), by obstructing the ability to coordinate
continuation play, imposes constraints on the ability to construct equilibria.

18.4.1 Belief-Free Equilibria with Idiosyncratic Consumers

Because idiosyncratic signals and private monitoring appear to make the coordination
of continuation play difficult in a similar manner, it is natural to consider the possibility
of constructing belief-free equilibria in a model with small and anonymous players
who receive idiosyncratic signals. As an illustration, consider a version of the private
monitoring product-choice game analyzed in section 12.5. The stage game is again
figure 18.3.1, with the set of player 2 private signals {z, z̄} and the marginal signal
distribution given by

π2(z̄ | a) =
{
p, if a1 = H ,

q, if a1 = L,

From the analysis in sections 7.6.2 and 12.5, there is an equilibrium in which player
1 plays 1

2 ◦H + 1
2 ◦ L in every period, and player 2 chooses h with probability ᾱ2

after signal z̄ and probabilityα2 after signal z, where ᾱ2 = α2 + 1/(2δ(p − q)) (hence
requiring 2δ(p − q) ≥ 1). There is a continuum of such equilibria, defined by the
requirements thatα2, ᾱ2 ∈ [0, 1]. Note that these equilibria do not require that player 1
receive any signal about the play of player 2 or about player 2’s signals.

Now suppose there is a continuum of small and anonymous consumers who receive
idiosyncratic signals with the above marginal. Consider the profile in which player 1
(the firm) randomizes uniformly over H and L in every period and each consumer
follows a personal version of the equilibrium strategy, playing h with probability ᾱ2

after she receives signal z̄ and probabilityα2 after signalz. Because the original profile is
a belief-free equilibrium (chapter 14), it is immediate that this profile is an equilibrium
of the idiosyncratic consumer game. The firm’s mixture ensures that the consumers
are playing optimally, whereas the firm’s continuation value is independent of history,
ensuring that the firm’s actions are optimal.

There is no obvious way to extend the connection between games with private
and idiosyncratic monitoring beyond belief-free equilibria. Indeed, it is not clear what
it means to transfer a profile that is not belief-free from a game of private monitoring
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and short-lived player 2 to the corresponding game with idiosyncratic player 2 signals,
because it is not clear how the player 1’s behavior is to be specified as a function of the
distribution of signals about player 2. Moreover, it is not clear how to apply belief-free
techniques to the (complete information version of the) model of section 18.1, where
consumers do not have a discrete choice.

18.4.2 Common Consumers

We now investigate the extent to which a model with common signals can be used to
shed light on the model with idiosyncratic signals. Because the model with idiosyncratic
signals is difficult to analyze beyond the straightforward results in section 18.1, we are
especially interested in the extent to which the more tractable case of common signals
is a good substitute.

We retain the model of section 18.1, except that in each period, either all consumers
receive a common good outcome ȳ (with probability ρa1 , given effort level a1 from
the firm) or all receive a common bad outcome y (with probability 1− ρa1 ). We refer
to this as the case of common consumers.

A deterministic sequence of effort levels from the firm now induces a stochastic
rather than deterministic sequence of signals, in the aggregate as well as from the point
of view of the consumer. We restrict attention to public strategy profiles. Hence after
any history, every consumer holds the same expectation of high effort. It is then natural
to assume the pricing function from section 18.1 sets the price equal to consumers’
expected payoff. If the firm is thought to be normal with probability µ0, and if the
normal firm is thought to choose high effort with probability α, then the price will be

p(µ0α) = µ0αρH + (1− µ0α)ρL.

It is immediate that there exist equilibria in which the normal firm often exerts
high effort. Let the normal firm initially exert high effort and continue to do so as long
as signal ȳ is realized, with the period t price given by µt0ρH + (1− µt0)ρL, where
µt0 is the period t posterior probability of a normal firm. Let signal y prompt L ≥ 1
periods of low effort and price ρL. These strategies will be an equilibrium as long as
the cost c is sufficiently small. Allowing consumers to receive a common signal thus
has an important impact, restoring high-effort equilibria without an appeal to either
incomplete information or replacements.

The equilibria we have just sketched, with punishments triggered by the signal
y, involve precisely the coordinated behavior that is impossible with idiosyncratic
signals. To bring the common consumer model more in line with the idiosyncratic
consumer model, we now rule out such coordination by restricting attention to Markov
strategies. Section 5.5.2 discusses Markov strategies in complete information games.
The extension of these ideas to games of incomplete information is in general not
trivial, but in the current context µt0 is the natural Markov state. In other words, we
require that play of all players be identical after two histories that lead to the same
posterior belief of consumers that the firm is normal.

A Markov strategy for the normal firm can be written as a mapping

α : [0, 1] → [0, 1],
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where α(µ0) is the probability of choosing action H when the consumer’s posterior
probability of a normal firm is µ0. The consumers’ beliefs are updated according to

ϕ(µ0 | ȳ) = (1− λ) [ρHα(µ0)+ ρL(1− α(µ0))]µ0

[ρHα(µ0)+ ρL(1− α(µ0))]µ0 + ρL(1− µ0)
+ λµ0

0

and

ϕ(µ0 | y)
= (1− λ)[(1− ρH )α(µ0)+ (1− ρL)(1− α(µ0))]µ0

[(1− ρH )α(µ0)+ (1− ρL)(1− α(µ0))]µ0 + (1− ρL)(1− µ0)
+ λµ0

0.

Given a public history ht ∈H t ≡ {y, ȳ}t , the resulting consumer posterior is denoted
by ϕ(µ0

0 | ht ), where µ0
0 is the prior in period 0. Given a Markov strategy α, and the

updating, let σα1 :H → [0, 1] denote the implied strategy, σα1 (h
t ) = α(ϕ(µ0

0 | ht )).
Definition

18.4.1
The strategy α is a Markov equilibrium if σα1 is maximizing for the normal firm.

Because every public history has positive probability, every Markov equilibrium
is sequential.

18.4.3 Reputations

The following gives us a reputation result analogous to proposition 18.1.1 of the
idiosyncratic consumer case.

Proposition

18.4.1
Suppose λ ∈ (0, 1). Then there exists c̄ > 0 such that for all 0 ≤ c < c̄, there
exists a Markov equilibrium in which the normal firm always exerts high effort.

Proof We simplify the notation in this proof by shortening µ0 to simply µ. Suppose
the normal firm always exerts high effort. Then given a posterior probability µ
that the firm is normal, the firm’s revenue is given by p(µ) = µρH + (1− µ)ρL.
Letµy = ϕ(µ | y) andµxy = ϕ(µ | xy) for x, y ∈ {y, ȳ}. Thenµȳȳ > µȳ > µ >

µy > µyy and µȳy > µyy for y ∈ {y, ȳ}. The value function of the normal firm is
given by

V0(µ) = (1− δ(1− λ))(p(µ)− c)+ δ(1− λ)[ρHV0(µȳ)+ (1− ρH )V0(µy)].

The function V0 is monotonic in µ. In particular, let Gt(µt ;µ, t ′) be the dis-
tribution of consumer posteriors µt at time t > t ′ given that normal firms exert
effort and given period t ′ posterior µ. If µ > µ′, then Gt(µt ;µ, t ′) first-order
stochastically dominatesGt(µt ;µ′, t ′) for all t > t ′. The same is then true for the
distribution of revenues, which suffices for the monotonicity of V0.

The payoff from exerting low effort and thereafter adhering to the equilibrium
strategy is

V0(µ;L) ≡ (1− δ(1− λ))p(µ)+ δ(1− λ)[ρLV0(µȳ)+ (1− ρL)V0(µy)].



588 Chapter 18 ■ Modeling Reputations

Thus, V0(µ)− V0(µ;L) is given by

− c(1− δ(1− λ))+ δ(1− λ)(1− δ(1− λ))(ρH − ρL)(p(µȳ)− p(µy))
+ δ2(1− λ)2(ρH − ρL){ρH [V0(µȳȳ)− V0(µyȳ)] + (1− ρH )[V0(µȳy)− V0(µyy)]}

≥ (1− δ(1− λ)){−c + δ(1− λ)(ρH − ρL)[p(µȳ)− p(µy)]}, (18.4.1)

where the monotonicity of V0 in µ yields the inequality.
From an application of the one-shot deviation principle, it is an equilibrium for

the normal firm to always exert high effort, with the implied consumer beliefs, if
and only if V0(µ)− V0(µ;L) ≥ 0 for all feasible µ. From (18.4.1), a sufficient
condition for this inequality is

p(µȳ)− p(µy) ≥ c

δ(1− λ)(ρH − ρL) . (18.4.2)

The set of feasible posteriors is contained in the interval [λµ0, 1− λ(1− µ0)],
where µ0 is the prior probability of a normal firm. In addition, the minimum of
p(µȳ)− p(µy) = p(ϕ(µ | ȳ))− p(ϕ(µ | y)) over µ ∈ [λµ0, 1− λ(1− µ0)] is
strictly positive because p and ϕ are continuous. We can thus find a value of c
sufficiently small that (18.4.2) holds for all µ ∈ [λµ0, 1− λ(1− µ0)].

■

As for idiosyncratic consumers, in equilibrium, the difference between the value of
choosing high effort and the value of choosing low effort must exceed the cost of high
effort. However, the value functions corresponding to high and low effort approach
each other as µ0 → 1, because the values diverge only through the effect of current
outcomes on future posteriors and current outcomes have very little effect on future
posteriors when consumers are currently quite sure of the firm’s type. The smaller the
probability of an inept replacement, the closer the posterior expectation of a normal
firm can approach unity. Replacements ensure that µ0 can never reach unity, and thus
there is always a wedge between the high-effort and low-effort value functions. As
long as the cost of the former is sufficiently small, high effort will be an equilibrium.

18.4.4 Replacements

Once again, the possibility of replacements is important in this result. In the absence
of replacements, consumers eventually become so convinced the firm is normal
(i.e., the posterior µ0 becomes so high), that subsequent evidence can only shake
this belief very slowly. Once this happens, the incentive to choose high effort disap-
pears. If replacements continually introduce the possibility that the firm has become
inept, then the firm cannot be “too successful” at convincing consumers it is normal,
and so there is an equilibrium in which the normal firm always exerts high effort.

We illustrate the importance of replacements by characterizing equilibrium behav-
ior in the model without replacements. We begin with a particularly simple case,
characterized by a restriction on the parameters ρH and ρL.

Proposition

18.4.2
Suppose there are no replacements (λ = 0) and there is some m ∈ N such that
(1− ρH )ρmH = (1− ρL)ρmL . Then there is a unique Markov equilibrium in pure
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strategies, and in this equilibrium the normal firm exerts low effort with probability
one, that is, α(µ0) = 0 for all µ0.

One obvious circumstance in which (1− ρH )ρmH = (1− ρL)ρmL for some m is
the symmetric case in which ρH = 1− ρL. In this case, the argument is particularly
straightforward. For any posterior belief µ0 with α(µ0) = α(ϕ(µ0 | ȳ)) = 1 we have
ϕ(µ0 | ȳy) = µ0. But then no punishment can be triggered after ȳy, so there are no
incentives to exert effort at belief ϕ(µ0 | ȳ).

Proof The strategy α(µ0) = 0 is clearly a Markov equilibrium. We need to argue that
this is the only pure-strategy Markov equilibrium. Fix a pure-strategy Markov
equilibrium α, and let υ(µ0) = α(µ0)µ0 be the probability of high effort under
α. Letting V0(µ0) denote the value function of normal firm, we have

V0(µ0) = (1− δ)(p(υ(µ0))− α(µ0)c)

+ δα(µ0)(ρH − ρL)(V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y)))
+ δ(ρLV0(ϕ(µ0 | ȳ))+ (1− ρL)V0(ϕ(µ0 | y))). (18.4.3)

Because p(υ(µ0)) ≥ p(0), a lower bound on V0 is p(0), the payoff obtained by
setting α(µ0) = 0 for all µ0 and hence incurring no cost. Denoting by V0(µ0;L)
the value of a one-period deviation to choosing low effort and then reverting to
the equilibrium strategy of α, we have

V0(µ0;L) = (1− δ)p(υ(µ0))+ δρLV0(ϕ(µ0 | ȳ))
+ δ(1− ρL)V0(ϕ(µ0 | y)), (18.4.4)

so that from (18.4.3) and (18.4.4),

V0(µ0)− V0(µ0;L) = −α(µ0)(1− δ)c
+ α(µ0)δ(ρH − ρL){V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y))}.

We now suppose there exists someµ0 withα(µ0) = 1 and seek a contradiction.
Choosing H for sure at µ0 is only optimal if

δ(ρH − ρL){V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y))} ≥ (1− δ)c. (18.4.5)

Ifµ0 ∈ {0, 1}, then ϕ(µ0 | ȳ) = ϕ(µ0 | y), ensuring α(µ0) = 1 is suboptimal.

Hence, let µ0 ∈ (0, 1) and define a sequence {µ(k)0 }∞k=0 by µ(k+1)
0 = ϕ(µ(k)0 | ȳ).

First observe that the firm must choose effort as long as ȳ only has been realized.
If not, there is some k for which α(µ(k)0 ) = 0. Then ϕ(µ(k)0 | y) = ϕ(µ(k)0 | ȳ) =
µ
(k)
0 , so that V0(ϕ(µ

(k)
0 | ȳ)) = V0(ϕ(µ

(k)
0 | y)) = p(0) and so α(µ(k−1)

0 ) = 0.
A recursion then implies α(µ0) = 0, a contradiction.

Now,

ϕ(µ
(k)
0 | y) =

(1− ρH )ρkHµ0

(1− ρH )ρkHµ0 + (1− ρL)ρkL(1− µ0)
, (18.4.6)
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so that, for k ≥ m and using (1− ρH )ρmH = (1− ρL)ρmL ,

ϕ(µ
(k)
0 | y) = µ(k−m)0 .

Using this equality in (18.4.5), for � ∈ N we have

V0(µ
(�(m+1))
0 ) ≥ V0(µ0)+ (1− δ)�c

δ(ρH − ρL) ,

which gives

lim
�→∞V0(µ

(�(m+1))
0 ) = ∞.

But this is impossible, because V0 is bounded above by (p(1)− c). It must then
not be the case that α(µ0) = 1, yielding the result.

■

18.4.5 Continuity at the Boundary and Markov Equilibria

Propositions 18.4.1 and 18.4.2 give us a preliminary indication that the model with
idiosyncratic consumers is much like the model with common consumers, once we
restrict attention to Markov equilibria in the latter. Each has an equilibrium in which the
normal firm exerts high effort, when there are replacements, and high-effort equilibria
are problematic in the absence of replacements. However, the condition (1− ρH )ρmH =
(1− ρL)ρmL in proposition 18.4.2 is rather specific. Aclaim that the common consumer
model appropriately captures aspects of the idiosyncratic model should not rely on such
a condition.

Proposition

18.4.3
Suppose there are no replacements (λ = 0) and (1− ρH )ρmH �= (1− ρL)ρmL for
all m ∈ N.

1. For sufficiently small c > 0 and large δ < 1, there exists a Markov equilibrium
(α, υ) in which α(µ0

0) = 1. If high effort is ever exerted in a pure-strategy
Markov equilibrium outcome, then α(µ0

0) = 1.
2. In any pure-strategy Markov equilibrium in which α(µ0

0) > 0, we have

lim supµ0→1 α(µ0) = 1

and lim infµ0→1 α(µ0) = 0.
(18.4.7)

3. There exist positive integers κ , T , and a number ζ ∈ (0, 1), such that in any
pure-strategy Markov equilibrium the probability (conditional on the firm being
normal) of high effort being exerted in any period t > T is less than κζ t .

As long as the specific condition of proposition 18.4.2 is not satisfied, there exist
pure-strategy Markov equilibria in which the normal firm sometimes exerts high effort.
Once low effort is exerted in a pure-strategy Markov equilibrium, it must be exerted
in every subsequent period. In particular, the posterior µ0 cannot change after a period
in which low effort is exerted as part of a pure strategy, so that the posterior thereafter
remains fixed and the firm is locked into low effort. As a result, if high effort is ever
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exerted, it must be in period 0. The possibility of high effort appears only for a finite
time period, after which the firm is doomed to low effort.

Proof Statement 1. Supposeµ0 ∈ (0, 1). From (18.4.6), ϕ(µ0 | ȳ(m)y) = µ0 if and only
if (1− ρH )ρmH = (1− ρL)ρmL , and so ϕ(µ0 | ȳ(m)y) �= µ0 for all m. Let

� =
{
µ0 : µ0 = ρmHµ

0
0

ρmHµ
0
0 + ρmL (1− µ0

0)
for some m ∈ N0

}

be the set of posterior probabilities that are attached to histories in which only
ȳ has been observed (including the null history), assuming the normal firm has
always chosen high effort. Then assuming the normal firm has always chosen high
effort, for all m, ϕ(µ0 | ȳ(m)y) /∈ �. Consider now the pure strategy α(µ0) = 1
for µ0 ∈ � and α(µ0) = 0 otherwise.

The normal firm’s value function for µ0 ∈ � is

V0(µ0) = (1− δ)(p(µ0)− c)+ δ{ρHV0(ϕ(µ0 | ȳ))+ (1− ρH )V0(ϕ(µ0 | y))},
(18.4.8)

whereas for µ0 /∈ �, because α(µ0) = 0,

V0(µ0) = p(0).
Because

V0(ϕ(µ0 | ȳ))− V0(µ0)

= (1− δ)
∞∑
m=1

(δρH )
m−1(p(ϕ(µ0 | ȳ(m)))− p(ϕ(µ0 | ȳ(m−1)))),

V0 is increasing in µ0 on �. Evaluating (18.4.8) at ϕ(µ0 | ȳ), we have (because
ϕ(µ0 | ȳy) /∈ �),

V0(ϕ(µ0 | ȳ)) ≥ (1− δ)(p(ϕ(µ0 | ȳ))− c)
1− δρH + δ(1− ρH )p(0)

1− δρH .

The normal firm’s payoff from deviating to L at µ0 ∈ � is

V0(µ0;L) = (1− δ)p(µ0)+ δ{ρLV0(ϕ(µ0 | ȳ))+ (1− ρL)p(0)}.
The deviation is not profitable if

(1− δ)c ≤ δ(ρH − ρL){V0(ϕ(µ0 | ȳ))− p(0)},
which certainly holds if

c ≤ δ(ρH − ρL)
{
(p(ϕ(µ0 | ȳ))− c)

(1− δρH ) + δ(1− ρH )p(0)
(1− δρH )(1− δ) −

p(0)

(1− δ)
}
.

Simplifying yields

c ≤ δ(ρH − ρL)(p(ϕ(µ0 | ȳ))− p(0))
(1− δρL) .
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Thus because the right side is increasing in µ0 ∈ �, a sufficient condition for
(α, υ) to be an equilibrium is

c ≤ δ(ρH − ρL)(p(ϕ(µ0
0 | ȳ))− p(0))

(1− δρL) .

Statement 2. Consider a pure-strategy Markov equilibrium in which high effort
is sometimes exerted. Though the equilibrium constructed in proving the first
statement assumed that the switch from high to low effort is necessarily triggered
by the first realization of y, this may not hold in general. Hence let Y be the
collection of finite strings of signals defined by the property that if a string of
length t is in Y , then the history of realized outcomes described by this string
would generate posterior expectations that in turn induce high effort in each of
periods 0 through t but induce low effort in period t + 1. First, note that no string
in Y can end with signal ȳ. Second, Y �= ∅. (If Y = ∅, then every sequence of
realized utility outcomes results in high-effort choices. But then the normal firm
has no incentive to choose high effort.) This in turn ensures that for any m ∈ N

there is a history in Y whose initial segment has m signals ȳ, which ensures that
lim supµ0→1 α(µ0) = 1.

Now let anm-history be a history in Y terminating withmy signals. We claim
that there exists a number M such that m < M for all m-histories in Y . Fix m
sufficiently large that

(1− δ)
m−1∑
t=0

δtρH + δmρL > (1− δ)
∞∑
t=0

δt (ρH − c).

If no such M exists, we can find histories in Y that include m realizations of
y, which implies a contradiction: The left side is then a lower bound on the
continuation payoff from never exerting effort after reaching a point at which m
signals y would not move the history outside Y , and the right side is an upper
bound on the continuation payoff under the equilibrium strategy (which requires
high effort along histories in Y ).

This then implies lim infµ0→1 α(µ0) = 0 (by considering histories consisting
of n observations of ȳ, followed exclusively by observations of y, for arbitrarily
large n), completing the proof of the second statement.

Statement 3. Letm(n) be the largest natural number with the property that there is
a string of length n in Y whose m(n) final elements are y. From the proof of the
second statement, there is a smallest numberM withm(n)≤ M for all n > 0. An
upper bound on the probability that the normal firm chooses high effort in period
t in any pure-strategy equilibrium is given by the probability p∗t that the normal
firm chooses high effort in period t when following the profile of always choosing
high effort until M consecutive y signals occur, after which low effort is always
chosen. The outcome under this strategy can be described by a Markov chain
with state space {0, 1, . . . ,M}. From state s ∈ {0, 1, . . . ,M − 1}, the process
transits to state 0 with probability ρH and to state s + 1 with probability 1− ρH
(s is the length of the current sequence of y outcomes). The process starts in
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state 0, and state M is absorbing. Note that 1− p∗t is the probability the Markov
chain reaches M by period t . Because M is the only absorbing state of the finite
state Markov process, its stationary distribution assigns probability one to M .
Because the sequence of distributions on the state space under the Markov tran-
sitions converge exponentially to the stationary distribution, there are positive
integers κ , T , and a number ζ ∈ (0, 1) such that for any t > T the probability that
the process is not in state M is at most κζ t .

■

Proposition 18.4.3 describes equilibria in which the firm exerts high effort and
the consumers expect high effort, as long as there have been only realizations of
signal ȳ. The first realization ofy relegates the firm to low effort thereafter. Though this
equilibrium does not sound Markovian, the parameter restriction that (1− ρH )ρmH �=
(1− ρL)ρmL ensures that any history consisting of a sequence of ȳ followed by a singley
must yield a posterior distinct from that yielded by any sequence of only ȳ realizations.
The posterior probabilities can then be used as a code identifying the signal y, and any
such signal can trigger a punishment while still using Markov strategies. Consumers
can thus use their posterior to attach (infinite) punishments to bad signals.

Remark

18.4.1
The ability to code information about previous play into posteriors persists, even if
there existsm for which (1− ρH )ρmH = (1− ρL)ρmL , if we allow mixed strategies.
Mailath and Samuelson (2001, proposition 2) show:

Proposition

18.4.4
Suppose λ = 0 and ρH = 1− ρL ≡ 1− ρ.

1. A mixed-strategy Markov perfect equilibrium with α(µ0) > 0 for some µ0

exists if
ρ + c(1− δρ)/{δ(1− 2ρ)} < 1.

2. In any Markov perfect equilibrium with α(µ0) > 0 for some µ0,

lim sup
µ0→1

α(µ0) > lim inf
µ0→1

α(µ0). (18.4.9)

◆

The discontinuity reflected in (18.4.7) and (18.4.9) is required to use the current
state as an indicator of whether the most recent realized utility has been good or bad.
This in turn is necessary to maintain incentives for a normal firm to produce high quality
when the posterior probability µ0 is high. Realized outcomes have a very small effect
on beliefs in this case, but we need realized outcomes to have a large effect on prices if
the firm is to have an incentive to produce high quality. This can only be accomplished
if small changes in posterior beliefs can cause large changes in expected utility, which
in turn requires the discontinuity.

We are thus inclined to view the model with common consumers and Markov
strategies continuous at the boundaries as a natural analog of the idiosyncratic con-
sumer case. In both cases, equilibria exist with normal firms always exerting high effort
when there are replacements, and cannot exist without replacements. More important,
our interest in idiosyncratic consumers arose out of a desire to limit the degree of co-
ordination in imposing punishments. The discontinuous behavior required to support
high effort in a common consumer Markov equilibrium strikes us as going beyond
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the spirit of Markov equilibria and as entailing the same implausible degree of co-
ordination on the part of consumers that prompted us to impose a Markov restriction
on behavior.

18.4.6 Competitive Markets

When consumers are idiosyncratic, small changes in consumer beliefs necessarily have
small changes in behavior, forcing an appeal to replacements to ensure that changes
in beliefs never become too small. In a richer model, even small changes in consumer
behavior may have a large impact on the firm, obviating the need to impose a lower
bound on belief revision. For example, when there are competing firms, a small change
in consumers’ beliefs about a firm may lead them to change to a very similar firm,
with the resulting loss in customers being a significant cost on the firm in question.
Analyzing this possibility with idiosyncratic consumers is formidable, so this section
discusses a model of competitive firms with common consumers (following Hörner
2002). The model illustrates both the possibility that competition can allow firms to
sustain reputations for high effort as well as the fragility of such constructions. This
model also endogenizes the prior probability of the inept type.

At date t , there is a population of firms who may be inept or normal. As in
section 18.4.2, normal firms can exert either high (H ) or low effort (L), and inept
firms can only choose L. In each period, all customers of a firm either receive a
common good outcome ȳ (with probability ρa1 , given effort level a1 from that firm)
or all receive a common bad outcome y (probability 1− ρa1 ). For a normal firm, L is
costless, whereas H incurs a cost of c > 0.

There is a continuum of consumers, of mass I > 0, with types indexed by i
uniformly distributed on [0, I ]. We take I large enough to ensure that the market
has an interior equilibrium, being more precise shortly as to just what this means. A
consumer receives a payoff of 1 from the good signal ȳ and payoff 0 from the bad
signaly. A consumer of type i (or simply “consumer i”) who purchases at price p from
a firm choosing H with probability υ receives a payoff of

υρH + (1− υ)ρL − p − i.
The term υρH + (1− υ)ρL − p is the surplus consumer i receives from participating
in this market, and the consumer’s type is the opportunity cost of participation.

We solve for the steady state (N0, NL) of the market with entry and exit, where
N0 is the mass of active normal firms in steady state, and NL the mass of active inept
firms. In each period, a mass N0

0 of normal firms enter the market and mass N0
L inept

firms enter the market. These quantities will be determined by the free-entry condition
that the value of entering the market just compensate the firm for its opportunity cost
of participating.

Because the total mass of active firms in the market is N = N0 +NL, in equilib-
rium the active firms sell to massN of consumers. The opportunity cost of the marginal
consumer in a market serving N consumers is N . Consequently, each firm must pro-
duce a surplus in the form of the difference between its expected probability of signal
ȳ and its price, equal to N . In equilibrium, different firms will set different prices,
reflecting their different market experiences and hence the different probabilities with
which they are expected to produce signal ȳ.
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Consumers observe the histories of signals produced by each firm. On first produc-
ing signaly, a firm is abandoned by consumers and leaves the market.6 The composition
of the firms in the market is described by a pair of sequences {Nτ

0 }∞τ=0 and {Nτ
L}∞τ=0,

where Nτ
0 is the mass of firms in the market who are normal and who have been

in the market for τ periods, during which they have exhibited τ straight realizations
of ȳ, and Nτ

L is the analogous term for inept firms. Thus, we have Nt
0 = ρHNt−1

0 ,
Nt
L = ρLNt−1

L , and so

N0 ≡
∞∑
τ=0

Nτ
0 =

N0
0

1− ρH

and NL ≡
∞∑
τ=0

Nτ
L =

N0
L

1− ρL .

The posterior probability that a firm is a normal firm after t consecutive realizations
of ȳ, µt0, is given by

µt0 =
Nt

0

Nt
0 +Nt

L

= ρtHN
0
0

ρtHN
0
0 + ρtLN0

L

=
(

1+
(
ρL

ρH

)t N0
L

N0
0

)−1

.

Market clearing requires that consumers be indifferent over the different active firms.
This implies particular pricing on the part of active firms. Letting pt be the price
commanded by a firm after t consecutive realizations of ȳ, we thus have

pt = µt0(ρH − ρL)+ ρL −N.

To make such pricing an equilibrium, and to make it an equilibrium for a firm who has
produced a failure to leave the market, we assume that the out-of-equilibrium event of
a lower price or continued participation in the market after a failure gives rise to the
consumer expectation that the firm in question is certainly inept. As long as N > ρL,
this ensures a negative price (and hence the optimality of exit) for the firm.

The expected payoff to a firm in this market is determined once N0
0 and N0

L, the
measures of normal and inept entrants in each period, are fixed. Let U(N0

0 , N
0
L, ξ0)

and U(N0
0 , N

0
L, ξ(L)) be the payoffs of the normal and inept firm in the resulting

configuration. The model is closed by the requirement that entrants earn zero profits, or

U(N0
0 , N

0
L, ξ0) = (1− δ)K0

and U(N0
0 , N

0
L, ξ(L)) = (1− δ)KL,

where K0 and KL are the entry costs of a normal and inept firm.

6. We return to the optimality of such behavior shortly. Equilibria with less extreme behavior
remain unexplored.
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We have

U(N0
0 , N

0
L, ξ0)= (1− δ)

∞∑
τ=0

ρτH δ
τ


(1+

(
ρL

ρH

)τ N0
L

N0
0

)−1

(ρH − ρL)+ ρL−N − c



and

U(N0
0 , N

0
L, ξ(L))= (1− δ)

∞∑
τ=0

ρτLδ
τ


(1+

(
ρL

ρH

)τ N0
L

N0
0

)−1

(ρH − ρL)+ ρL−N

,

allowing us to write the entry conditions as

∞∑
τ=0

ρτH δ
τ


(1+

(
ρL

ρH

)τ N0
L

N0
0

)−1

(ρH − ρL)

 = K0 + N − ρL + c

1− ρHδ (18.4.10)

and

∞∑
τ=0

ρτLδ
τ


(1+

(
ρL

ρH

)τ N0
L

N0
0

)−1

(ρH − ρL)

 = KL + N − ρL

1− ρLδ . (18.4.11)

It remains to determine the steady-state values of N0 and NL, or equivalently,
the steady-state values of N = N0 +NL and N0

L/N
0
0 . Fix a value of KL, and for

each N associate the value N0
L/N

0
0 = g(N) that satisfies (18.4.11). Then g is strictly

decreasing, with ρL being the minimum value of N consistent with equilibrium (to
ensure the departure of firms who have had a failure) and N̄ = g−1(0) the maximum
value N consistent with (18.4.11). We can now fix a value N ∈ (ρL, N̄) and use
(18.4.10) to identify the locus of pairs (K0, c) that satisfy the normal firm’s entry
condition.

If K0 and c are too small, no inept firms will enter the market (in equilibrium).
Normal firms will nonetheless exert effort, with a failure prompting consumers to
abandon the firm despite the absence of any revision in beliefs. This is clearly not a
Markov equilibrium. The equilibrium with inept firms is Markov, given the assumption
that consumers expect a firm continuing in the market after a failure to be certainly
inept.

Completing the equilibrium requires showing that the normal firm finds it optimal
to exert high effort. Because a failure leads to a continuation payoff of 0, and a success
leads to a continuation payoff of at least K0, this will be the case as long as c ∈ (0, c̄)
is chosen sufficiently small. It suffices to increase K0 while decreasing c to preserve
(18.4.10).

18.5 Discrete Choices

In the model of section 18.1, consumer responses to changes in their beliefs are con-
tinuous. In this section, we consider the impact of discrete choices by the consumers.
We work with the version of the product-choice game shown in figure 18.5.1, now
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h �

H 3−c, 3 1−c, 2

L 3, 0 1, 1

Figure 18.5.1 Version of the product-choice
game, parameterized by the cost of high effort
c (= 1 in our usual formulation).

formulated to make explicit the cost c of high effort. As usual, high effort produces
signal ȳ with probability ρH , low effort produces ȳ with probability ρL < ρH . Normal
firms can exert either high or low effort, and inept firms inevitably exert low effort.
We again assume that the firm is replaced in each period with probability λ, with the
replacement being normal with probabilityµ0

0 ∈ (0, 1). As will be clear from the proof,
the incentives now come from the possibility that, when beliefs are in the �-regime
(i.e., µ0 < 1/2), a larger probability on ȳ increases the probability of leaving the
�-regime by some finite time, and when beliefs are in the h-regime (i.e., µ0 > 1/2),
a larger probability on y increases the probability of entering the �-regime by some
finite time.

Proposition

18.5.1
Given µ0

0 ∈ (0, 1), for sufficiently small λ and c, there is a pure-strategy Markov
equilibrium in which the normal firm always exerts high effort, and consumers
choose h if and only if µ0 ≥ 1/2.

Proof Given the specified behavior for the consumers, we need only verify that high
effort is optimal for the firm. We begin by noting that the posterior updating rules
are given by

ϕ(µ0 | ȳ) = (1− λ) ρHµ0

ρHµ0 + ρL(1− µ0)
+ λµ0

0

and

ϕ(µ0 | y) = (1− λ) (1− ρH )µ0

(1− ρH )µ0 + (1− ρL)(1− µ0)
+ λµ0

0.

Let µ′0 solve ϕ(µ0 | y) = µ0 and µ′′0 solve ϕ(µ0 | ȳ) = µ0. There exists λ̄ such
that for all λ ∈ (0, λ̄), we have µ′0 < 1/2 < µ′′0.

Let V0(µ0) be the expected continuation payoff to the normal firm under the
proposed equilibrium, given that the current posterior is µ0.

The payoff to the normal firm from high effort, given posterior µ0, is given by

(1− δ(1− λ))(f (µ0)− c)+ δ(1− λ)[ρHV0(ϕ(µ0 | ȳ))
+ (1− ρH )V0(ϕ(µ0 | y))],

and the payoff from low effort is

(1− δ(1− λ))f (µ0)+ δ(1− λ)[ρLV0(ϕ(µ0 | ȳ))+ (1− ρL)V0(ϕ(µ | y))],



598 Chapter 18 ■ Modeling Reputations

where f (µ0) = 3 if µ0 ≥ 1/2 and equals 1 otherwise. Optimality then requires,
for any c,

V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y)) ≥ (1− δ(1− λ))c
(ρH − ρL)δ(1− λ) .

It thus suffices to show that V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y)) is uniformly (in
µ0) bounded away from 0. The value function is

V0(µ0) = (1− δ(1− λ))(f (µ0)− c)
+ δ(1− λ)[ρHV0(ϕ(µ0 | ȳ))+ (1− ρH )V0(ϕ(µ0 | y))]. (18.5.1)

Because the distribution of posteriors in every period is increasing (using first-
order stochastic dominance) in µ0 and f is weakly increasing, V0 is also weakly
increasing.

Suppose first that µ0 ≥ 1/2, so f (µ0) = 3. It suffices to show that V0(µ0)−
V0(ϕ(µ0 | y)) is bounded away from 0. Using (18.5.1) and V0(ϕ(µ0 | ȳ)) ≥
V0(µ0), we have

V0(µ0)− V0(ϕ(µ0 | y)) ≥ 1− δ(1− λ)
1− δ(1− λ)ρH (3− c)

+
(
δ(1− λ)(1− ρH )
1− δ(1− λ)ρH − 1

)
V0(ϕ(µ0 | y))

= 1− δ(1− λ)
1− δ(1− λ)ρH (3− c − V0(ϕ(µ0 | y))).

We now argue that for λ ∈ (0, λ̄), there exists η > 0 such that for allµ0 ≥ 1/2,
we have V0(ϕ(µ0 | y))+ η < 3− c. The value 3− c requires that player 2 play
h in every future period. Because of replacements, there is an upper bound
(1− λ)+ λµ0

0 < 1 on the posterior, so there is a period t and a probability
θ > 0 such that under the profile, with probability at least θ , beginning at the
belief ϕ(µ0 | y), the posterior falls below 1/2 and player 2 plays � in period t .
Consequently, V0(ϕ(µ0 | y)) < 3− c − 2δt (1− δ)θ .

Suppose now that µ0 < 1/2, so f (µ0) = 1. It now suffices to show that
V0(ϕ(µ0 | ȳ))− V0(µ0) is bounded away from 0. From (18.5.1) and V0(µ0) ≥
V0(ϕ(µ0 | y)), we have

V0(ϕ(µ0 | ȳ))− V0(µ0) ≥
(

1− δ(1− λ)ρH
1− δ(1− λ)(1− ρH )

)
V0(ϕ(µ0 | ȳ))

− 1− δ(1− λ)
1− δ(1− λ)(1− ρH )(1− c)

= 1− δ(1− λ)
1− δ(1− λ)(1− ρH )(V0(ϕ(µ0 | ȳ))− (1− c)).

We argue (as before) that for λ ∈ (0, λ̄), there exists η′ > 0 such that for all
µ0 < 1/2, we have 1− c + η′ < V0(ϕ(µ0 | ȳ)). The value 1− c results from
player 2 playing � in every future period. Because of replacements, there is a
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lower bound λµ0
0 > 0 on the posterior, so there is a period t ′ and a probability

θ ′ > 0 such that under the profile with probability at least θ ′, beginning at the
belief ϕ(µ0 | ȳ), the posterior is above 1/2 and player 2 plays h in period t ′.
Consequently, V0(ϕ(µ0 | ȳ)) > 1− c + 2δt

′
(1− δ)θ ′.

■

18.6 Lost Consumers

The consumers in Section 18.1 continue to purchase from the firm, no matter how
discouraging the signals produced by the firm. We examine here the implications of
allowing consumers an outside option that induces sufficiently pessimistic consumers
to abandon the firm, and so not observe any signals. The ability to sustain a reputation
hinges crucially on whether the behavior of a firm on the brink of losing its consumers
makes the firm’s product more (section 18.6.1) or less (sections 18.6.2–18.6.6) valuable
to consumers.

18.6.1 The Purchase Game

We begin with a version of the purchase game of figure 15.4.1, shown in figure 18.6.1.
The firm receives 2 if consumers buy its product and must pay a cost c if exerting
high effort. If the consumer buys (chooses b), high effort produces a good outcome
with probability ρH and low effort a good outcome with probability ρL < ρH . The
consumer values a good signal at (2− ρH − ρL)/(ρH − ρL) and a bad signal at
−(ρH + ρL)/(ρH − ρL). If the consumer does not buy (chooses d), then no signal is
observed (just as in example 15.4.2).

Normal firms can exert either high or low effort, and inept firms inevitably exert
low effort. We again assume that the firm is replaced in each period with probability λ,
with the replacement being normal with probability µ0

0.
The essential message of the previous sections continues to hold in the presence

of the outside option.

Proposition

18.6.1
Fix µ0

0 ∈ (0, 1).

1. If there are no replacements (λ = 0), in every pure-strategy Markov equilibrium
continuous at 1, the firm always chooses low effort.

d b

H 0, 0 2−c, 1

L 0, 0 2,−1

Figure 18.6.1 Version of the purchase game, parameterized
by the cost c of high effort (= 1 in figure 15.4.2).
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2. If λ > 0, for sufficiently small λ and c, there is a pure-strategy Markov equi-
librium in which the normal firm exerts high effort and consumers buy for
all µ0 ≥ 1/2, and the firm exerts low effort and consumers do not buy for
µ0 < 1/2.

Proof 1. The proof essentially replicates the proof of proposition 18.4.3(2).
2. The proof is essentially that of proposition 18.5.1 for the case µ0 ≥ 1/2.

■

If the consumers are pessimistic, that is, µ0
0 < 1/2, then even with replacements

the outcome path involves the consumers never buying. On the other hand, if consumers
are optimistic, µ0

0 > 1/2, then the outcome path begins with consumers buying. They
continue to do so until a sufficient string of bad signals pushes the posterior below 1/2,
at which point they desist. However, this no-trade outcome is not absorbing. The
possibility of replacements causes the consumers’posteriors to drift upward towardµ0

0,
until they exceed 1/2, when once again the consumers purchase.

18.6.2 Bad Reputations:The Stage Game

Once the firm’s posterior probability falls below 1/2 in section 18.6.1, consumers no
longer buy from the firm. This effectively suspends the relationship until the consumer
is sufficiently confident the firm has been replaced by a normal type. The incentives for
the normal firm to exert effort arise out of his desire to avoid falling into this no-trade
zone. This section, drawing on Ely and Välimäki (2003), presents a model in which the
firms’ efforts to avoid a no-trade region destroy the incentives needed for a nontrivial
equilibrium.

There are two players, referred to as the firm (player 1) and the customer (player 2).
We think of the customer as hiring the firm to perform a service, with the appropriate
nature of the service depending on a diagnosis that only the firm can perform. For
example, the firm may be a doctor who must determine whether the patient needs to
take two aspirin tablets daily or needs a heart transplant. The firm may be a computer
support service that must determine whether the customer needs to reformat her hard
disk or needs a new computer.

The interaction is modeled as a repeated game with random states. There are two
states of the world, θH and θL. In the former, the customer requires a high level of
service, denoted by H , in the latter a low level, denoted by L. The two states are
equally likely.

The stage game is an extensive-form game. The state is first drawn by nature and
revealed to the firm but not the customer. The customer then decides whether to hire
the firm. If the firm is hired, he chooses the level of service to provide.

Figure 18.6.2 identifies the payoffs attached to each terminal node of the extensive
form game. The firm and the customer thus have identical payoffs. Both prefer that high
service be provided when necessary and that low service be provided when appropriate.
If the firm is not hired, then both players receive 0. This model thus differs from many
expert-provider models, in which the firm has an incentive to provide high service
regardless of what is needed.

A pure stage-game action for the customer is a choice to either hire or not hire the
firm. A mixed stage-game action for the firm is (αH , αL), where αH is the probability
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Hire Not hire

H u, u 0, 0

L −w,−w 0, 0

State θH

Hire Not hire

H −w,−w 0, 0

L u, u 0, 0

State θL

Figure 18.6.2 Payoffs for each terminal node of the extensive-form stage game, as a
function of the state (θH or θL), the customer’s decision of whether to hire the firm,
and (if hired) the firm’s choice of service. We assume w > u > 0.

of actionH in state θH and αL the probability of action L in state θL. We thus identify
the firm’s strategy with the probability of providing the appropriate service in each
of the two states. The action (1, 1) is the outcome in which the appropriate service is
always provided, and (1, 0) corresponds to always providing high service and (0, 0)
to always providing the wrong service.

It is straightforward to verify that the stage game presents no incentive problems,
working backward from the observation that the only sequentially rational action for
the firm is (1, 1):

Proposition

18.6.2
The stage game has a unique sequential equilibrium, and in this equilibrium the
firm chooses (1, 1).

18.6.3 The Repeated Game

Suppose now that the (extensive-form) stage game is repeated. The firm is a long-run
player who discounts at rate δ. The customer is a short-run player.

Each period features the arrival of a new customer. Nature then draws the state and
reveals its realization to the firm (only). These draws are independent across periods,
with the two states equally likely in each case. The customer decides whether to hire
the firm, and the firm then chooses a level of service. At the end of the period, a public
signal from the set Y ≡ {X,H,L} is observed, indicating either that the firm was not
hired (X) or was hired and provided either high (H ) or low (L) service. Short-lived
players thus learn nothing about the firm’s stage-game strategy when the firm is not
hired and never learn anything about previous states.

A period t public history is denoted by ht ∈ Y t . As one would expect, there is
an equilibrium of the repeated game in which the firm is always hired and provides
the appropriate service. However, as one would also expect, arguments familiar from
the various folk theorems allow us to show that there is another equilibrium in which
player 1 receives his minmax payoff.

Proposition

18.6.3
The repeated game has a sequential equilibrium in which the firm is always hired
and chooses (αH , αL) = (1, 1), earning a payoff of u. However, for sufficiently
large values of δ < 1, there is also a sequential equilibrium in which the firm is
never hired, for a payoff of 0.
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H
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0w

Figure 18.6.3 Firm’s strategy for an equilibrium of the
repeated complete information game in which the firm is never
hired. The firm chooses action (αH , αL) in state wαHαL .

Proof It is immediate that it is an equilibrium for the customer to always hire the firm
and the firm to choose (1, 1).

To construct an equilibrium in which the firm is optimally never hired, let the
firm’s strategy be described by a two-state automaton.7 Letting W ≡ {w10, w11}
be the set of states with initial statew10, with f (wαHαL) = (αH , αL) and with the
transition rule

τ(w, y) =
{
w10, if w = w10 and y = X or L,

w11, if (w, y) = (w10, H) or w = w11.

Figure 18.6.3 illustrates. In the first state of this automaton, the firm always pro-
vides high service. All is well once the firm’s automaton reaches its second state,
at which point the firm always provides the appropriate service. In addition, the
firm’s strategy is public, so the customers know which state the firm is in. The
difficulty is that reaching the second state requires that the firm be hired when in
automaton state w10. Here the firm provides the appropriate service in game state
θH but not θL, for a negative expected value. No short-lived player wants to be
the first to hire the firm, nor the first to hire the firm after a history in which H
has never been observed. The customers’ strategy is thus to hire the firm if and
only if the history includes at least one observation of H , leading to an outcome
in which the firm is never hired.

The only aspect of these strategies that is not obviously equilibrium behavior
is the prescription that the firm choose H if hired, when in automaton state w10

and the state of nature is θL. Doing so trades a current loss against the ability to
generate the signal H and thus make a transition to state w11. The payoff to the
firm from following this strategy is

(1− δ)(−w)+ δu,
and the payoff from choosing L is

(1− δ)u.
The proposed strategies are thus an equilibrium if

(1− δ)(−w)+ δu ≥ (1− δ)u
7. The equilibrium in which the firm is never hired has a similar structure to the low-payoff

equilibrium of the purchase game in example 15.4.2.
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or, equivalently,

δ ≥ u+ w
2u+ w.

We thus have an equilibrium if the firm is sufficiently patient.
■

18.6.4 Incomplete Information

We now introduce incomplete information. The result is a bound on the firm’s payoff,
but it is now an upper bound that consigns the firm to a surprisingly low payoff.

With probability µ0
0 > 0, the firm is normal. With complementary probability

µ̂0 > 0, the firm is “bad” and follows a strategy of choosing from {H,L} independently
and identically in each period, regardless of the period’s state. The bad firm chooses
H with probability γ , that is, follows the strategy (γ, 1− γ ), where

γ >
w + 3u

2w + 2u
> 1/2. (18.6.1)

As we shall see, this ensures that the bad firm behaves sufficiently differently from
any relevant normal firm behavior that, should the firm be hired, an observation of H
increases the posterior probability that the firm is bad.

Let v̄1(ξ0, µ, δ) be the supremum of the (discounted average) Nash equilibrium
payoffs for the normal firm. The result is that patient firms receive a payoff arbitrarily
close to their minmax payoff.

Proposition

18.6.4
lim
δ→1

v̄1(ξ0, µ, δ) = 0.

Remark

18.6.1
Overproviding firms The intuition behind this result is nicely illustrated by con-
sidering the special case on which Ely and Välimäki (2003) focus, namely, that in
which the bad firm is committed to the strategy (1, 0) and hence always provides
high service. This is in keeping with a popular impression of unscrupulous firms
as always providing excess service.

In this case, a single choice of L reveals the firm to be normal. Let us further
assume that if the firm is believed to be normal with probability one, the firm is
thereafter always hired and hence earns a continuation payoff of u.8 It then seems
as if it should be straightforward for the normal firm to establish a reputation. If
nothing else, the firm could simply reveal his type by once playing L, thereafter
enjoying the fruits of being known to be normal.

Amoment’s reflection reveals that things are not so clear. Suppose, for example,
that the normal firm’s strategy is to play L the first time hired, regardless of
the state, thereby convincing the customers that the firm is normal and enjoying
continuation payoff u. This strategy ensures that the firm is never hired.

Proceeding more carefully, fix an equilibrium strategy profile and let µ̂† be
the supremum of the set of probabilities of a bad firm for which the firm is

8. Proposition 18.6.3 shows that this is an assumption rather than a necessary feature of the
equilibrium. Ely and Välimäki (2003) motivate this as a renegotiation-proofness requirement.
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(in equilibrium) hired with positive probability. We show that µ̂† > 0 is a contra-
diction. If the firm is ever to be hired, there must be a significant chance that he
chooses L (in state θL), because otherwise his value to the consumer is negative.
Then for any posterior probability µ̂′ sufficiently close to µ̂† at which the firm is
hired, an observation ofH must push the posterior of a bad firm past µ̂†, ensuring
that the firm is never again hired. But then no sufficiently patient normal firm,
facing a posterior probability µ̂′, would ever choose H in state θH . Doing so
gives a payoff of (1− δ)u (a current payoff of u, followed by a posterior above
µ̂† and hence a continuation payoff of 0), whereas choosing L reveals the firm
to be normal and hence gives a higher (for large δ) payoff of −(1− δ)w + δu.
The normal firm thus cannot be induced to chooseH at posterior µ̂′. But this now
ensures that the firm will not be hired for any such posterior, giving us a contra-
diction to the assumption that µ̂† is the supremum of the posterior probabilities
for which the firm is hired. We thus have:

Proposition

18.6.5
Let γ = 1 and assume that in any period in which the firm is believed to be normal
with probability 1, the firm is hired. Then there is a unique Nash equilibrium
outcome in which the firm is never hired.

The difficulty facing the normal firm is that an unlucky sequence of (θH ) states
may push the posterior probability that the firm is bad disastrously high. At this
point, the normal firm will choose L in both states in a desperate attempt to stave
off a career-ending bad reputation. Unfortunately, customers will anticipate this
and not hire the firm, ending his career even earlier. The normal firm might attempt
to forestall this premature end by playing L (in state θH ) somewhat earlier, but
the same reasoning unravels the firm’s incentives back to the initial appearance of
state θH . We can thus never construct incentives for the firm to choose H in state
θH , and the firm is never hired.

Ely and Välimäki (2003) note that if we relax the assumption that the firm
is always hired when believed to be normal with probability 1, then there are
equilibria in which the firm is sometimes hired. However, proposition 18.6.4
implies that in any such equilibrium, the firm’s payoff must converge to 0 as he
becomes increasingly patient.

◆

Proof of Proposition 18.6.4 A short-lived player only hires the firm if

0 ≤ 1

2
[α̂H u− (1− α̂H )w] + 1

2
[α̂Lu− (1− α̂L)w],

where α̂H = µ̂γ + (1− µ̂)αH and α̂L = µ̂(1− γ )+ (1− µ̂)αL are the proba-
bilities the short-lived player assigns to the action H being taken in state θH and
the action L being taken in state θL, and µ̂ is the probability the short-lived player
assigns the firm being bad. This inequality can be rewritten as

αL + αH ≥ 2w − (u+ w)µ̂
(1− µ̂)(u+ w) . (18.6.2)
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Because the left side is no larger than 2, this inequality requires

2 ≥ 2w − (u+ w)µ̂
(1− µ̂)(u+ w),

which holds if and only if

µ̂ ≤ 2u

(u+ w) ≡ µ̂
∗.

Moreover,

2w − (u+ w)µ̂
(1− µ̂)(u+ w) > 1,

because

2w − (u+ w)µ̂
(1− µ̂)(u+ w) − 1 = w − u

(1− µ̂)(u+ w) > 0.

Hence, if the firm is hired in any period, then it must be that µ̂ ≤ µ̂∗ and (taking
a bound that holds for all µ̂)

αL, αH ≥ α∗ ≡ (w − u)/(w + u). (18.6.3)

We now assume that the firm is hired at some point and use these necessary
conditions to derive a contradiction. Consider a Nash equilibrium in which the
firm is hired in period t , after some history ht that causes the customer’s period t
posterior belief that the firm is bad to be µ̂. If the customer observes H , then her
updated posterior belief is

ϕ(µ̂ | H) = µ̂γ

µ̂γ + (1− µ̂)[ 1
2αH + 1

2 (1− αL)
] .

A lower bound on this probability is obtained by assuming that the normal firm is
as much like the bad firm as possible. However, setting αH = γ and αL = 1− γ
violates (18.6.3), given (18.6.1). The lower bound, consistent with (18.6.3), is
obtained by setting αH = 1 and setting αL = α∗, and so

ϕ(µ̂ | H) ≥ µ̂γ

µ̂γ + (1− µ̂)[ 1
2 + 1

2 (1− α∗)
]

= µ̂γ

µ̂γ + (1− µ̂)[ w+3u
2w+2u

]
≡ �(µ̂).

This defines a function� : [0, 1] → [0, 1]with�′ > 0, where�(µ̂) is the small-
est possible posterior probability of a bad type that can emerge from a prior
probability of µ̂ and an observation ofH . Because γ > (w + 3u)/(2w + 2u), we
have�(µ̂) > µ̂ for all µ̂ ∈ (0, 1). Hence, an observation ofH pushes upward the
posterior probability that the firm is bad. This reflects the fact that the normal firm
must sometimes chooseL, if he is to be hired, and the bad firm is (by construction)
more likely to choose H .
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Define µ̂(1) = µ̂∗ and µ̂(m) = �−1(µ̂(m−1)) for m > 1. A string of the form
{µ̂(m), µ̂(m−1), . . . , µ̂(2), µ̂(1)} is thus a string of (increasing) posterior probabil-
ities that starts at µ̂(m), with succeeding posteriors providing a lower bound on
the updated probability that could appear if the firm is (optimally) hired and H
observed, and that culminates with µ̂(1).

Let V0(µ̂, δ) be the supremum over equilibrium payoffs for the normal firm,
when thought to be bad with probability µ̂ and given discount factor δ. Note that for
µ̂ > µ̂(1), no customer hires the firm, and hence V (µ̂, δ) = 0 for all δ. Moreover,
µ̂(m)→ 0 as m→∞. In other words, no matter how low the initial prior, a long
enough string ofH ’s will be sufficiently negative news that the posterior is larger
than µ̂∗, and no further customer hires the firm.

Define V(m)(δ) recursively as follows: V(1)(δ) = 0, and for m ≥ 2,

V(m)(δ) = (1− δ)(3u+ w)
2

+ δV(m−1)(δ)

= (1− δm−1)(3u+ w)
2

.

Note thatV(m)(δ)↗ (3u+ w)/2 asm→∞. However, its more important feature
is that for any m, limδ→1 V(m)(δ) = 0. The proof of proposition 18.6.4 is then
completed by the following lemma.

■

Lemma

18.6.1
For all prior beliefs µ̂ > µ̂(m), V0(µ̂, δ) ≤ V(m)(δ).

Proof The proof is by induction. If µ̂ > µ̂(1) = µ̂∗, the firm is never hired and we have
V0(µ̂, δ) = 0 = V(1)(δ).

Suppose for all prior beliefs µ̂ > µ̂(m−1), V0(µ̂, δ) ≤ V(m−1)(δ). Suppose µ̂ ∈
(µ̂(m), µ̂(m−1)] and the normal firm is hired in the first period. Then it must be the
case that αL, αH > α∗, and hence the normal firm puts positive probability on the
appropriate level of service in each state. But then (1, 1) is also a best reply for
the normal firm, so

V0(µ̂, δ) ≤ (1− δ)u+ δ

2
{V0(ϕ(µ̂ | H), δ)+ V0(ϕ(µ̂ | L), δ)}. (18.6.4)

We now seek upper bounds for the terms on the right side. Because µ̂ > µ̂(m),
ϕ(µ̂ | H) > µ̂(m−1) and

V0(ϕ(µ̂ | H), δ) ≤ V(m−1)(δ). (18.6.5)

It remains to bound V0(ϕ(µ̂ | L), δ).9 When the realized state is θH , the normal
firm finds it optimal to choose H , and so the following incentive constraint must
hold:

9. If we assumed γ = 1, then ϕ(µ̂ | L) = 0 for all µ̂ ∈ (0, 1), and so V0(ϕ(µ̂ | L), δ) ≤ u.
However, this bound is not sufficiently tight for our purpose, because using this bound gives

V0(µ̂, δ) ≤ (1− δ)u+ δ

2
{V(m−1)(δ)+ u},

which converges to u/2 as δ→ 1.
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(1− δ)u+ δV0(ϕ(µ̂ | H), δ) ≥ (1− δ)(−w)+ δV0(ϕ(µ̂ | L), δ),

which we rearrange to give

V0(ϕ(µ̂ | L), δ) ≤ (1− δ)(u+ w)
δ

+ V0(ϕ(µ̂ | H), δ). (18.6.6)

Inserting (18.6.5) and (18.6.6) in (18.6.4), we find

V0(µ̂, δ) ≤ (1− δ)u+ δ

2

[
V(m−1)(δ)+ (1− δ)(u+ w)

δ
+ V(m−1)(δ)

]

= (1− δ)(3u+ w)
2

+ δV(m−1)(δ)

= V(m)(δ),

the desired result.
■

This result does not imply that the firm is never hired in equilibrium, only that quite
patient firms are very seldom hired, seldom enough that the firm’s payoff converges to 0
as the firm becomes arbitrarily patient.

The key intuition in the argument is that for [0, µ̂∗] to be a set of posteriors at
which the customer is willing to hire the firm, the firm must be willing to choose H
in state θH when faced with such a prior. But because H pushes the firm toward the
“zero-payoff set” (µ̂∗, 1], this must in turn imply that the expected payoff of remaining
in the “hire” set [0, µ̂∗] is not too high. The lemma exploits this implication to show
that the positive payoffs earned in the hire set cannot be large enough and last long
enough to overwhelm the eventual zero-payoff future.

18.6.5 Good Firms

Ely, Fudenberg, and Levine (2002) explore the possibility of allowing a richer set of
commitment types. In the basic model, the firm can be either normal or bad. What
if we also allowed a Stackelberg type, committed to the strategy (αH , αL) = (1, 1)?
In pursuing this question, assume that bad types are characterized by γ = 1, so they
always choose H .

Suppose first that there are only Stackelberg and bad types. Only the customers
make nontrivial decisions in this case. Letting η be the probability of the Stackelberg
type, the consumers will enter if and only if ηu+ (1− η)(u− w)/2 ≥ 0, and hence
if and only if

η ≥ w − u
u+ w = η

∗.

We thus have the situation shown in figure 18.6.4. If the prior probability of a bad type
is more than 1− η∗, with the firm otherwise being Stackelberg, then the consumer
will never hire the firm. It must then be the case that for any configuration in which
the bad type has prior probability at least 1− η∗, consumers will never enter, because
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Figure 18.6.4 Space of priors for bad reputation game with Stackelberg, normal,
and bad firms. The point (η∗, 1− η∗) identifies a prior with probability η∗ on the
Stackelberg type and 1− η∗ on the bad type.

normal firms can make things no more attractive than Stackelberg firms. The region
of such priors is labeled B in figure 18.6.4. Any prior in this region induces a unique
equilibrium in which consumers never hire the firm, who earns payoff of 0.

Consumers will always hire the firm if the Stackelberg type has probability at
least η∗, because normal types can make things no worse than bad types. This is the
region S in figure 18.6.4. If the prior falls in this region, there is an equilibrium in
which a sufficiently patient normal player receives a payoff arbitrarily close to u. In
particular, let the normal player choose (0, 1) in the first period, thus always choosingL.
The probability of the Stackelberg type is sufficiently high that consumers will still hire
the firm. Conditional on the firm being normal, the posterior probability attached to the
bad firm thus drops to 0 after the first period. There is then a continuation equilibrium
in which the normal and Stackelberg types both choose (1, 1), for payoff u. This gives
an overall payoff close to u for patient normal types.

What happens in the remaining region? Ely, Fudenberg, and Levine (2002) show
that if the prior probability is below the curve that divides the remaining region of
priors, then the normal type’s payoff in any Nash equilibrium is bounded above by a
value that converges to 0 as the normal type becomes arbitrarily patient. In addition,
this curve is asymptotic to the left side of the simplex at the lower left corner. This
implies that even with Stackelberg types, the bad reputation result holds for virtually
all prior distributions that put sufficient weight on the normal type.

18.6.6 Captive Consumers

A seemingly critical element of the bad reputation model is that there are histories
after which no information about the type of firm is revealed. This feature lies behind
the contrast between this model and the temporary reputation models of sections 15.5
and 16.7.
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The complete absence of additional information about the firm may be an extreme
assumption. Suppose instead that there is always some probability that more informa-
tion becomes available. Will this reverse the result? We pursue this possibility in this
section, under the presumption that γ = 1, so that a single observation of L reveals
the firm’s type. This appears to provide the best case for such additional information
making a difference.

We model this by assuming that in each period, the (short-run) consumer is a
normal type, as already modeled, with probability 1− ε. However, with probability
ε, the consumer is a captive who comes to the firm regardless of the firm’s history.
Every time a captive appears, more is learned about the firm. Much now hinges on the
relative sizes of the discount factor δ and the likelihood ε of a captive consumer.

It is a straightforward modification of our previous proof that “very small” ε do
not alter the conclusion.

Proposition

18.6.6
Let v̄1(ξ0, µ̂, δ, ε) be the supremum of the (discounted average) Nash-equilibrium
payoffs for the normal firm. Then,

lim
δ→1

lim
ε→0

v̄1(ξ0, µ̂, δ, ε) = 0.

As ε gets arbitrarily small, the continuation values in the perturbed game approach
those of the unperturbed game. Because our arguments in the latter exploited only
strict inequalities, they carry over for sufficiently small ε.

Higher payoffs can be achieved if the firm is patient enough that it is not too costly
to wait for a (perhaps very rare) captive consumer.

Proposition

18.6.7
For all ε > 0,

lim
δ→1

v̄1(ξ0, µ̂, δ, ε) = u.

Proof Suppose ε > 2u/(3u+ w). We show that for sufficiently large δ < 1, it is an equi-
librium for the firm to always perform the appropriate repair, that is, (αH , αL) =
(1, 1), and for normal consumers to hire the firm if and only if the posterior
µ̂ ≤ 2u/(w + u). To verify the latter, note that substituting (αH , αL) = (1, 1) in
(18.6.2), the consumer’s behavior is optimal. The firm’s behavior is also optimal
after any history featuring a previous play of L (revealing the firm to be normal)
or in which the current state is θL.

Suppose the firm has been hired after a history featuring only signals X and
H , with state θH . Then the normal firm’s value of choosing L is given by

V0(L) = (1− δ)(−w)+ δu,
coupling the current loss ofw with the future benefit of being known to be normal
and earning u. The value of playing H is bounded by

V0(H) = (1− δ)u+ εδ
( 1

2u+ 1
2V0(H)

)+ (1− ε)εδ2( 1
2u+ 1

2V0(H)
)

+ (1− ε)2εδ3( 1
2u+ 1

2V0(H)
)+ · · · ,

The expression V0(H) gives the value to the normal firm of always performing
the appropriate repair when normal consumers only hire the firm after the first



610 Chapter 18 ■ Modeling Reputations

observation of L (and so the bound is tight for µ̂ > 2u/(w + u)). Solving,

V0(H) = (2(1− δ)(1− (1− ε)δ)+ εδ)u
2(1− (1− ε)δ)− εδ .

As V0(L) = V0(H) = u when δ = 1, a sufficient condition for V0(H) > V0(L)

when δ is large is that the derivative of V0(H)− V0(L)with respect to δ evaluated
at δ = 1 be negative. But this is an implication of the bound on ε.

The same argument shows that if 0 < ε ≤ 2u/(3u+ w), the profile in which
the normal firm chooses L on first hiring (irrespective of the state) and there-
after always performs the appropriate repair, and normal consumers only hire
the firm after the first observation of L, is an equilibrium for large δ with value
approaching u.

■

18.7 Markets for Reputations

This section examines markets for reputations. It is far from obvious what it means to
buy or sell a reputation. We consider cases in which the value of an object depends on
the reputation of its previous owner, so that buying the object is essentially buying the
reputation. For this reputation to be valuable, it must have some effect on the payoff
of the object’s new owner. We ensure this by assuming that the sale of the object is not
observed by others in the game, as with the replacements of section 18.1.

18.7.1 Reputations Have Value

We take a first look at this possibility in the context of a model patterned after that of
Tadelis (1999, 2002). The model is a two-period snapshot of an overlapping generations
economy.10 At the beginning of period 0, there is a unit mass of “old” firms, half of
whom are good and half of whom are normal. There is also a unit mass of young firms,
again with half being good and half being normal. Each firm is distinguished by a
name.

Good firms provide a service that is successful with probability ρ > 1/2 and a
failure otherwise. A normal firm faces a choice in each period. It can exert high effort,
at cost c > 0, in which case its output is a success with probability ρ and a failure with
probability 1− ρ. Alternatively, it can exert low effort at no cost, in which case its
output is surely a failure.

A success has a value of 1 to a consumer, and a failure has value 0. Firms sell their
outputs to consumers who cannot distinguish good firms from normal ones and cannot
condition their price on whether the service will be a success or failure, and who are
sufficiently numerous to bid prices for the firms’ products up to their expected value.

At the end of period 0, all old firms disappear, to be replaced by a generation of
new firms. Firms that were previously new become old firms. These continuing firms
have the option of retaining their name or abandoning it to either invent a new one or
buy a name, at the (possibly zero) market price, from either a departing or continuing

10. Tadelis (2003) generalizes the model to a continuum of types and an infinite horizon.
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firm. Each new firm has the option of either inventing a new name for themselves or
buying a name from a continuing or departing firm. Firms in the market for two periods
maximize the sum of the payoffs in the two periods.

Consumers in the second period observe the name of each firm. For each name
that is not new, consumers observe whether that name was associated with a success
or failure in the previous period. However, they do not observe whether the name is
owned by a continuing firm or a new firm.

We thus have three markets, the first-period and second-period markets for the
firms’ services and an interperiod market for names. An equilibrium is a specification
of effort levels and a six-tuple of prices (including a price for first-period services, a
price for names bearing a previous success and names bearing a previous failure in the
interperiod market for names, and a price in the second-period market for the services
of a firm bearing a new name, an old name with a first-period success, and an old name
with a first-period failure) with the properties that firms’ effort choices are optimal and
the prices clear the relevant markets.

The name the firm bears has no effect on the quality of good it supplies. There
is thus a sense in which names are intrinsically worthless. However, the interperiod
market for names must be active in any equilibrium.

Proposition

18.7.1
Names are traded in any equilibrium.

Proof If no firm adopts the name of a departing firm, then normal old firms optimally
exert low effort in period 0. If normal young firms exert low effort, then all names
persisting in the second-period market after a first-period success are owned by
good firms, whose service price is thus ρ. In contrast, a new name belongs to
a (continuing normal or new) firm who is good with probability 1/3 and who
commands price ρ/3. If (some) normal young firms optimally exert high effort,
the service price commanded by a firm with a success-bearing name must exceed
that of a firm with a new name. In either case, selling the name of a successful old
firm to a new firm allows mutual gains, a contradiction.

■

We now present a class of equilibria. Every continuing firm experiencing a failure
in period 0 abandons its name, every young firm whose service was successful retains
its name, and no names carrying a failure are purchased. (Other equilibria do exist.)
We accordingly do not specify the interperiod price of the name of a failing firm, nor
the second-period price of a firm whose name carries a first-period failure.

In the initial period, all firms command the same price, to be determined. In the
second period, consumers potentially perceive two types of firm in the market, bearing
continuing names whose service was successful in period 0 and new names. Let these
command prices ps and pn. Note that a continuing name need not be a continuing firm.

It is clear that normal firms will exert no effort in period 1. We seek an equilibrium
in which they exert effort in period 0. Let x0 be the proportion of old normal firms who
exert effort in period 0, and x1 the proportion of young normal firms who exert effort
in period 0. Then the price in the period 0 output market is given by

ρ
( 1

2 + 1
4 (x0 + x1)

)
.
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Type of name Type of firm Measure

s Old, good 1
2ρ

s Old, normal 1
2ρx1

s Good βθ

s Normal β(1− θ)
n Good 1

2 (1− ρ)+ 1
2 − βθ

n Normal 1
2 (1− ρx1)+ 1

2 − β(1− θ)

Figure 18.7.1 Composition of firms in the period 1 market. An s name
is a name present in the market and experiencing a success in the first
period and an n name is new in the market.

Consider the interperiod market for names. There are ρ(1+ x0)/2 names in
the market whose period 0 service was successful. Denote by β ≤ ρ(1+ x0)/2 the
measure of such names that are purchased and by θ the proportion of these names
purchased by good firms. Figure 18.7.1 shows the composition of firms in the second
period.

The period 1 output market features two prices, ps and pn, being the prices
commanded by a name whose past service was successful and by a new name. Because
only good firms exert high effort in the second period, each of these prices is ρ times
the probability that the firm is good, where this probability is conditioned on the
information contained in the firm’s name. These probabilities are readily calculated
from figure 18.7.1, using Bayes’ rule, giving prices

ps = ρ
(

1
2ρ + βθ

1
2ρ + βθ + 1

2ρx1 + β(1− θ)

)

and

pn = ρ
(

1
2 (1− ρ)+ 1

2 − βθ
1
2 (1− ρ)+ 1

2 − βθ + 1
2 (1− ρx1)+ 1

2 − β(1− θ)

)
.

The interperiod market price of a name is given by ps − pn.
Now consider the incentives for normal firms to exert effort in period 0. An old

firm who exerts low effort finishes the period with a worthless name, whereas high
effort gives a probability ρ that his name can be sold. High effort is thus optimal
if ρ(ps − pn) ≥ c. A young firm who exerts low effort produces a failure, adopts
a new name, and receives price pn in the second-period output market. High effort
gives a probability ρ that a price ps can be commanded in period 1. High effort
is again optimal if ρ(ps − pn) ≥ c. Firms of different vintages thus face the same
incentives.
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We seek an equilibrium in which normal firms exert high effort in period 0 and
hence in which x0 = x1 = 1. In such a configuration, there are ρ successful names in
the names market, and we examine an equilibrium in which all are sold, or β = ρ.
This implies the period 1 prices

ps = ρ
(

1+ 2θ

4

)

and pn = ρ
(

2− ρ − 2ρθ

4− 4ρ

)
.

The price of a name is then

ps − pn = ρ
(

2θ − 1

4− 4ρ

)
.

For names to command a positive price, we must then have more than half of the names
purchased by good firms (θ > 1/2). We have a continuum of potential equilibria. If
ρ ≤ 2/3, the price of a name increases from 0 to ρ/(4− 4ρ) as θ increases from 1/2
to its maximum of 1. If ρ ≥ 2/3, the price of a name increases from 0 to 1/2 as θ
increases from 1/2 to its maximum of (2− ρ)/(2ρ).11 Equilibrium requires that the
price of a name suffice to compensate a normal firm for high effort in the first period,
or ρ(ps − pn) ≥ c. Putting these results together, there will exist equilibria in which
high effort is expended as long as c is sufficiently small.

The market for names plays an important role in creating the incentives for normal
firms to exert high effort. Suppose that there was no market for names. It is then clear
that old normal firms will not exert effort in period 0, because there is no prospect of
a future reward from doing so. Similarly, it cannot be an equilibrium for all young
normal firms to exert effort. If they do, the first-period outcome is uninformative as
to the firm’s type, and names bearing a success will command the same price in the
second period as new names. For sufficiently small c, there is an equilibrium in which
some but not all zero-year-old normal firms exert high effort, with the proportion doing
so set so that ρ(ps − pn) = c.

18.7.2 Buying Reputations

The model in section 18.7.1 yields a continuum of equilibria, differing in the charac-
teristics of the firms who buy reputations. Are reputations more likely to be purchased
by good firms or bad firms? We endeavor here to gain some insight into this question.

Our point of departure is the model of section 18.4.2. We assume ρH = 1− ρL
and set ρL ≡ ρ (unlike section 18.7.1). To use this as a model in which reputations are
traded, we allow an entrant’s characteristics to be endogenously determined.

We interpret the model as one in which an entrepreneur owns a resource that is
essential for a firm to operate in the market, whether it be a name, location, patent,

11. These calculations follow from noting that there are ρ names bearing a success in the market
from departing firms who achieved a success, and (1− ρ)/2+ 1/2 good buyers, including old
firms who produced a failure and new firms.
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skill, or some other input. The entrepreneur sells the right to use this resource to a firm,
for the duration of the firm’s lifetime. On the death of this firm, the entrepreneur offers
the resource for sale again. It is now important to the analysis that replacements entail
the departure of the current firm, so that the new firm’s type can be determined by the
resulting market.

Whenever the resource is sold, there is a large number of potential new firms
who are inept. We normalize the opportunity cost of potential inept firms to 0. Normal
firms are scarce. The existence of a potential normal firm, and the opportunity cost
of such a firm, is randomly determined in each period, independently and identically
across periods. With probability ν + κD(d0), there is a potential normal firm whose
normalized opportunity cost of participating in the market is less than or equal tod0 ≥ 0.
We assume ν ∈ (0, 1), κ ≥ 0, ν + κ ≤ 1, and D is a strictly increasing, continuously
differentiable cumulative distribution function on [0, 1/δ) withD(0) = 0. Hence, ν is
the probability that there is a normal firm with opportunity cost zero. With probability
κD(d0), there is a normal firm whose opportunity cost exceeds 0 but not d0. With
probability 1− ν − κ , there is no potential normal firm.

We assume there is at most one normal firm. When the current firm exits, the right
to the resource is sold by a sealed-bid, second-price auction. The second-price auction
is convenient because it ensures that the right to the resource is sold to the firm with the
highest net valuation. Coupled with our assumption that there is at most one normal
firm and at least two inept firms among the potential entrants, this allows us to easily
identify equilibrium prices and the circumstances under which entrants are likely to
be either normal or inept.

If we set κ = 0, the model is formally identical to that of exogenous replace-
ments, with ν being the probability that a replacement is normal. In particular, with
probability ν, there is a normal firm who will win the second-price auction, giving a
normal replacement.

Let V0 (VI ) denote the value function for the normal (inept) firm. These value
functions are functions of the common consumer beliefs µ0 that the firm is normal.
The price of a resource currently characterized by belief µ0 is the net (of opportunity
cost) value of the resource to the second highest bidder, who will be an inept firm with
zero opportunity cost and value VI (µ0), giving a price of VI (µ0). A normal firm with
opportunity cost d0 thus buys the name if

V0(µ0) ≥ d0 + VI (µ0). (18.7.1)

One of the inept firms buys the name if the inequality is reversed and strict. The
probability that the replacement is normal is then ν + κD(V0(µ0)− VI (µ0)), which
depends on the consumers’ posterior µ0.

We seek an equilibrium in which normal firms always exert high effort. In such
an equilibrium, posterior beliefs of the consumers are given by

ϕ(µ0 | ȳ) = (1− λ) (1− ρ)µ0

(1− ρ)µ0 + ρ(1− µ0)
+ λν

+ λκD(V0(ϕ(µ0 | ȳ))− VI (ϕ(µ0 | ȳ))), (18.7.2)
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and

ϕ(µ0 | y) = (1− λ) ρµ0

ρµ0 + (1− ρ)(1− µ0)
+ λν

+ λκD(V0(ϕ(µ0 | y))− VI (ϕ(µ0 | y))). (18.7.3)

The belief functions ϕ(µ0 | ȳ) and ϕ(µ0 | y) enter both sides of (18.7.2) and (18.7.3).
This reflects the fact that beliefs depend on the likelihood that entrants are normal or
inept firms, which in turn depends on beliefs. The beliefs of the consumers are then a
fixed point of (18.7.2) and (18.7.3).

Given that normal firms exert high effort, a posterior probability µ0 that the firm
is normal gives a price of

p(µ0) = (1− 2ρ)µ0 + ρ.
The value function of the inept firm is then

VI (µ0) = (1− δ(1− λ))((1− 2ρ)µ0 + ρ)
+ δ(1− λ){ρVI (ϕ(µ0 | ȳ))+ (1− ρ)VI (ϕ(µ0 | y))

}
, (18.7.4)

and the value function of the normal firm is

V0(µ0) = (1− δ(1− λ))((1− 2ρ)µ0 + ρ − c)
+ δ(1− λ){(1− ρ)V0(ϕ(µ0 | ȳ))+ ρV0(ϕ(µ0 | y))

}
. (18.7.5)

From (18.7.5), it is sufficient for normal firms to always optimally exert high effort
if, for all possible posteriors µ0, a one shot deviation to low effort is not profitable,
that is,

δ(1− λ)(1− 2ρ)
{
V0(ϕ(µ0 | ȳ))− V0(ϕ(µ0 | y))

} ≥ c(1− δ(1− λ)). (18.7.6)

Moreover, as in the proof of proposition 18.4.1, (18.7.6) is also sufficient. The triple
(α, p, ϕ) is then a reputation equilibrium if the normal firm chooses high effort in every
state (α(µ0) = 1 for all µ0), the expectation updating rules and the value functions of
the firms satisfy (18.7.2)–(18.7.5), and the normal firm is maximizing at every µ0.

From Mailath and Samuelson (2001, proposition 3) we have:

Proposition

18.7.2
Suppose ν > 0, λ > 0, δ(1− λ) < ρ(1− ρ)/(1− 3ρ + 3ρ2), andD′ is bounded.
Then there exists κ∗ > 0 and c∗ > 0 such that a reputation equilibrium exists for
all κ ∈ [0, κ∗] and c ∈ [0, c∗].

The difficulty in establishing the existence of a reputation equilibrium arises from the
linkage between the posterior updating rules and the firms’ value functions. In the case
of exogenous replacements, the updating rules are defined independently of the value
functions. We could accordingly first calculate posterior beliefs, use these calculations
to obtain value functions, and then confirm that the proposed strategies are optimal
given the value functions. With endogenous replacements, we require a fixed-point
argument to establish the existence of mutually consistent updating rules and value
functions. After concluding that consistent value functions and updating rules exist,
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familiar arguments establish that as long as c and κ are not too large, the proposed
strategies are optimal.

We again require that c be sufficiently small that the potential future gains of
maintaining a reputation can exceed the current cost. The requirements that ν > 0 and
λ > 0 ensure that there exist µ′0 and µ′′0, with 0 < µ′0 < µ′′0 < 1, for any allowable
values of κ , such that for any ϕ satisfying (18.7.2) and (18.7.3), ϕ(µ0 | y) ∈ [µ′0, µ′′0]
for allµ0 ∈ [0, 1] and y ∈ {y, ȳ}. As in the case of proposition 18.4.1, this bounding of
posterior probabilities away from the ends of the unit interval is necessary to preserve
the incentive for normal firms to exert high effort.

The inequality restriction on δ, λ, and ρ in proposition 18.7.2 ensures that the
one-period discounted “average” derivative of the no-replacement updating rule is
strictly less than 1. Coupled with the requirements thatD′ is bounded and that κ is not
too large, this ensures that the value functions have uniformly bounded derivatives.
This in turn allows us to construct a compact set of potential value functions to which
a fixed point argument can be applied to yield consistent belief updating rules and
value functions. Taking κ to be small also ensures that the type of an entering firm is
not too sensitive to the difference V0(µ0)− VI (µ0). Otherwise, the possibility arises
that for some values of µ0, consumers and potential entrants might coordinate on an
equilibrium in which entrants are likely to be normal, because the value of a normal
firm is high, because consumers expect entrants to be normal. For other values of µ0,
entrants may be unlikely to be normal, because the value is low, because consumers
expect inept entrants. This allows us to introduce sharp variations in the value function
V0(µ0), potentially destroying the convention that higher reputations are good, which
lies at the heart of a reputation equilibrium.

We now turn our attention to the market for reputations. In particular, which
posteriors are most likely to attract normal firms as replacements, and which are most
likely to attract inept firms? A normal firm is more likely to enter as the difference
V0(µ0)− VI (µ0) increases.

Proposition

18.7.3
Suppose a reputation equilibrium exists for all κ < κ∗. For any ξ > 0, there is
a κ† ≤ κ∗ such that for any κ < κ†, V0(µ0)− VI (µ0) is strictly increasing for
µ0 < 1/2− ξ and strictly decreasing for µ0 > 1/2+ ξ .

Replacements are more likely to be normal firms for intermediate values of µ0

and less likely to be normal firms for extreme values of µ0.12 Thus, firms with low
reputations are relatively likely to be replaced by inept firms. Good firms find it too
expensive to build up the reputation of such a name. On the other hand, firms with
very good reputations are also relatively likely to be replaced by inept firms. These
names are attractive to normal firms, who would prefer to inherit a good reputation to
having to build up a reputation, and who would maintain the existing good reputation.
However, these names are even more attractive to inept entrants, who will enjoy the
fruits of running down the existing high reputation (recall that if consumers believe
that the firm is almost certainly normal, then bad outcomes do not change consumer
beliefs by a large amount).

12. The function V0(µ0)− VI (µ0) has its maximum near 1/2 because of the symmetry assump-
tion Pr{ȳ | H } = Pr{y | L}. This result holds without the symmetry assumption, but with the
maximum possibly no longer near 1/2.
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Replacements are more likely to be normal firms for intermediate reputations.
These are attractive to normal firms because less expenditure is required to build a
reputation than is the case when the existing firm has a low reputation. At the same time,
these reputations are less attractive than higher reputations to inept entrants, because
the intermediate reputation offers a smaller stock that can be profitably depleted.

As a result, we expect reputations to exhibit two features. There will be churning:
High reputations will be depleted and intermediate reputations will be enhanced. Low
reputations are likely to remain low.

Proof Consider first the case of exogenous entry, κ = 0. The corresponding value
functions V0(µ0) and VI (µ0) can be written as

V0(µ0) = ρ − c + (1− δ(1− λ))(1− 2ρ)µ0

+ (1− δ(1− λ))(1− 2ρ)
∞∑
t=1

δt (1− λ)t
∑

ht∈{y,ȳ}t
ϕ(µ0 | ht )Pr(ht | H),

and

VI (µ0) = ρ + (1− δ(1− λ))(1− 2ρ)µ0

+ (1− δ(1− λ))(1− 2ρ)
∞∑
t=1

δt (1− λ)t
∑

ht∈{y,ȳ}t
ϕ(µ0 | ht )Pr(ht | L),

where Pr(ht | L) is the probability of realizing the sequence of outcomes ht given
that the firm chooses low effort in every period. Combining these expressions,

V0(µ0)− VI (µ0)

= (1− δ(1− λ))(1− 2ρ)
∞∑
t=1

{∑
ht

δt (1− λ)tPr(ht | H)ϕ(µ0 | ht )

−
∑
ht

δt (1− λ)tPr(ht | L)ϕ(µ0 | ht )
}
+ k,

(18.7.7)

where k is independent of µ0. The set of histories {y, ȳ}t can be partitioned into
sets of “mirror images,” {ht , ĥt }, where ht specifies ȳ in period τ ≤ t if and only
if ĥt specifies y in period τ ≤ t . It suffices to show that

β(µ0) ≡ ϕ(µ0 | ht )Pr(ht | H)+ ϕ(µ0 | ĥt )Pr(ĥt | H)
− ϕ(µ0 | ht )Pr(ht | L)− ϕ(µ0 | ĥt )Pr(ĥt | L)

is concave and maximized at µ0 = 1/2, because (18.7.7) is a weighted sum of
such terms. Now notice that

Pr(ht | H) = Pr(ĥt | L) ≡ x
and Pr(ĥt | H) = Pr(ht | L) ≡ y,
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which implies

ϕ(µ0 | ht ) = (1− λ)t xµ0

xµ0 + y(1− µ0)
+ (1− (1− λ)t )γ

and

ϕ(µ0 | ĥt ) = (1− λ)t yµ0

yµ0 + x(1− µ0)
+ (1− (1− λ)t )γ,

where γ does not depend on µ0. Letting xµ0 + y(1− µ0) ≡ Zx and yµ0 +
x(1− µ0) ≡ Zy , we can then calculate (where β ′ and β ′′ denote first and second
derivatives)

β ′ = (1− λ)t
[
x2y

Z2
x

+ xy
2

Z2
y

− xy
2

Z2
x

− x
2y

Z2
y

]
,

which equals 0 when µ0 = 1/2. We can then calculate

β ′′ = −2xy(1− λ)t
[
(x − y)2
Z3
x

+ (y − x)
2

Z3
y

]
≤ 0,

with the inequalities strict whenever ht specifies an unequal number of good and
bad outcomes, so that V0 − VI is strictly concave and maximized at µ0 = 1/2.

Moreover, because d{V0(µ0)− VI (µ0)}/dµ0 is strictly decreasing, it is
bounded away from 0 from below for µ0 ≤ 1/2− ξ and it is bounded away from
0 from above for µ0 ≥ 1/2+ ξ . The extension to κ small but nonzero is then an
immediate implication of the sequential compactness of the spaces of updating
rules and value functions.

■

Remark

18.7.1
Section 18.7 illustrates the possibilities for putting reputation models to work.
Much remains to be done in terms of exploring alternative models and their uses,
with an eye toward better capturing the idea of reputation.

◆
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